The lower mass function of young open clusters: clues to (sub)stellar formation

E. Moraux (IoA) J. Bouvier (LAOG) C. Clarke (IoA)

T. Kendall, G. Meeus, J.C. Cuillandre, J. Stauffer, D. Barrado, L. Testi

(Sub)Stellar Formation

- \star 'isolated' gravitational core collapse
- ★ dynamical ejection (Reipurth & Clarke 2001)
 core fragmentation → instable proto-stellar multiple systems
 dynamical decay → ejection of fragments which remain substellar
- \star gravitational instabilities of massive circumstellar disks
- \star photo-erosion of pre-stellar cores in HII regions

Which process is the dominant one? Does it depend on the environment?

⇒ Combination of various observational studies to discriminate (IMF, dynamical evolution)

Initial Mass Function (IMF)

$$\xi(\log m) = rac{dn}{d\log m}$$

Substellar domain?

IMF still poorly constrained

Dependency to initial conditions ?

some stellar formation models predict variations in the BD domain

Lower mass limit to the IMF?

Young open clusters

- \star large samples over 2-3 decades of masses
- ★ homogeneous population (same age, distance, metallicity)
- \star star formation is terminated
- ★ young populations (BDs still bright enough to be detected)

cluster	age	[Fe/H]	richness
Blanco 1	100 Myr	+0.1/0.2	> 200 stars
Pleiades	120 Myr	0.0	$\sim 1200 \; {\rm stars}$
NGC 2516	150 Myr	-0.3/0.0	$\sim 2000 { m \ stars}$
Hyades	625 Myr	+0.14	> 300 stars

Determination of the mass function

1. deep wide-field photometric surveys (CFH12K,ESO2.2m/WFI) \rightarrow candidates selection

2. follow-up observations : proper motion, surface gravity, infrared photometry, spectral type (CFHTIR, SOFI, FORS2, NICS) \rightarrow confirmation

3. then utilisation of mass-magnitude relationship (Baraffe et al. 1998, Chabrier et al. 2000)

luminosity function \rightarrow mass function

 $^{-1}$

$$\frac{dn}{dm} = \left[\frac{dn}{dM_{\lambda}}\right] \left[\frac{dm}{dM_{\lambda}}\right]$$

m: mass M_{λ} : magnitude in λ -band

Blanco 1

56 BD candidates down to 30M_{Jup}

optical CMD (I, I - z)

near-infrared CMD (I, I - K)

+ Optical spectroscopy

(Moraux et al. 2005)

(Moraux et al. 2001)

Pleiades

40 BD candidates down to 30M_{Jup}

Estelle Moraux

NGC 2516

hundreds of VLM & BD candidates

down to $50 M_{Jup}$

(I, R - I) CMD

(I, I-z) CMD

Hyades

11 VLM, 1 VLM/BD, 2 BDs

Mass Functions

log-normal distributions : $\xi(\log m) \propto \exp\left[-rac{(\log m - \log m_0)^2}{2\sigma^2} ight]$

Blanco1, Pleiades, NGC2516 : $m_0 \sim 0.25 \cdot 0.30 M_{\odot}, \sigma \simeq 0.55$ $age = 10 \cdot 15 t_{cr}$

Hyades : $m_0 \sim 0.56 M_\odot, \sigma \simeq 0.38$ age = $43t_{cr}$

Blanco1/Pleiades

Similar within the uncertainties

Pleiades : $m_0 \sim 0.26 M_{\odot}, \sigma \simeq 0.53$ Blanco 1 : $m_0 \sim 0.34 M_{\odot}, \sigma \simeq 0.57$

_	[Fe/H]	richness
Blanco 1	+0.1/0.2	> 200*
Pleiades	0.0	$\sim 1200\star$

The "M7 gap"

masses underestimated by the models below $T_{eff} \sim 2700 \text{K}$ (Dobbie et al. 2002)

correction using empirical mass-magnitude relationship

model calibration for different ages is needed (\rightarrow Monitor project)

Density effect

peak ~ $M_{Jeans} \propto T^{3/2} \rho^{-1/2}$ lower density \rightarrow peak at higher mass

- supersonic turbulence : same sonic rms Mach number but lower density
- \rightarrow peak at higher mass
- \rightarrow slightly broader mass function

model predictions :

$$m_{0Blanco1} \geq m_{0Pleiades}$$

(Padoan & Nordlund 2002)

 $\sigma_{Blanco1} \geq \sigma_{Pleiades}$

Metallicity effect

mass characteristic of the IMF $\sim M_{Jeans} \propto T^{3/2} \rho^{-1/2}$

higher metallicity \rightarrow smaller T \rightarrow peak at lower mass

but $T = f(\rho)$ (Larson 2005) peak corresponds to the minimum of T $T_0, \rho_0 \to M_{Jeans} \sim 0.3 M_{\odot}$

higher metallicity $\rightarrow T < T_0$ but minimum occurs at $\rho(T) < \rho_0$ so what about M_{Jeans} ?

$m_{0Blanco1} \sim m_{0Pleiades}$

Dynamical evolution

(Adams et al. 2002)

• dynamical relaxation : \Rightarrow evaporation of the low mass members

• ejection scenario : if $V_{\rm ej} > V_{\rm esc} \Rightarrow$ quick loss of primordial BDs

Pleiades-like clusters (100 Myr)

MF(Pleiades) \sim MF(SFR, Field) \rightarrow **no** significant evaporation of BDs in 100 Myr

NBody simulations

toy model with $\sigma_{V_{\rm BD}} = k \, \sigma_{V_{\star}}$

$\sigma_{V_{ m BD}}$	$\sigma_{V_{\star}}$	$1.5\sigma_{V_{\star}}$	$2\sigma_{V_{\star}}$
evaporation	10%	20%	40%

 $\Rightarrow \sigma_{V_{\rm NB}} < 2\sigma_{V_{\star}} \ (\sim {
m a few km/s})$ at birth

(Moraux & Clarke 2005)

ejection velocity cannot be more than ~ 1 km/s no (or very small) distribution tail with large V_{ej}

Radial distribution

comparison BDs/very low mass stars

radial distributions in the cluster at $1t_{cr}$:

age $\leq 2t_{cr}$ $(t_{cr} = 2R/\sigma_{V_{\star}})$

Hyades (625 Myr)

	model predictions	observations
% of BDs lost	$\sim 85\%$	>95%
% of stars lost	70%	55%

if we assume Hyades IMF = Field IMF \rightarrow discrepancy between models and obs

too many BDs have been lost compared to stars

Hyades (625 Myr)

Mass segregation

(Adams et al. 2002)

Hyades (625 Myr)

Dynamical evolution models do not explain the strong deficit of BDs

- additional loss of BDs due to ejection in the early stages ?
- BDs cool down more rapidly than evolutionary models predict?
- different IMF due to different initial conditions (metallicity, turbulence, etc.)?

Supersonic turbulence in molecular clouds

however IMF seems to be amazingly universal, even for Taurus... star formation does not depend on global conditions ?

Estelle Moraux

Conclusions

- ★ Cluster MF @100 Myr from $30M_{Jup}$ to $3M_{\odot}$ log-normal with $m_0 \simeq 0.25$ - $0.30M_{\odot}$, $\sigma \simeq 0.55$
- ★ Similar MF for all studied clusters in this age range "universal" IMF ?
- Cluster MF similar to field MF
 Initial velocity of BDs less than escape speed
 Dynamical evaporation occurs past 150 Myr
- ★ Hyades strongly depleted in VLM stars and BDs dynamical evolution or different IMF ?