ULMSF, La Palma, June-July 2005

Very Low Mass Stars in Binaries: a Theoretical Look

Eduardo Delgado-Donate (Stockholm Observatory)

Cathie Clarke (IoA, Cambridge)

Why do stars come in pairs?

Approx. 2 out of every 3 G stars are members of binaries [e.g. Duquennoy & Mayor 1991, Halbwachs et al. 2003]

Multiplicity is even higher among pre-main sequence stars [e.g. Duchene 1999, Reipurth 2000]

***** But what about K, M, L, T dwarfs? *****

Other questions:

- Substellar IMF
- Fraction of low-mass stars with discs
- Is formation mechanism of brown dwarfs different?

To address this issue: Series of simulations of low-mass SF in small (5M☉) clouds ...

- Many stars and BDs formed: allows direct comparison with observations of stellar multiplicity
- Test of dependence of SF on initial conditions
- Investigation of the small-N cluster/ejection hypothesis
- Study time evolution of multiplicity

Model for Fragmentation of small Turbulent clouds

Numerical scheme: Smoothed Particle Hydrodynamics (SPH)

- Spherical cloud

$$-M=5M\odot$$

Initial conditions

$$-R = 1E + 4AU (\approx 0.05 pc)$$

- $\rho i \approx 1E$ -18 g/cc ($\approx 2E$ +5 H2/cc)

$$-Ti = 10 K$$

$$-Mj = 0.5 M\odot$$

-
$$tff \approx 1E + 5 yr$$

Initial turbulent velocity field:

- Power spectrum $P(k) \propto k^{\alpha}$; $\alpha = [-3, -5]$, $k = 2\pi/\lambda$
- Mach number = 3.75

Collapsing blobs replaced by point masses

10 calculations with these initial conditions.

5 of each α

[Performed at UK Astrophysical Fluids Supercomputer Facility, UKAFF]

- Include opacity limit for fragmentation via barotropic equation of state:
- Isothermal at low densities
- Adiabatic at densities higher than 1E-13 g/cc
- Mass resolution ≈ few MJupiter
- Minimum binary separation ≈ few AU

Time evolution of multiplicity:

Hydro calculation for ≈ 0.5 Myr

- Efficiency of $\approx 60\%$
- Star Formation has finished by then
- 145 objects formed; ≈ 50% are BDs

N-body follow-up of the stellar mini-cluster for 10 Myr

- 95% of multiple systems stable by then

Evolution of typical α =-3 cloud

Evolution of typical α =-5 cloud

Results: Many high-order multiples initially

Multiple star formation major channel for SF in turbulent flows

Results: Comparison with real clusters

The width of predicted binary sequence ✓ with e.g.-Praesepe, for masses above ≈ 0.3 Msun

[Præsepe data from Hodgkin et al. 1999]

Results: Time evolution of multiplicity

- First few 0.1 Myr \Rightarrow 60% of stars and BDs in multiples
- After few Myr ⇒ percentage down to 40%
- Companion frequency drops in time from ~1 to ~0.3:
 - Internal decay of multiples
 - Release of outliers to the field
- This predicted trend in qualitative agreement with observations, e.g. Duchêne et al. 2004

Results: Multiplicity as function of primary mass

- Positive dependence of binarity on primary mass
- Problem forming binary VLMS and BDs

At least ~ 15% BF; Martín et al. 03, Bouy et al. 03

Results: Where do we find brown dwarfs?

5C

~ few x 100 AU

1000

- First few 0.1 Myr, locked in unstable multiples

- After few Myr, large fraction released individually to field

- Thus, we expect that observed bound BDs at large separations are often orbiting a binary/triple, e.g. TWA 5AB (Brandeker et al. 2003)

Question: How to form systems with low binding energy?

- Simulations so far: * too much localised fragmentation * no SF in voids
 - * a binary becomes dominant quickly
 - * converging flows feed fast intersection zone

As a result:

- 3-body dynamics always present: many ejections
- low survival probability for systems with low binding energy
- problem of numerical scheme?

 "new" physics? eos?

 initial conditions? proper account of larger scales?

Some simple calculations are able to produce the desired `q' vs `a' relation, but how to get this with realistic initial conditions?

Conclusions

- Turbulent' fragmentation results in formation of many binaries and higher-order multiples.
- Companion frequency decreases during first few Myr.
- BDs bound at large separations likely to orbit binaries

[Delgado-Donate, Clarke, Bate & Hodgkin, 2004, MNRAS, 351, 617]

- Caveats: too few low-mass and wide binaries
 [Clarke & Delgado-Donate, 2005, MNRAS, in prep.]
- ◆ Possible variations of SubStellar IMF with environment [Delgado-Donate, Clarke & Bate, 2004, MNRAS, 347, 759]

Results: IMFs

Observational hints to this? Taurus, IC348 vs Orion, Pleiades [e.g. Briceño et al. 02, Preibisch et al. 03, Barrado y Navascués et al. 02]