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MACHINE LEARNING IN ASTRONOMY: A PRACTICAL OVERVIEW
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ABSTRACT

Astronomy is experiencing a rapid growth in data size and complexity. This change fosters the
development of data-driven science as a useful companion to the common model-driven data analysis
paradigm, where astronomers develop automatic tools to mine datasets and extract novel informa-
tion from them. In recent years, machine learning algorithms have become increasingly popular
among astronomers, and are now used for a wide variety of tasks. In light of these developments,
and the promise and challenges associated with them, the IAC Winter School 2018 focused on big
data in Astronomy, with a particular emphasis on machine learning and deep learning techniques.
This document summarizes the topics of supervised and unsupervised learning algorithms presented
during the school, and provides practical information on the application of such tools to astronomical
datasets. In this document I cover basic topics in supervised machine learning, including selection
and preprocessing of the input dataset, evaluation methods, and three popular supervised learning
algorithms, Support Vector Machines, Random Forests, and shallow Artificial Neural Networks. My
main focus is on unsupervised machine learning algorithms, that are used to perform cluster analysis,
dimensionality reduction, visualization, and outlier detection. Unsupervised learning algorithms are
of particular importance to scientific research, since they can be used to extract new knowledge from
existing datasets, and can facilitate new discoveries.
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1. CONTEXT

Astronomical datasets are undergoing a rapid
growth in size and complexity, thus introduc-
ing Astronomy to the era of big data science
(e.g., Ball & Brunner 2010; Pesenson et al.
2010). This growth is a result of past, ongo-
ing, and future surveys, that produce massive
multi-temporal and multi-wavelength datasets,
with a wealth of information to be extracted and
analyzed. Such surveys include the Sloan Digi-
tal Sky Survey (SDSS; York et al. 2000), which
provided the community with multi-color im-
ages of ∼ 1/3 of sky, and high-resolution spec-
tra of millions of Galactic and extra-galactic ob-
jects. Pan-STARRS (Kaiser et al. 2010) and
the Zwicky Transient Facility (Bellm 2014) per-
form a systematic exploration of the variable
sky, delivering time-series of numerous aster-
oids, variable stars, supernovae, active galac-
tic nuclei, and more. Gaia (Gaia Collaboration
et al. 2016) is charting the three-dimensional
map of the Milky Way, and will provide accurate
positional and radial velocity measurements for
over a billion stars in our Galaxy and through-
out the Local Group. Future surveys, e.g., DESI
(Levi et al. 2013), SKA (Dewdney et al. 2009),
and LSST (Ivezic et al. 2008), will increase the
number of available objects and their measured
properties by more than an order of magnitude.

In light of this accelerated growth, astronomers
are developing automated tools to detect, char-
acterize, and classify objects using the rich
and complex datasets gathered with the dif-
ferent facilities. Machine learning algorithms
have gained increasing popularity among as-
tronomers, and are widely used for a variety of
tasks.

Machine learning algorithms are generally di-
vided into two groups. Supervised machine
learning algorithms are used to learn a map-
ping from a set of features to a target vari-
able, based on example input-output pairs pro-
vided by a human expert (see e.g., Connolly

et al. 1995; Collister & Lahav 2004; Re Fiorentin
et al. 2007; Mahabal et al. 2008; Daniel et al.
2011; Laurino et al. 2011; Morales-Luis et al.
2011; Bloom et al. 2012; Brescia et al. 2012;
Richards et al. 2012; Krone-Martins et al. 2014;
Masci et al. 2014; Miller 2015; Wright et al.
2015; Djorgovski et al. 2016; D’Isanto et al.
2016; Lochner et al. 2016; Castro et al. 2018;
Naul et al. 2018; D’Isanto & Polsterer 2018;
D’Isanto et al. 2018; Krone-Martins et al. 2018;
Zucker & Giryes 2018; Delli Veneri et al. 2019;
Ishida et al. 2019; Mahabal et al. 2019; Nor-
ris et al. 2019; Reis et al. 2019). Unsupervised
learning algorithms are used to learn complex
relationships that exist in the dataset, with-
out labels provided by an expert. These can
roughly be divided into clustering, dimension-
ality reduction, and anomaly detection (e.g.,
Boroson & Green 1992; Protopapas et al. 2006;
D’Abrusco et al. 2009; Vanderplas & Connolly
2009; Sánchez Almeida et al. 2010; Ascasibar &
Sánchez Almeida 2011; D’Abrusco et al. 2012;
Meusinger et al. 2012; Fustes et al. 2013; Krone-
Martins & Moitinho 2014; Baron et al. 2015;
Hocking et al. 2015; Gianniotis et al. 2016; Nun
et al. 2016; Polsterer et al. 2016; Baron & Poz-
nanski 2017; Reis et al. 2018a,b). The latter al-
gorithms are arguably more important for scien-
tific research, since they can be used to extract
new knowledge from existing datasets, and can
potentially facilitate new discoveries.

In view of the shift in data analysis paradigms
and associated challenges, the IAC Winter
School 2018 focused on big data in Astron-
omy. It included both lectures and hands-on
tutorials, which are publicly available through
their website1. The school covered the following
topics: (1) general overview on the use of ma-
chine learning techniques in Astronomy: past,
present and perspectives, (2) data challenges
and solutions in forthcoming surveys, (3) su-

1 http://www.iac.es/winterschool/2018/

http://www.iac.es/winterschool/2018/
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pervised learning: classification and regression,
(4) unsupervised learning and dimensionality
reduction techniques, and (5) shallow and deep
neural networks. In this document I summa-
rize the topics of supervised and unsupervised
learning algorithms, with special emphasis on
unsupervised techniques. This document is not
intended to provide a rigorous statistical back-
ground, but rather to present practical infor-
mation on popular machine learning algorithms
and their application to astronomical datasets.
Supervised learning algorithms are discussed
in section 2, with an emphasis on optimiza-
tion (section 2.1), input datasets (section 2.2),
and three popular algorithms: Support Vector
Machine (section 2.3), Decision Trees and Ran-
dom Forest (section 2.4), and shallow Artificial
Neural Networks (section 2.5). Unsupervised
learning algorithms are discussed in section 3,
in particular distance assignment (section 3.1),
clustering algorithms (section 3.2), dimension-
ality reduction algorithms (section 3.3), and
anomaly detection algorithms (section 3.4).

2. SUPERVISED LEARNING

Supervised machine learning algorithms are
used to learn a relationship between a set of
measurements and a target variable using a
set of provided examples. Once obtained, the
relationship can be used to predict the tar-
get variable of previously-unseen data. The
main difference between traditional model fit-
ting techniques and supervised learning algo-
rithms is that in traditional model fitting the
model is predefined, while supervised learning
algorithms construct the model according to the
input dataset. Supervised learning algorithms
can, by construction, describe very complex
non-linear relations between the set of measure-
ments and the target variable, and can therefore
be superior to traditional algorithms that are
based on fitting of predefined models.

In machine learning terminology, the dataset
consists of objects, and each object has mea-

sured features and a target variable. In Astron-
omy, the objects are usually physical entities
such as stars or galaxies, and their features are
measured properties, such as spectra or light-
curves, or various higher-level quantities derived
from observations, such as a variability period
or stellar mass. The type of target variable de-
pends on the particular task. In a classifica-
tion task, the target variables are discrete (often
called labels), for example, classification of spec-
tra into stars or quasars. In a regression task,
the target variable is continuous, for example,
redshift estimation using photometric measure-
ments.

Supervised learning algorithms often have
model parameters that are estimated from the
data. These parameters are part of the model
that is learned from the data, are often saved
as part of the learned model, and are required
by the model when making predictions. Ex-
amples of model parameters include: support
vectors in Support Vector Machines, splitting
features and thresholds in Decision Trees and
Random Forest, and weights of Artificial Neu-
ral Networks. In addition, supervised learning
algorithms often have model hyper-parameters,
which are external to the model and whose val-
ues and are often set using different heuristics.
Examples of model hyper-parameters include:
the kernel shape in Support Vector Machines,
the number of trees in Random Forests, and
the number of hidden layers in Artificial Neural
Networks.

The application of supervised learning algo-
rithms is usually divided into three stages. In
the training stage, the model hyper-parameters
are set, and the model and the model param-
eters are learned from a subset of the input
dataset, called the training set. In the valida-
tion stage, the model hyper-parameters are op-
timized according to some predefined cost func-
tion, often using a different subset of the in-
put dataset, called the validation set. During
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the validation stage, the model training is car-
ried out iteratively for many different choices
of hyper-parameters, and the hyper-parameters
that result in the best performance on the vali-
dation set are chosen. Finally, in the test stage,
the trained model is used to predict the tar-
get variable of a different subset of the input
dataset, called the test set. The latter stage
is necessary in order to assess the performance
of the trained model on a previously-unseen
dataset, i.e., a subset of the input data that
was not used during the training and valida-
tion stages, and can be used to compare differ-
ent supervised learning algorithms. Once these
stages are completed, the model can be used to
predict the target variable of new, previously-
unseen datasets.

This section provides some basic principles
of supervised machine learning, and presents
several popular algorithms used in Astronomy.
For a detailed review on the subject, see Biehl
(2019). The section starts by describing the
cost functions that are usually used to opti-
mize model hyper-parameters, assess the per-
formance of the final model, and compare dif-
ferent supervised learning algorithms (section
2.1). Then, section 2.2 gives additional details
on the input dataset, in particular its parti-
tion to training, validation, and test sets, fea-
ture selection and normalization, and imbal-
anced datasets. Finally, three popular algo-
rithms are presented: Support Vector Machine
(section 2.3), Decision Trees and Random For-
est (section 2.4), and shallow Artificial Neural
Networks (section 2.5).

2.1. Evaluation Metrics

There are different evaluation metrics one can
use to optimize supervised learning algorithms.
Evaluation metrics are used to optimize the
model hyper-parameters, to assess the perfor-
mance of the final model, to select optimal sub-
set of features, and to compare between differ-
ent supervised learning algorithms. The evalua-
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Figure 1. Example of a confusion matrix taken
from Mahabal et al. (2017), who trained a deep
learning model to distinguish between 7 classes of
variable stars, marked by 1, 2, 4, 5, 6, 8, and 13

in the diagram. The confusion matrix shows the
number of objects in each class versus the number
of objects predicted by the model to belong to a
particular class. In the best-case scenario, the con-
fusion matrix will contain non-zero elements only
in its diagonal, and zero elements otherwise.

tion metrics are computed during the validation
and the test stages, where the trained model is
applied to a previously-unseen subset of the in-
put dataset, and the target variable predicted
by the model is compared to the target variable
provided in the input data.

In regression tasks, where the target variable
is continuous, the common metrics for eval-
uating the predictions of the model are the
Mean Absolute Error (MAE) and the Mean
Squared Error (MSE). The MAE is equal to
1
n

∑n
i=1 |yi − ŷi|, where n is the number of ob-

jects in the validation or test set, ŷi is the tar-
get variable predicted by the model, and yi is
the target variable provided in the input data.
The MSE is equal to 1

n

∑n
i=1 (yi − ŷi)

2. The
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MSE has the disadvantage of heavily weight-
ing outliers, since it squares each term in the
sum, giving outliers a larger weight. When out-
lier weighting is undesirable, it is better to use
the MAE instead. Finally, it is worth noting
additional metrics used in the literature, for ex-
ample, the Normalized Median Absolute Devi-
ation, the Continuous Rank Probability Score,
and the Probability Integral Transform (see e.g.,
D’Isanto & Polsterer 2018; D’Isanto et al. 2018).

In classification tasks, where the target vari-
able is discrete, the common evaluation metrics
are the Classification Accuracy, the Confusion
Matrix, and the Area Under ROC Curve. Clas-
sification accuracy is the ratio of the number
of correct predictions (i.e., the class predicted
by the model is similar to the class provided in
the input dataset) to the total number of pre-
dictions made. This value is obviously bound
between 0 and 1. The accuracy should be used
when the number of objects in each class is
roughly similar, and when all predictions and
prediction errors are equally important. Con-
fusion matrices are used in classification tasks
with more than two classes. Figure 1 shows
an example of a confusion matrix, taken from
Mahabal et al. (2017), who trained a super-
vised learning model to distinguish between 7
classes of variable stars. Each row and column
in the matrix represents a particular class of ob-
jects, and the matrix shows the number of ob-
jects in each class versus the number of objects
predicted by the model to belong to a particu-
lar class. In the best-case scenario, we expect
the confusion matrix to be purely diagonal, with
non-zero elements on the diagonal, and zero ele-
ments otherwise. Furthermore, similarly to the
accuracy, one can normalize the confusion ma-
trix to show values that range from 0 to 1, thus
removing the dependence on the initial number
of objects in each class.

Finally, the receiver operating characteristic
curve (ROC curve) is a useful visualization tool
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Figure 2. An illustration of an ROC curve, where
the true positive rate is plotted against the false
positive rate. In the best-case scenario, we expect
the true positive rate to be 1, and the false positive
rate to be 0. The black line represents the result-
ing ROC curve for random assignment of classes,
which is the worst-case scenario. The diagram is
populated by varying the model hyper-parameters
and plotting the true positive rate versus the false
positive rate obtained for the validation set. The
pink curve represents the ROC curve of model 1,
where A, B, and C represent three particular choices
of hyper-parameter value. The purple curve repre-
sents the ROC curve of model 2. The area under
the ROC curve can be used to select the optimal
model, which, in this case, is model 1.

of a supervised algorithm performance in a bi-
nary classification task. Figure 2 shows an il-
lustration of an ROC curve, where the True
Positive Rate is plotted against the False Posi-
tive Rate. The true positive rate represents the
number of ”true” events that are correctly iden-
tified by the algorithm, divided by the total
number of ”true” events in the input dataset.
The false positive rate represents the number
of ”false” events that were wrongly classified as
”true” events divided by the total number of
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”false” events. For example, if we are inter-
ested in detecting gravitational lenses in galaxy
images, ”true” events are images with gravi-
tational lenses, and ”false” events are images
without gravitational lenses. In the best-case
scenario, we expect the true positive rate to
be 1, and the false positive rate to be 0. The
ROC curve diagram is generated by varying the
model hyper-parameters, and plotting the true
positive rate versus the false positive rate ob-
tained for the validation set (the continuous
ROC curves presented in Figure 2 are produced
by varying the classification/detection thresh-
old of a particular algorithm. This threshold
can be considered as a model hyper-parameter).
Furthermore, the diagram can be used to com-
pare the performance of different supervised
learning algorithms, by selecting the algorithm
with the maximal area under the curve. For ex-
ample, in Figure 2, model 1 outperforms model
2 for any choice of hyper-parameters. Finally,
depending on the task, one can decide to op-
timize differently. For some tasks one cannot
tolerate false negatives (e.g., scanning for ex-
plosives in luggage), while for others the total
number of errors is more important.

2.2. Input Dataset

The input to any supervised learning algo-
rithm consists of a set of objects with measured
features, and a target variable which can be ei-
ther continuous or discrete. As noted in the
introduction to this section, the input dataset
is divided into three sets, the training, valida-
tion, and test sets. The model is initially fit
to the training set. Then, the model is ap-
plied to the validation set. The validation set
provides an unbiased evaluation of the model
performance while tuning the model’s hyper-
parameters. Validation sets are also used for
regularization and to avoid overfitting, with the
common practice of stopping the training pro-
cess when the error on the validation dataset
increases. Finally, the test set is used to pro-

vide an unbiased evaluation of the final model,
and can be used to compare between different
supervised learning algorithms. To perform a
truly unbiased evaluation of the model perfor-
mance, the training, validation, and test sets
should be mutually exclusive.

The dataset splitting ratios depend on the
dataset size and on the algorithm one trains.
Some algorithms require a substantial amount
of data to train on, forcing one to enlarge the
training set at the expense of the others. Algo-
rithms with a few hyper-parameters, which are
easily validated and tuned, require small vali-
dation sets, whereas models with many hyper-
parameters might require larger validation sets.
In addition, in Cross Validation the dataset can
be repeatedly split into training and validation
sets, for example, by randomly selecting objects
from a predefined set, and the model is then
iteratively trained and validated on these dif-
ferent sets (see e.g., Miller et al. 2017). There
are different splitting methods that are imple-
mented in python and are publicly available in
the scikit-learn library2.

The performance of all supervised learning al-
gorithms strongly depends on the input dataset,
and in particular on the features that are se-
lected to form the dataset. Most supervised
learning algorithms are not constructed to work
with hundreds or thousands of features, making
feature selection a key part of the applied ma-
chine learning process. Feature selection can
be done manually by an expert in the field, by
defining features that are most probably rele-
vant for the task at hand. There are various
alternative ways to select an optimal set of fea-
tures without domain knowledge, including fil-
ter methods, wrapper methods, and embedded
methods. Filter methods assign a statistical
score to each feature, and features are selected

2 https://scikit-learn.org/stable/model_

selection.html

https://scikit-learn.org/stable/model_selection.html
https://scikit-learn.org/stable/model_selection.html
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or removed according to this score. In wrapper
methods, different combinations of features are
prepared, and the combination that results in
the best accuracy is selected. Embedded meth-
ods learn which features best contribute to the
accuracy of the model during the model con-
struction (see also Donalek et al. 2013; D’Isanto
et al. 2016, 2018). Some to these methods are
included in the scikit-learn library3. Finally,
a pertinent note on deep learning, in particular
Convolutional Neural Networks. The structure
of these networks allows them to take raw data
as an input (e.g., spectra, light-curves, and im-
ages), and perform efficient feature extraction
during the training process. Thus, using such
models, there is usually no need to perform fea-
ture selection prior to the training stage.

Feature scaling is an additional key part of
the data preparation process. While some algo-
rithms do not require any feature scaling prior
to training (e.g., Decision Trees and Random
Forest), the performance of other algorithms
strongly depends on it, and it is advised to apply
some feature scaling prior to their training (e.g.,
for Support Vector Machine). There are various
ways to scale the features in the initial dataset,
including standardization, mean normalization,
min-max scaling, and application of dimension-
ality reduction algorithms to the initial dataset.
These will not be further discussed in this doc-
ument, however, many feature scaling methods
are available in scikit-learn4.

Finally, it is worth noting the topic of im-
balanced datasets. Imbalanced data typically
refers to the problem of a classification task
where the classes are not equally represented.
During training, many supervised learning al-
gorithms assign equal weights to all the objects
in the sample, resulting in a good performance

3 https://scikit-learn.org/stable/modules/

feature_selection.html
4 https://scikit-learn.org/stable/modules/

preprocessing.html

on the larger class, and worse performance on
the smaller class. In addition, the regular ac-
curacy cannot be used to evaluate the resulting
model. Assume for example that we are inter-
ested in detecting gravitational lenses, and our
dataset contains 100 000 images of galaxies, out
of which 100 images show evidence of lensing.
For such a dataset, an algorithm that classifies
all objects as ”not lens”, regardless of the input
features, will have an accuracy of 0.999. There
are several methods to train and evaluate su-
pervised learning algorithms in the presence of
imbalanced datasets. One could apply differ-
ent weights to different classes of objects during
the training process, or undersample the larger
class, or oversample the smaller class of objects.
These, and additional methods, are available in
scikit-learn. Instead of the classification ac-
curacy, one can use the ROC curve (figure 2),
and select the hyper-parameters that result in
the desired true positive versus false negative
rates.

2.3. Support Vector Machine

One of the most popular supervised learning
algorithms is Support Vector Machine (SVM),
which has been applied in Astronomy for a va-
riety of tasks (e.g., Qu et al. 2003; Huertas-
Company et al. 2008; Fadely et al. 2012; Ma lek
et al. 2013; Kovács & Szapudi 2015; Krakowski
et al. 2016; Hartley et al. 2017; Hui et al. 2018;
Ksoll et al. 2018; Pashchenko et al. 2018). Given
a dataset with N features, SVM finds a hyper-
plane in the N -dimensional space that best sep-
arates the given classes. In a two-dimensional
space, this hyperplane is a line that divides the
plane into two parts, where every class lies on a
different side. The optimal hyperplane is de-
fined to be the plane that has the maximal
margin, i.e the maximum distance between the
plane and the data points. The latter are called
the support vectors. Once obtained, the hyper-
plane serves as a decision boundary, and new
objects are classified according to their location

https://scikit-learn.org/stable/modules/feature_selection.html
https://scikit-learn.org/stable/modules/feature_selection.html
https://scikit-learn.org/stable/modules/preprocessing.html
https://scikit-learn.org/stable/modules/preprocessing.html
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Figure 3. Illustration of the SVM best hyper-
plane for a two-dimensional dataset with linearly-
separable classes. The two classes are plotted with
pink and purple circles, and the support vectors are
marked with black circles. The hyperlane is marked
with a solid grey line.

with respect to the hyperplane. Figure 3 shows
an illustration of the SVM hyperplane for a two-
dimensional dataset, in which the classes are
linearly-separable.

More often than not, the different classes in
the dataset are not linearly-separable. The
left panel of figure 4 shows an example of a
two-dimensional dataset with two classes, which
are not linearly-separable (i.e., the classes can-
not be separated using a single straight line).
The classification problem can be approached
with the SVM kernel trick. Instead of con-
structing the decision boundary in the input
data space, the dataset is mapped into a trans-
formed feature space, which is of higher dimen-
sion, where linear separation might be possible.
Once the decision boundary is found, it is back-
projected to the original input space, resulting
in a non-linear boundary. The middle panel
of figure 4 shows the three-dimensional feature
space that resulted from such a mapping, where,
in this representation, the classes are linearly-
separable. The right panel of figure 4 shows

the result of the back-projection of the decision
boundary. To apply the kernel trick, one must
define the kernel function that is related to the
non-linear feature mapping. There is a wide
variety of kernel functions, the most popular
being Gaussian Radial Basis Function (RBF),
Polynomial, and Sigmoid. The kernel function
is a hyper-parameter of SVM, and these func-
tions usually depend on additional parameters,
which are also hyper-parameters of the model.
SVM is available in scikit-learn5

SVM is simple and robust, allowing one
to classify a large variety of datasets and to
construct very non-linear decision boundaries.
Since SVM is based on measuring Euclidean
distances between the objects in the sample
and the hyperplane, it is very sensitive to fea-
ture scaling. Therefore, it is advised to scale
the features. SVM can be applied to datasets
with many features, but its performance might
be strongly affected by the presence of irrel-
evant features in the dataset. It is therefore
recommended to perform feature selection prior
to the training.

2.4. Decision Trees and Random Forest

Ensemble methods are meta-algorithms that
combine several supervised learning techniques
into a single predictive model, resulting in an
overall improved performance, compared to the
performance of each individual supervised algo-
rithm. Ensemble methods either combine dif-
ferent supervised learning algorithms, or com-
bine the information of a single algorithm that
was trained on different subsets of the training
set. One of the most popular ensemble methods
is Random Forest, which is a collection of Deci-
sion Trees (Breiman et al. 1984; Breiman 2001).
Random Forest is mainly used as a supervised
algorithm for classification and regression (e.g.,
Carliles et al. 2010; Bloom et al. 2012; Pichara

5 https://scikit-learn.org/stable/modules/

generated/sklearn.svm.SVC.html

https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html
https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html
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Figure 4. Application of the SVM kernel trick to a two-dimensional dataset that consists of two classes
which are not linearly-separable. The left panel shows the dataset, where the different classes are represented
by pink and purple circles. The middle panel shows the three-dimensional feature space that resulted from
the applied mapping, where the classes can be separated with a two-dimensional hyperplane. The right panel
shows the result of back-projecting the decision boundary to the input space, where the support vectors are
marked with black circles, and the decision boundary with a solid grey line.

et al. 2012; Pichara & Protopapas 2013; Möller
et al. 2016; Miller et al. 2017; Plewa 2018; Yong
et al. 2018; Ishida et al. 2019), but can also be
used in an unsupervised setting, to produce sim-
ilarity measures between the objects in the sam-
ple (Shi & Horvath 2006; Baron & Poznanski
2017; Reis et al. 2018a,b).

A decision tree is a non-parametric model
constructed during the training stage, which is
described by a top-to-bottom tree-like graph,
and is used in both classification and regression
tasks. The decision tree is a set of consecutive
nodes, where each node represents a condition
on one feature in the dataset. The conditions
are of the form Xj > Xj,th, where Xj is the
value of the feature at index j and Xj,th is some
threshold, both of which are determined during
the training stage. The lowest nodes in the tree
are called terminal nodes or leaves, and they
do not represent a condition, but instead carry
the assigned label of a particular path within
the tree. Figure 5 shows a visualization of a
trained decision tree, taken from Vasconcellos
et al. (2011), who trained decision tree classi-
fiers to distinguish stars from galaxies.

To describe the training process of the deci-
sion tree, I consider the simple case of a clas-
sification task with two classes. The training
process starts with the entire training set in the
highest node of the tree – the root. The algo-
rithm searches for the feature Xj and the fea-
ture threshold Xj,th that result in the best sep-
aration of the two classes, where the definition
of best separation is a model hyper-parameter,
with the typical choices being the Gini impurity
or the information gain. Once the best feature
and best threshold are determined, the training
set propagates to the left and right nodes below
the root, according to the established condition.
This process is repeated recursively, such that
deeper nodes split generally smaller subsets of
the original data. In its simplest version, the
recursive process stops when every leaf of the
tree contains a single class of objects. Once
the decision tree is trained, it can be used to
predict the class of previously-unseen objects.
The prediction is done by propagating the ob-
ject through the tree, according to its measured
features and the conditions in the nodes. The
predicted class of the object is then the label of
the terminal leaf (for additional information see
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Breiman et al. 1984; Vasconcellos et al. 2011;
Reis et al. 2019).

Decision trees have several advantages. First,
in their simpler forms, they have very few hyper-
parameters, and can be applied to large datasets
with numerous features. Second, their recursive
structures are easily interpretable, in particu-
lar, they can be used to determine the feature
importance. Feature importance represents the
relative importance of different features to the
classification task at hand. Since the trees are
constructed recursively with the aim of splitting
the dataset into the predefined classes, features
that are selected earlier in the training process,
closer to the root, are more important than fea-
tures that are selected later, closer to the ter-
minal nodes. Obviously, features that were not
selected in any node during the training process,
carry little relevant information to the classifi-
cation task. In more complex versions, decision
trees can provide a measure of uncertainty for
the predicted classes (see e.g., Breiman et al.
1984; Vasconcellos et al. 2011). However, in the
simplest version, there are no restrictions on the
number of nodes or the depth of the resulting
tree, making the algorithm extremely sensitive
to outliers. The resulting classifier will typi-
cally show a perfect performance on the training
set, but a poor performance on new previously-
unseen datasets. A single decision tree is typi-
cally prone to overfitting the training data, and
cannot generalize to new datasets. Therefore, it
is rarely used in its single form.

Random Forest is a collection of decision trees,
where different decision trees are trained on dif-
ferent randomly-selected subsets of the original
training set, and during the training of each in-
dividual tree, random subsets of the features are
used to construct the conditions in individual
nodes. This randomness reduces the correlation
between the different trees, resulting in some-
what different tree structures with different con-
ditions in their nodes. The Random Forest pre-

Figure 5. An example of a trained decision tree,
taken from Vasconcellos et al. (2011). The decision
tree contains nodes which represent conditions on
features from the dataset, in this case petroR90 r,
psfMag r, and nLStar r. The terminal nodes rep-
resent the assigned label of each particular path
within the tree, which are 1, 1, 2, and 1 from left
to right, and represent stars and galaxies.

diction is an aggregate of individual predictions
of the trees in the forest, in the form of a ma-
jority vote. That is, a previously-unseen object
is propagated through the different trees, and
its assigned label is the label reached in the ma-
jority of the trees. While a single decision tree
tends to overfit the training data, the combina-
tion of many decision trees in the form of a Ran-
dom Forest generalizes well to previously un-
seen datasets, resulting in a better performance
(for additional information see Breiman 2001).
As previously noted, Random Forest is one of
the most popular machine learning algorithms
in Astronomy.

Random Forest can be applied to datasets
with thousands of features, with a moderate
increase in running time. The algorithm has
a handful of hyper-parameters, such as the
number of trees in the forest and the num-
ber of randomly-selected features to consider
in each node in each tree. In terms of perfor-
mance, model complexity, and number of hyper-
parameters, Random Forest is between SVM
and Deep Neural Networks. The main disad-
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vantage of Random Forest, which applies to
most supervised learning algorithms, is its in-
ability to take into account feature and label
uncertainties. This topic is of particular inter-
est to astronomers, and I discuss it below in
section 2.4.1.

Finally, it is worth noting that ensemble meth-
ods rely on the construction of a diverse col-
lection of classifiers and aggregation of their
predictions (see e.g., Kuncheva & Whitaker
2003). Ensemble methods in the form of ”bag-
ging” tend to decrease the classification vari-
ance, while methods in the form of ”boosting”
tend to decrease the classification bias. Ran-
dom Forest is a ”bagging” ensemble method,
where the ensemble consists of a diverse col-
lection of individual trees that are trained on
different subsets of the data. In ”boosting”,
the decision trees are built sequentially, such
that each tree is presented with training sam-
ples that the previous tree failed to classify. One
of the most popular ”boosting” methods in As-
tronomy is Adaboost (Freund & Schapire 1997).
The three algorithms described in this section
are available in the scikit-learn library6.

2.4.1. Probabilistic Random Forest

While shown to be very useful for various
tasks in Astronomy, many Machine Learning
algorithms were not designed for astronomical
datasets, which are noisy and have gaps. In par-
ticular, measured features typically have a wide
range of uncertainty values, and these uncer-
tainties are often not taken into account when
training the model. Indeed, the performance of

6 https://scikit-learn.org/stable/modules/

generated/sklearn.tree.DecisionTreeClassifier.

html

https://scikit-learn.org/stable/

modules/generated/sklearn.ensemble.

RandomForestClassifier.html

https://scikit-learn.org/stable/modules/

generated/sklearn.ensemble.AdaBoostClassifier.

html

Machine Learning algorithms depends strongly
on the signal-to-noise ratio of the objects in the
sample, and a model optimized on a dataset
with particular noise characteristics will fail on
a similar dataset with different noise proper-
ties. Furthermore, while in computer vision
the labels provided to the algorithm are consid-
ered to be ”ground truth” (e.g., classification of
cats and dogs in images), in Astronomy the la-
bels might suffer from some level of ambiguity.
For example, in a classification task of ”real”
versus ”bogus” in transient detection on differ-
ence images (see e.g., Bloom et al. 2012), the
labels in the training set are obtained from a
manual classification of scientists and citizen-
scientists. While some might classify a given
event as ”real”, others may classify it as ”bo-
gus”. In addition, labels in the training set
could be the output of a different algorithm,
which provides a label with an associated uncer-
tainty. Such uncertainties are also not treated
by most Machine Learning algorithms.

Recently, Reis et al. (2019) modified the tra-
ditional Random Forest algorithm to take into
account uncertainties in the measurements (i.e.,
features) as well as in the assigned class. The
Probabilistic Random Forest algorithm treats
the features and the labels as random variables
rather than deterministic quantities, where each
random variable is represented by a probabil-
ity distribution function, whose mean is the
provided measurement and its variance is the
provided uncertainty. Their tests showed that
the Probabilistic Random Forest outperforms
the traditional Random Forest when applied to
datasets with various noise properties, with an
improvement of up to 10% in classification ac-
curacy with noisy features, and up to 30% with
noisy labels. In addition to the dramatic im-
provement in classification accuracy, the Prob-
abilistic Random Forest naturally copes with
missing values in the data, and outperforms
Random Forest when applied to a dataset with

https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.AdaBoostClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.AdaBoostClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.AdaBoostClassifier.html
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different noise characteristics in the training and
test sets. The Probabilistic Random Forest was
implemented in python and is publicly avail-
able on github7.

2.5. Artificial Neural Networks

Artificial neural networks are a set of algo-
rithms with structures that are vaguely inspired
by the biological neural networks that consti-
tute the human brain. Their flexible structure
and non-linearity allows one to perform a wide
variety of tasks, including classification and re-
gression, clustering, and dimensionality reduc-
tion, making them extremely popular in Astron-
omy (e.g., Storrie-Lombardi et al. 1992; Weaver
& Torres-Dodgen 1995; Singh et al. 1998; Snider
et al. 2001; Firth et al. 2003; Tagliaferri et al.
2003; Vanzella et al. 2004; Blake et al. 2007;
Banerji et al. 2010; Eatough et al. 2010; Brescia
et al. 2013, 2014; Ellison et al. 2016; Teimoorinia
et al. 2016; Mahabal et al. 2017; Bilicki et al.
2018; Huertas-Company et al. 2018; Naul et al.
2018; Parks et al. 2018; Das & Sanders 2019). In
this section I describe the main building blocks
of shallow artificial neural networks, and their
use for classification and regression tasks. The
section does not include details on Deep Learn-
ing, in particular Convolutional Neural Net-
works, Recurrent Neural Networks, and Gener-
ative Adversarial Networks (see lectures by M.
Huertas-Company for details on deep learning).

Figure 6 is an illustration of a shallow neu-
ral network architecture. The network consists
of an input layer, output layer, and several hid-
den layers, where each of these contain neurons
that transmit information to the neurons in the
succeeding layer. The input data is transmit-
ted from the input layer, through the hidden
layers, and reaches the output layer, where the
target variable is predicted. The value of every
neuron in the network (apart from the neurons

7 https://github.com/ireis/PRF

Figure 6. Illustration of a shallow neural net-
work architecture. The network consists of an input
layer, two hidden layers, and an output layer. The
input dataset is propagated from the input layer,
through the hidden layers, to the output layer,
where a prediction of a target variable is made.
Each neuron is a linear combination of the neuron
values in the previous layer, followed by an appli-
cation of a non-linear activation function (see text
for more details).

in the input layer) is a linear combination of
the neurons in the previous layer, followed by
an application of a non-linear activation func-
tion. That is, the values of the neurons in the
first hidden layer are given by ~x1 = f1(W1~x0),
where ~x0 is a vector that describes the values of
the neurons in the input layer (the input data),
W1 is a weight matrix that describes the lin-
ear combination of the input values, and f1 is
a non-linear activation function. In a similar
manner, the values of the neurons in the sec-
ond hidden layer are given by ~x2 = f2(W2~x1),
with a similar notation. Finally, the values of
the neurons in the output layer are given by
~x3 = f3(W3~x2) = f3(W3f2(W2f1(W1~x0))). The
weights of the network are model parameters
which are optimized during training via back-
propagation (for additional details see lectures
by M. Huertas-Company). The non-linear ac-

https://github.com/ireis/PRF
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tivation functions are model hyper-parameters,
with common choices being sigmoid, rectified
linear unit function (RELU), hyperbolic tan
function (TANH), and softmax. The number of
hidden layers and the number of neurons in each
of these layers are additional hyper-parameters
of the model. The number of neurons in the in-
put and the output layers are defined according
to the classification or regression task at hand.
Shallow neural networks are available in scikit-
learn8.

Owing to their flexible structure and non-
linearity, artificial neural networks are power-
ful algorithms, capable of describing extremely
complex relations between the input data and
the target variable. As just noted, these net-
works have many hyper-parameters, and they
usually require a large amount of data to train
on. Furthermore, due to their complexity, they
tend to overfit the dataset, and various tech-
niques, such as dropout, are applied to over-
come this issue. In addition, these networks are
harder to interpret, compared to SVM or Ran-
dom Forest. However, studies have shown that
deep neural networks can greatly outperform
traditional algorithms such as SVM, Random
Forest, and shallow neural networks, given raw
and complex data, such as images, spectra, and
light-curves (see e.g., Huertas-Company et al.
2018; Naul et al. 2018; Parks et al. 2018 and
references within).

3. UNSUPERVISED LEARNING

Unsupervised Learning is a general term that
incorporates a large set of statistical tools, used
to perform data exploration, such as clustering
analysis, dimensionality reduction, visualiza-
tion, and outlier detection. Such tools are par-
ticularly important in scientific research, since
they can be used to make new discoveries or
extract new knowledge from the dataset. For

8 https://scikit-learn.org/stable/modules/

neural_networks_supervised.html

example, a cluster analysis that reveals two dis-
tinct clusters of planets might suggest that the
two populations are formed through different
formation channels, or, a successful embedding
of a complex high-dimensional dataset onto two
dimensions might suggest that the observed
complexity can be attributed to a small number
of physical parameters (e.g., the large variety
of stellar spectra can be attributed to a single
sequence in temperature, stellar mass, and lu-
minosity; e.g., Hertzsprung 1909 and Russell
1914). While visual inspection of the dataset
can achieve these goals, it is usually limited to
3–12 dimensions (see lecture 2 by S. G. Djor-
govski). Visual inspection becomes impractical
with modern astronomical surveys, which pro-
vide hundreds to thousands of features per ob-
ject. It is therefore necessary to use statistical
tools for this task.

Unsupervised Learning algorithms take as an
input only the measured features, without la-
bels, and as such, they cannot be trained with
some ”ground truth”. Their output is typically
a non-linear and non-invertible transformation
of the input dataset, consisting of an associ-
ation of different objects to different clusters,
low-dimensional representation of the objects in
the sample, or a list of peculiar objects. Such
algorithms consist of internal choices and a cost
function, which does not necessarily coincide
with our scientific motivation. For example,
although K-means algorithm is often used to
perform clustering analysis (see section 3.2.1),
it is not optimized to detect clusters, and it
will reach a correct global optimum even if the
dataset is not composed of clusters. In addi-
tion, these algorithms often have several exter-
nal free parameters, which cannot be optimized
through the algorithm’s cost function. Differ-
ent choices of external parameters may result
in significantly different outputs, resulting in
different interpretations of the same dataset.
The interpretation of the output of an unsu-

https://scikit-learn.org/stable/modules/neural_networks_supervised.html
https://scikit-learn.org/stable/modules/neural_networks_supervised.html
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pervised learning algorithm must be carried out
with extreme caution, taking into account its
internal choices and cost function, and the out-
put’s sensitivity to a change of external param-
eters. However, since unsupervised learning is
typically used for exploration, not necessarily
to reach a precisely determined goal, the lack
of objective to optimize is often not critical. It
does make it hard to know when one has really
exhausted exploring all possibilities.

3.1. Distance Assignment

The first step in the large majority of unsuper-
vised learning algorithms is distance assignment
between the objects in the sample. In most of
the cases it is assumed that the measured fea-
tures occupy a euclidean space, and the distance
between the objects in the sample is measured
with euclidean metric. This choice might not be
appropriate for some astronomical datasets, and
using a metric that is more appropriate could
improve the algorithm’s performance. For ex-
ample, when the input dataset consists of fea-
tures that are extracted from astronomical ob-
servations, these features typically do not have
the same physical units (e.g., stellar mass, tem-
perature, size and morphology of a galaxy, bolo-
metric luminosity, etc). In such cases, euclidean
distance assignment will be dominated by fea-
tures that are distributed over the largest dy-
namical range (e.g., black hole mass ∼ 108 M�),
and will not be sensitive to the other features
in the input dataset (e.g., stellar velocity disper-
sion ∼ 200 km/sec). Therefore, when applying
unsupervised machine learning algorithms to a
set of derived features, it is advised to rescale
the features (see also section 2.2).

When applied to astronomical observations,
such as spectra, light-curves, or images, the eu-
clidean distance might not trace the distances a
scientist would assign. This is partly since the
euclidean metric implicitly assumes that all the
features are equally important, which is not nec-
essarily the case. Figure 7 shows two examples

of such scenarios. The left panel shows spectra
of three galaxies, marked by A, B, and C, and the
right panel shows three synthetic light-curves.
In the galaxy case, galaxy A appears different,
since it shows a strong emission line. Thus, we
would expect that the distance between galaxy
A and B will be larger than the distance between
galaxy B and C. However, most of the pixels in a
galaxy spectrum are continuum pixels, and the
continuum of galaxy B is slightly bluer than the
continuum of galaxy C. Since the spectra are
dominated by continuum pixels, the euclidean
distance between galaxy B and C will be larger
than the distance to galaxy A. That is, using
a euclidean metric, galaxy B is different. Simi-
larly in the light-curve case, since the euclidean
metric is sensitive to horizontal shifts, the dis-
tance between light-curve B and C will be larger
than the distance between light-curve A and C.
In many scientific applications, we want to de-
fine a metric in which A stands out. Such met-
rics can be based on domain knowledge, where
e.g., the metric is invariant to shifts, rotations,
and flips, or they can be based on some measure
of feature importance, e.g., emission line pixels
being more important than continuum pixels.

There are several distance measures which can
be more appropriate for astronomical datasets
and may result in improved performance, such
as cross correlation-based distance (see e.g.,
Protopapas et al. 2006; Nun et al. 2016; Reis
et al. 2018b), Distance Correlation, Dynamic
Time Warp, Canberra Distance, and distance
measures that are based on supervised learning
algorithms (see Reis et al. 2018b for details).
Section 3.1.1 describes a general distance mea-
sure that is based on the Random Forest al-
gorithm, and was shown to work particularly
well on astronomical spectra. Since the Ran-
dom Forest ranks features according to their im-
portance, the Random Forest-based distance is
heavily influenced by important features, and is
less affected by irrelevant features.



Machine Learning in Astronomy 15

4000 5000 6000 7000 8000
wavelength (Å)

0

1

2

3

4
no

rm
al

is
ed

 fl
ux

A

B

C

0 2 4 6 8 10 12
time (days)

0

2

4

6

no
rm

al
is

ed
 fl

ux

A

B

C

Figure 7. Illustration of the disadvantages in using the Euclidean metric to measure distances between
astronomical observations. The left panel shows three galaxy spectra, marked by A, B, C, where galaxy
A appears visually different. However, the Euclidean distance between galaxy B and C is larger than the
distance between galaxy A and B, since most of the pixels in a galaxy spectrum are continuum pixels, and
galaxy B is slightly bluer than galaxy C. The right panel shows three synthetic light-curves. Since the
Euclidean metric is not invariant to horizontal shifts, the distance between light-curve B and C is larger than
the distance to light-curve A, although the latter appears visually different.

3.1.1. General Similarity Measure with Random
Forest

So far, the discussion on Random Forest (sec-
tion 2.4) was focused on a supervised setting,
where the model is trained to perform classifi-
cation and regression. However, Random For-
est can be used in an unsupervised setting, to
estimate the distance between every pair of ob-
jects in the sample. Shi & Horvath (2006) pre-
sented such a method, and Baron & Poznanski
(2017), followed by Reis et al. (2018a) and Reis
et al. (2018b), applied the method to astronomi-
cal datasets, with a few modifications that made
the algorithm more suitable for such datasets.

In an unsupervised setting, the dataset con-
sists only of measured features, without labels,
and is represented by an N ×M matrix, where
every row represents an object (N objects in the
sample), and every column represents a feature
(M measured features per object). To translate
the problem into a supervised learning prob-
lem that can be addressed with Random For-
est, a synthetic dataset is built. The synthetic
dataset is represented by a N ×M matrix, sim-
ilarly to the original dataset, where each fea-

ture (column) in the synthetic data is built by
sampling from the marginal distribution of the
same feature in the original dataset. One can,
instead, shuffle the values in every column of
the original data matrix, resulting in a similar
synthetic data matrix. The process of creating
the synthetic data is illustrated in figure 8 with
a simplified example taken from Baron & Poz-
nanski (2017), where the objects in the dataset
have only two features. The left panel shows
the original dataset, with the marginal distri-
butions in each of the features plotted on the
top and on the right. The right panel shows
the synthetic dataset, where the features show
the same marginal distribution as in the origi-
nal dataset, but stripped of the covariance seen
in the original dataset.

Once the synthetic dataset is constructed, the
original dataset is labeled as class 1 and the syn-
thetic dataset is labeled as class 2, and Random
Forest is trained to distinguish between the two
classes. During this training phase, the Random
Forest is trained to detect covariance, since it is
present only in the original dataset and not in
the synthetic one. As a result, the most impor-
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Figure 8. Illustration of synthetic data construction, taken from Baron & Poznanski (2017), in a simplified
example of a dataset with only two features. The left panel shows the distribution of the features of the
original dataset, and their marginal distributions. The synthetic dataset (right panel) is constructed by
sampling from the marginal distribution of each feature in the original dataset. The resulting dataset shows
the same marginal distribution in its features, but is stripped of the covariance that was present in the
original dataset.

tant features in the decision trees will be fea-
tures that show correlations with others. Hav-
ing the trained forest, the distance between dif-
ferent objects (in the original dataset) is defined
as follows. Every pair of objects is propagated
through all the decision trees in the forest, and
their similarity is defined as the number of times
they were both classified as class 1, and reached
the same terminal leaf. This similarity S can
range between 0 to the number of trees in our
forest. S is a measure of the similarity between
these two objects since objects that have a sim-
ilar path inside the decision tree have similar
features, and as a consequence are represented
by the same model (for more details see Baron
& Poznanski 2017).

Baron & Poznanski (2017), Reis et al. (2018a),
and Reis et al. (2018b) showed that this defini-
tion of similarity between objects traces valu-
able information about their different physical

properties. Specifically, they showed that such
metric works particularly well for spectra, and
traces information coming from different emis-
sion and absorption lines, and their connec-
tion to the continuum emission. Reis et al.
(2018a) applied this method to infrared spec-
tra of stars, and showed that this metric traces
physical properties of the stars, such as metal-
licity, temperature, and surface gravity. The
algorithm was implemented in python and is
publicly available on github9.

3.2. Clustering Algorithms

Clustering analysis, or clustering, is the task
of grouping objects in the sample, such that ob-
jects in the same group, which is called a cluster,
are more similar to each other than to objects in
other groups. The definition of a cluster changes

9 https://github.com/dalya/WeirdestGalaxies

https://github.com/dalya/WeirdestGalaxies
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from one algorithm to the next, and this section
describes centroid-based clustering (K-means;
section 3.2.1) and connectivity-based clustering
(Hierarchical clustering; section 3.2.2). Also
popular is distribution-based clustering, with
the prominent method being Gaussian Mixture
Models, which I do not discuss in this docu-
ment (see e.g., de Souza et al. 2017 and refer-
ences within). Throughout this section, I give
examples with a simplified dataset that consists
of two features. Obviously, a two-dimensional
dataset can be visualized and clusters can be
detected manually, however, these algorithms
can be used to search for clusters in complex
high-dimensional datasets.

3.2.1. K-means

One of the most widely used clustering meth-
ods is K-means, which is a centroid-based clus-
tering algorithm (e.g., MacQueen 1967). K-
means is simple and robust, even when perform-
ing clustering analysis in a high-dimensional
space. It was used in Astronomy in various con-
texts, to study stellar and galaxy spectra, X-
ray spectra, solar polarization spectra, spectra
from asteroids, and more (see e.g., Balazs et al.
1996; Hojnacki et al. 2007; Galluccio et al. 2008;
Sánchez Almeida et al. 2010; Simpson et al.
2012; Sánchez Almeida & Allende Prieto 2013;
Garcia-Dias et al. 2018 and references therein).

The first step of K-means is distance assign-
ment between the objects in the sample. The
default distance is the euclidean metric, but
other metrics, which are more appropriate for
the particular dataset at hand, can be used.
Then, the algorithm selects k random objects
from the dataset which serve as the initial cen-
troids, where k is an external free parameter.
Each object in the dataset is then assigned to
its closest of the k centroids. Then, new cluster
centroids are computed by taking the average
position of the objects that are associated with
the given cluster. These two steps, re-assigning
objects to a cluster according to their distance

from the centroid and recomputing the cluster
centroids, are repeated iteratively until reach-
ing convergence. Convergence can be defined
in several manners, for example, when the large
majority of the objects are no longer reassigned
to different centroids (90% and more), or when
the cluster centroids converge to a set location.
The output of the algorithm consists of the clus-
ter centroids, and an association of the differ-
ent objects to the different clusters. K-means is
available in the scikit-learn library10.

Panel (A) in Figure 9 shows an application of
K-means to a two-dimensional dataset, setting
k = 2 and using euclidean distances, where the
dots represent the objects in the sample, trian-
gles represent the cluster centroids, and differ-
ent colors represent different clusters. As noted
in the previous paragraph, K-means starts by
randomly selecting k objects as the initial clus-
ter centroids. In some cases, different random
assignments of initial centroids might result in
different outputs, particularly when K-means
converges to a local minimum. To avoid it, one
can run K-means several times, each time with
different randomly-selected centroids, and select
the output that results in the minimum sum of
squared distances between the objects and their
centroids. Panel (B) in Figure 9 shows an appli-
cation of K-means to a similar dataset, but with
k = 3. k is an example of an external parame-
ter that cannot be optimized with the cost func-
tion, since the cost function decreases monoton-
ically with k. Obviously, setting k to be equal
to the number of objects in the sample will re-
sult in the minimum possible cost of zero, since
each object will be defined as its own cluster.
Finding the best k is not trivial in most of the
cases, and studies either use the elbow method,
or define probability-based scores to constrain
it (see e.g., Sánchez Almeida et al. 2010). In

10 https://scikit-learn.org/stable/modules/

generated/sklearn.cluster.KMeans.html

https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html
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Figure 9. Four examples of K-means application to different two-dimensional datasets, where the objects
in the sample are marked with circles and the clusters centroids are marked with triangles. The different
colors represent different clusters. Panel (A) shows K-means application with k = 2 and a euclidean distance.
Panel (B) shows K-means application to a similar dataset, but with k = 3. Panel (C) shows K-means output
for a dataset without clear clusters, and panel (D) shows the result for a dataset with features which are
distributed over different dynamical scales.

some cases, the distribution of the distances of
all the objects in the sample contains several
distinguishable peaks, and can guide the selec-
tion of the correct k.

Panel (C) in Figure 9 shows an application
of K-means to a dataset with no clear clus-
ters. This is an example in which the output
consists of clusters while the dataset does not
show clear clusters. To test for such cases, one
can compare the distribution of distances be-
tween objects within the same cluster to the
typical distance between cluster centroids. In
this particular example, these are roughly sim-
ilar, suggesting that there are no clear clusters
in the dataset. Panel (D) shows an applica-
tion of K-means to a dataset with features that
are distributed over different dynamical scales,
and one can see that K-means failed in finding
the correct clusters. The K-means cost function
is based on the summed distances between the
objects and their centroids, and since the dis-
tances between the objects are much larger in
feature 2 (y-axis), the optimal output is com-
pletely dominated by its values. To avoid such
issues, it is recommended to either normalize
the features, or rank-order them before apply-
ing K-means. K-means will also fail when the
dataset contains outliers, since they can have a
significant impact on the centroids placements,

and therefore on the resulting clusters. Thus,
outliers should be removed before applying K-
means to the dataset.

3.2.2. Hierarchical Clustering

Hierarchical clustering is another popular al-
gorithm in cluster analysis, aiming at build-
ing a hierarchy of clusters (e.g., Ward 1963).
The two main types of Hierarchical clustering
are Agglomerative Hierarchical clustering, also
named the ”bottom-up” approach, where each
object starts as an individual cluster and clus-
ters are merged iteratively, and Divisive Hierar-
chical clustering, or ”top-down”, where all the
objects start in one cluster, then split recur-
sively into smaller clusters. Hierarchical clus-
tering has been applied to various astronomical
datasets, such as X-ray spectra, extracted fea-
tures from galaxy images, and absorption spec-
tra of interstellar gas (see e.g., Hojnacki et al.
2007; Baron et al. 2015; Hocking et al. 2015;
Peth et al. 2016; Ma et al. 2018a). The discus-
sion in this section is focused on Agglomerative
Hierarchical clustering.

The first step of Hierarchical clustering is also
assigning distances between the objects in the
sample, using the euclidean metric by default.
All the objects in the sample start as one-sized
clusters. Then, the algorithm merges the two
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closest clusters into a single cluster. The pro-
cess is repeated iteratively, merging the two
closest clusters into a single cluster, until the
dataset consists of a single cluster, which in-
cludes many smaller clusters. To do so, one
must define a distance between clusters that
contain more than one object, also referred to
as ”linkage method”. There are several differ-
ent linkage methods, which include ”complete
linkage”, where the distance between the clus-
ters is defined as the maximal distance between
the objects in the two clusters, ”single linkage”,
where the distance between the clusters is de-
fined as the minimal distance between the ob-
jects in the clusters, ”average linkage”, where
the distance is defined as the average distance
between the objects in the clusters, and ”ward
linkage”, which minimizes the variance of the
clusters merged. The linkage method is an ex-
ternal free parameter of the algorithm, and it
has a significant influence on the output.

The result of Hierarchical clustering is usu-
ally visualized with a dendrogram. Figure 10
shows an application of Hierarchical clustering
to a dataset with 11 objects, marked by A, B, ..,
K in the diagram. The dendrogram represents
the history of the hierarchal merging process,
with the vertical axis showing the distance at
which two clusters were merged. Clusters A and
B were merged first, since their merging distance
is the shortest (up to this point the clusters con-
tain a single object). Then, clusters C and D

were merged. Following that, clusters (A, B)

and (C, D) were merged, since they were the
clusters with the shortest distance. The next
two merging clusters are J and K, and the pro-
cess continues until clusters (A, B, C, D, E,

F) and (G, H, I, J, K) are merged into a sin-
gle cluster. The dendrogram can be used to
study the structure of the dataset, in particu-
lar, it can be used to infer the number of clus-
ters in the dataset. The example in Figure 10
suggests that the dataset consists of two clus-

Figure 10. Visualization of a dendrogram for a
dataset with 11 objects, marked by A, B, .., K.
The dendrogram represents the hierarchical merg-
ing history, where the y-axis represents the distance
at which two clusters were merged. The clusters
that merged with a shorter distance were merged
earlier in the process, and in this case, the merger
history is A and B, C and D, (A,B) and (C,D), J
and K, and so on. The dashed horizontal line repre-
sents the threshold t that is used to define the final
clusters in the dataset (see text for more details).

ters, (A, B, C, D, E, F) and (G, H, I, J,

K), since the merging distance of inter-cluster
objects (d1 in the figure) is much shorter than
the merging distance of the two final clusters (d2
in the figure). The dashed horizontal line repre-
sents the threshold t used in Hierarchical clus-
tering for the final cluster definition. Groups
that are formed beneath the threshold t are de-
fined as the final clusters in the dataset, and are
the output of the algorithm. t is an external free
parameter of the algorithm, and cannot be op-
timized using the cost function. It has a signifi-
cant effect on the resulting clusters, in particu-
lar, as t decreases, the number of resulting clus-
ters increases. In some cases, the dendrogram
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Figure 11. Application of Hierarchical clustering to a two-dimensional dataset, using different linkage
methods, and setting t to be 0.7 of the maximal merging distance. The top panels show the distribution of
the objects in the dataset, colored by the final cluster association. The bottom panels show the resulting
dendrograms of each linkage method, and the dashed horizontal line represents the threshold t used to define
the final clusters. The dendrograms are truncated for representational purposes, and the number objects in
each truncated branch is indicated on the x-axis in parentheses.

can be used to estimate a ”natural” threshold
value. Agglomerative Hierarchical clustering is
available in scikit-learn11. Visualization of
the resulting dendrogram can be done with the
scipy library, and is presented in the hands-on
tutorials12.

Figure 11 shows an example of Hierarchi-
cal clustering application to a two-dimensional
dataset, using different linkage methods, setting
t to be 0.7 of the maximal merging distance.
The top panels show the distribution of the ob-
jects in the dataset, colored by the final clusters
detected by the algorithm, and the bottom pan-

11 https://scikit-learn.org/stable/

modules/generated/sklearn.cluster.

AgglomerativeClustering.html
12 https://github.com/dalya/IAC_Winter_

School_2018; see also:
https://joernhees.de/blog/2015/08/26/

scipy-hierarchical-clustering-and-dendrogram-tutorial/

els show the dendrograms for each of the linkage
methods. Looking at the first row, one can see
that different linkage methods result in differ-
ent cluster definitions, in particular, both the
number of detected clusters and the association
of objects to clusters change for different link-
age methods. In this particular example, it is
clear that the single linkage returns the correct
output, however, for high-dimensional datasets
such a visualization is not possible. To select
the ”correct” linkage method for the particular
dataset at hand, it is advised to examine the re-
sulting dendrograms. In this specific case, the
second row shows that the single linkage-based
dendrogram reveals the most significant clus-
tering, with two detected clusters. A general
rule of thumb to select of the ”correct” linkage
method is by selecting the linkage that results
in the largest difference between the merging

https://scikit-learn.org/stable/modules/generated/sklearn.cluster.AgglomerativeClustering.html
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.AgglomerativeClustering.html
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.AgglomerativeClustering.html
https://github.com/dalya/IAC_Winter_School_2018
https://github.com/dalya/IAC_Winter_School_2018
https://joernhees.de/blog/2015/08/26/scipy-hierarchical-clustering-and-dendrogram-tutorial/
https://joernhees.de/blog/2015/08/26/scipy-hierarchical-clustering-and-dendrogram-tutorial/
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Figure 12. Application of Hierarchical clustering to reorder and visualize a complex correlation matrix.
The left panel shows a correlation matrix calculated for a dataset with 400 objects, where the colorbar
represents the Pearson correlation coefficient between every pair of objects. The rows and columns are
ordered according to the object index, and little information can be extracted from such a visualization.
The right panel shows the same correlation matrix, reordered according to the appearance order of the
objects in the dendrogram. The latter representation reveals interesting structures, and can be used to
interpret the dataset.

distance of the resulting clusters and the final,
maximal, merging distance.

As shown in figure 11, Hierarchical clustering
can be used to detect clusters which other clus-
tering algorithms, such as K-means and Gaus-
sian Mixture Models, cannot detect. Since it is
based on connectivity, it can be used to detect
clusters that are distributed over a non-trivial
manifold (this is usually possible only with the
single linkage method). Furthermore, Hierar-
chal clustering is less sensitive to outliers in the
dataset, since these will be merged last, and
thus will not effect the structure of the den-
drogram and the resulting clusters that merged
before that. Perhaps the most interesting ap-
plication of Hierarchical clustering is reordering
and visualizing complex distance or correlation
matrices. The left panel of Figure 12 shows as
example of a correlation matrix, calculated for a
complex dataset with 400 objects. The rows and
columns of the correlation matrix are ordered
according to the object index, and clearly, this

representation conveys little information about
the structure of the dataset. Instead, one can
perform Hierarchical clustering and extract a
dendrogram for this particular dataset. Then,
one can rearrange the objects in the correlation
matrix according to their order of appearance
in the dendrogram. The reordered correlation
matrix is shown in the right panel of Figure 12,
where one can find at least two clusters of ob-
jects, such that objects that belong to a given
cluster show strong correlations, and objects
that belong to different clusters show a strong
negative correlation. Therefore, the process de-
scribed above may reveal rich structures in the
dataset, which may allow one to explore and
extract information from it, even without per-
forming cluster analysis (see also de Souza &
Ciardi 2015).

3.3. Dimensionality Reduction Algorithms

Dimensionality reduction refers to the process
of reducing the number of features in the orig-
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inal dataset, either by selecting a subset of the
features that best describe the dataset, or by
constructing a new set of features that pro-
vide a good description of the dataset. Some
of the dimensionality reduction algorithms pro-
vide principle components or prototypes, which
are a small set of objects that have the same di-
mensions as the objects in the original dataset,
and are used to represent all the objects in
the sample. Other algorithms aim at embed-
ding the high-dimensional dataset onto a low-
dimensional space, without using principle com-
ponents or prototypes. When applying dimen-
sionality reduction algorithms to data, we al-
ways lose some information. Our goal is to
choose an algorithm that retains most of the rel-
evant information, where relevant information
strongly depends on our scientific motivation.

Dimensionality reduction is useful for a vari-
ety of tasks. In a supervised learning setting,
since many algorithms are not capable of man-
aging thousands of features, dimensionality re-
duction is used to decrease the number of fea-
tures under consideration, by removing redun-
dancy in the original set of features. Although
not very popular in Astronomy, dimensional-
ity reduction is also used for compression, and
will become more relevant for surveys such as
the SKA (Dewdney et al. 2009), where keep-
ing all the data is no longer possible. Perhaps
most importantly, dimensionality reduction can
be used to visualize and interpret complex high-
dimensional datasets, with the goal of uncover-
ing hidden trends and patterns.

3.3.1. Principle Component Analysis

Principle Component Analysis (PCA) is a lin-
ear feature projection, which transforms data in
high-dimensional space to a lower-dimensional
space, such that the variance of the dataset
in the low-dimensional representation is max-
imized. In practice, PCA constructs a covari-
ance matrix of the dataset and computes its
eigenvectors. The eigenvectors that correspond
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Figure 13. Application of PCA to two-
dimensional dataset. The two principle compo-
nents are marked with black arrows, where prin-
ciple component 1 accounts for most of the vari-
ance in the data, and principle component 2, which
is orthogonal to principle component 1, accounts
for the rest of the variance in the data. Every ob-
ject in the sample can be accurately represented as
a linear combination of the two principle compo-
nents, and can be represented approximately using
the first principle component.

to the largest eigenvalues are used to recon-
struct a large fraction of the variance in the
original dataset. These eigenvectors, also called
principle components, are arranged such that
the first principle component has the largest
possible variance, and each succeeding compo-
nent has the highest possible variance, under
the constraint that it is orthogonal to the pre-
ceding components. The number of principal
components is at most the number of features
in the dataset. Every object in the sample can
be represented by a linear combination of the
principle components, where the representation
is accurate only when all the principle compo-
nents are used. When a subset of the princi-
ple components is used, the representation is
approximate, resulting in a dimensionality re-
duction. The coefficients of the linear combi-
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Figure 14. Application of PCA, ICA, and NMF to a sample of SDSS spectra, taken from Vanderplas et al.
(2012). Additional details on ICA and NMF can be found in Ivezić et al. (2014). The columns represent
different algorithms, and the rows represent the resulting components using each of the algorithms, sorted
by their importance. The grey horizontal line represents zero flux. While the first two PCA components
resemble galaxy spectra (with an old stellar population), the next three components do not represent a
physical component in galaxy spectra, in particular, they show negative flux values. On the other hand,
the NMF components resemble more physical components, with the first corresponding to an old stellar
population, the second corresponding to blue continuum emission, which might be due to an AGN or O-
and B-type stars, the third corresponding to younger stellar population (A-type stars), and the forth and
fifth components corresponding to emission lines.

nation of principle components can be used to
embed the high-dimensional dataset onto a low-
dimensional plane (typically 2 or 3 dimensions).
Figure 13 shows an application of PCA to a
two-dimensional dataset, where the two princi-
ple components are marked with black arrows.
One can see that the first principle component is
oriented towards the direction with the maximal
variance in the data, and the second principle
component, which is orthogonal to the first one,
describes the remaining variance.

PCA is among the most popular tools in As-
tronomy, and it has been used to search for
multivariate correlations in high-dimensional
datasets, estimate physical parameters of sys-
tems from their spectra, decompose complex
spectra into a set of principle components which

are then used as empirical templates, and more
(e.g., Boroson & Green 1992; Zhang et al. 2006;
Vanden Berk et al. 2006; Rogers et al. 2007;
Re Fiorentin et al. 2007; Bailey 2012). It is
simple to use, has no free parameters, and is
easily interpretable. However, PCA performs a
linear decomposition of the objects in the sam-
ple, which is not appropriate in many contexts.
For example, absorption lines and dust extinc-
tion are multiplicative effects which cannot be
described by a linear decomposition. Further-
more, PCA tends to find linear correlations
between variables, even if those are non-linear,
and it fails in cases where the mean and the
covariance are not enough to define the dataset.
Since it constructs its principle components to
trace the maximal variance in the data, it is ex-
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tremely sensitive to outliers, and these should
be removed prior to applying PCA. Finally, the
principle components of the dataset can contain
negative values, which is also not appropriate
in many astronomical setups. For example,
applying PCA to galaxy spectra results in prin-
ciple components with negative values, which
is of course not physical, since the emission of
a galaxy is a sum of positive contributions of
different light sources, attenuated by absorbing
sources such as dust or gas.

Finally, it is worth noting two additional tech-
niques, Independent Component Analysis (ICA;
Hyvärinen & Oja 2000) and Non-Negative Ma-
trix Factorization (NMF; Paatero & Tapper
1994), which are useful for a variety of tasks.
ICA is a method used to separate a multivari-
ate signal into additive components, which are
assumed to be non-Gaussian and statistically
independent from each other. ICA is a very
powerful technique, which is often invoked in
the context of blind signal separation, such as
the ”cocktail party problem”. NMF decom-
poses a matrix into the product of two non-
negative ones, and is used in Astronomy to de-
compose observations to non-negative compo-
nents. Figure 14 shows an application of PCA,
ICA, and NMF, taken from Vanderplas et al.
(2012), on SDSS spectra (see Ivezić et al. 2014
for additional details about ICA and NMF).
The columns represent different algorithms, and
the rows represent the resulting components
using each of the algorithms, sorted by their
importance. One can see that while the first
two PCA components resemble galaxy spectra
(with an old stellar population), the next three
components do not represent a physical compo-
nent in galaxy spectra, in particular, they show
negative flux values. On the other hand, the
NMF components resemble more physical com-
ponents, with the first corresponding to an old
stellar population, the second corresponding to
blue continuum emission, which might be due to

an AGN or O- and B-type stars, the third corre-
sponding to younger stellar population (A-type
stars), and the forth and fifth components cor-
responding to emission lines. Obviously, the re-
semblance is not perfect and one can see residual
emission line components in the first and third
components (in the first component these are
described by absorption lines with central wave-
lengths corresponding to the strongest emission
lines in galaxy spectra). The three algorithms
are available in scikit-learn13.

3.3.2. t-Distributed Stochastic Neighbor
Embedding

t-Distributed Stochastic Neighbor Embedding
(tSNE; van der Maaten & Hinton 2008) is a non-
linear dimensionality reduction technique that
embeds high-dimensional data in a low dimen-
sional space, typically of two or three dimen-
sions, and is mostly used to visualize complex
datasets. The algorithm models every high-
dimensional object using a two (or three) di-
mensional point, such that similar objects are
represented by nearby points, whereas dissim-
ilar objects are represented by distant points,
with a high probability. tSNE has been used in
Astronomy to visualize complex datasets and
distance matrices, and study their structure
(e.g., Lochner et al. 2016; Anders et al. 2018;
Nakoneczny et al. 2018; Reis et al. 2018a; Alib-
ert 2019; Giles & Walkowicz 2019; Moreno et al.
2019).

The first step of tSNE is to assign distances
between the objects in the sample, using the
euclidean metric by default. Then, tSNE con-
structs a probability distribution over pairs of
high-dimensional objects such that similar ob-

13 https://scikit-learn.org/stable/modules/

generated/sklearn.decomposition.PCA.html

https://scikit-learn.org/stable/modules/

generated/sklearn.decomposition.FastICA.html

https://scikit-learn.org/stable/modules/

generated/sklearn.decomposition.NMF.html

https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html
https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html
https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.FastICA.html
https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.FastICA.html
https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.NMF.html
https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.NMF.html
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Figure 15. Application of tSNE to a sample of 53 synthetic single stellar population models, with different
ages. The left panel shows 11 out of the 53 spectra, where each spectrum consist of 4 300 flux values. The
right panels show the resulting two-dimensional embedding using different perplexity values, where every
point in the 2D plane is colored according to the stellar age, such that purple points represent young stellar
populations, and yellow points represent old stellar populations.

jects have a high probability of being picked,
whereas dissimilar objects have an extremely
low probability of being picked. This is achieved
by modeling the probability distribution using
a Gaussian kernel, which depends on the as-
signed distance between the objects, and a scale
parameter, named the perplexity, which is an
external free parameter of the algorithm. The
perplexity affects the neighborhood of objects
being considered, in terms of their probability of
being selected, where a small perplexity results
in a very small neighborhood around a given
object, and a large perplexity results in a larger
neighborhood. The algorithm then embeds the
high-dimensional objects into a low dimensional
space, such that the probability distribution
over pairs of points in the low-dimensional plane
will be as similar as possible to the probabil-

ity distribution in the high-dimensional space.
The axes in the low-dimensional representation
are meaningless and not interpretable. tSNE is
available in the scikit-learn library14.

Figure 15 shows an application of tSNE to
a sample of 53 single stellar population mod-
els, taken from the MILES library (Vazdekis
et al. 2010). The left panel shows 11 out of
the 53 spectra, where each spectrum has 4 300
flux values, and therefore 4 300 features, ordered
by age. While the dataset appears complex,
it actually represents a one-dimensional mani-
fold, where all the observed properties can be
attributed to a change in a single parameter,
the age. Therefore, we expect that in the low

14 https://scikit-learn.org/stable/modules/

generated/sklearn.manifold.TSNE.html

https://scikit-learn.org/stable/modules/generated/sklearn.manifold.TSNE.html
https://scikit-learn.org/stable/modules/generated/sklearn.manifold.TSNE.html
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dimensional representation, all the objects will
occupy a single line. The right panels show the
tSNE two-dimensional embedding for different
perplexity values. When the perplexity is set to
p = 1, the neighborhoods considered by tSNE
are too small, and the data is represented by
many small clusters, although the dataset does
not consist of clusters. When the perplexity is
set to p = 2 or p = 5, the dataset is represented
by an almost perfect one-dimensional manifold,
tracing the correct structure of the data. When
the perplexity is too high, e.g. p = 50, all the
points are plotted at the origin, and no structure
can be seen. The perplexity has a significant ef-
fect on the resulting embedding, and cannot be
optimized using the tSNE cost function. It rep-
resents the scale of the clusters tSNE is sensitive
to, and setting a small perplexity value allows
detection of small clusters, while setting a large
perplexity value allows study of the global struc-
ture of the dataset. However, one must take
into account that the low-dimensional embed-
dings by tSNE sometimes show small clusters,
even if these do not exist in the dataset. In
addition, one must be careful when trying to
interpret long distances in the tSNE map. For
example, when p = 2, tSNE embeds the objects
considering only neighborhoods of up to about
the 6 nearest neighbors around each point, thus,
distances smaller than those spanned by this
neighborhood are conserved, while longer dis-
tances are not. While the distances d1 and d2
appear similar in the tSNE map in Figure 15,
the distances between the corresponding objects
in the original distance matrix are different by
a factor of more than five.

Finally, it is worth noting an additional tool,
Uniform Manifold Approximation and Projec-
tion (UMAP; McInnes et al. 2018), which can
be used to perform non-linear dimensionality re-
duction. UMAP is a fast algorithm, that sup-
ports a wide variety of distance metrics, includ-
ing non-metric distance functions such as cosine

distance and correlation distance. Furthermore,
McInnes et al. (2018) show that UMAP often
outperforms tSNE at preserving global struc-
tures in the input dataset. UMAP is imple-
mented in python and is publicly available on
github15.

3.3.3. Autoencoders

An autoencoder is a type of artificial neu-
ral network used to learn an efficient low-
dimensional representation of the input dataset,
and is used for compression, dimensionality re-
duction, and visualization (Gianniotis et al.
2015; Yang & Li 2015; Gianniotis et al. 2016;
Ma et al. 2018b; Schawinski et al. 2018). Figure
16 shows a simplified example of an autoen-
coder architecture. The network consists of two
parts, the encoder and the decoder. In the en-
coding stage, the input data propagates from
the input layers to the hidden layers, which
typically have a decreasing number of neurons,
until reaching the bottleneck, which is the hid-
den layer consisting of two neurons. In other
words, the encoder performs a compression of
the input dataset, by representing it using two
dimensions. Then, the decoder reconstructs
the input data, using the information from the
two-dimensional hidden layer. The weights of
the network are optimized during the training,
where the loss function is defined as the squared
difference between the input data and the re-
constructed data. Once trained, the dataset
can be represented in a low-dimensional space,
also called the latent space, using the values
given in the bottleneck hidden layer. As for
all neural network-based algorithms, these net-
works are general and flexible, and can be used
to represent very complex datasets. However,
this complexity comes with a price. Such net-
works can have many different architectures,
and thus a large number of free parameters,

15 https://github.com/lmcinnes/umap

https://github.com/lmcinnes/umap
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Figure 16. A simplified example of an autoen-
coder architecture, used to perform compression,
dimensionality reduction, and visualization. The
network consists of two parts, the encoder and the
decoder. The encoder reduces the dimensions of the
input data, while the decoder reconstructs the in-
put using the low-dimensional representation. The
weights of the network are optimized during train-
ing to minimize the squared differences between the
input and its reconstruction. The bottleneck of
the network, also called the latent vector or latent
space, represents the low-dimensional representa-
tion of the input dataset.

and are difficult to interpret (see lectures by M.
Huertas-Company for additional details).

3.3.4. Self Organizing Maps

A self-organizing map (also named Kohonen
map; Kohonen 1982) is a type of artificial neural
network that is trained in an unsupervised man-
ner and produces a low-dimensional (typically
two-dimensional) representation of the input
dataset. During training, the two-dimensional
map self-organizes itself to match the input
dataset, preserving its topology very closely.
In Astronomy, self-organizing maps have been
used to perform semi-supervised classification
and regression, clustering, visualization of com-
plex datasets, and outlier detection (see e.g.,
Meusinger et al. 2012; Fustes et al. 2013; Car-
rasco Kind & Brunner 2014; Armstrong et al.

2016; Polsterer et al. 2016; Armstrong et al.
2017; Meusinger et al. 2017; Rahmani et al.
2018). Figure 17 shows a schematic illustration
of a self-organizing map, taken from Carrasco
Kind & Brunner (2014). The input dataset con-
sists of n objects with m features each. The
network consists of an input layer with m neu-
rons, and an output layer with k neurons, orga-
nized as a two-dimensional lattice. The neurons
from the input layer are connected to the out-
put layer with weight vectors, which have the
same dimensions as the input objects (m in this
case). Contrary to typical artificial neural net-
works, where the weights are used to multiply
the input object values, followed by an appli-
cation of an activation function, the weights of
self-organizing maps are characteristics of the
output neurons themselves, and they represent
the ”coordinates” of each of the k neurons in
the input data space. That is, the weight vec-
tors serve as templates (or prototypes) of the
input dataset.

The training of a self-organizing map is a com-
petitive process, where each neuron in the out-
put layer competes with the other neurons to
best represent the input dataset. The first step
of self-organizing maps is a random initializa-
tion of the weights, where typically, the initial
weights are set to be equal to randomly-selected
objects from the input dataset. Then, the al-
gorithm iterates over the objects in the input
dataset. In each iteration, the algorithm com-
putes the distance between the particular object
and all the neurons in the output layer, using
the euclidean distance between the object’s fea-
tures and the weight vectors that are associated
with the neurons. Then, the algorithm deter-
mines the closest neuron to the input object,
and updates its weight vector to be somewhat
closer to the input object. The algorithm also
updates the weight vectors of the neighboring
neurons, such that closer neurons are updated
more than farther neurons. The update magni-
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Figure 17. A schematic illustration of a self-
organizing map, taken from Carrasco Kind & Brun-
ner (2014). The input dataset consists of n objects,
each with m features, and it is mapped to a two-
dimensional lattice of k neurons. Each neuron is
represented by a weight vector, which has the same
dimensions as the input objects. The weights are
characteristics of the neurons themselves, and they
represent the coordinate of each neuron in the input
data space. These weights are updated during the
training process, and once the algorithm is trained,
they represent a set of templates (or prototypes)
that describe the different objects in the dataset.

tude is determined by a kernel function, usually
a Gaussian, which depends on a learning radius
parameter. The update magnitude of all the
neurons depends on a learning rate parameter,
where both the learning radius and the learn-
ing rate decrease with time. The self-organizing
map converges after a number of iterations, and
in its final form it separates the input dataset
into groups of similar objects, which are repre-
sented by nearby neurons in the output layer.
The final weights of the network represent pro-
totypes of the different groups of objects, and
they are usually used to manually inspect the
dataset. Self-organizing map is implemented in
python and is publicly available on github16.

Self-organizing maps are general and flexible,
and their capability of sorting the input dataset

16 https://github.com/sevamoo/SOMPY

onto a two-dimensional plane allows manual in-
spection of a relatively small number of proto-
types, and use these to explore the structure of
the dataset. However, in their simpler versions,
self-organizing maps cannot be applied to astro-
nomical images, since the algorithm is based on
euclidean similarities, which is not invariant to
rotations and flips. Polsterer et al. (2016) de-
veloped PINK, which is a self-organizing map
that is invariant to rotations and flips, which is
particularly useful for galaxy images, for exam-
ple. Figure 18 shows an application of PINK
to 200 000 radio images, taken from Polsterer
et al. (2016). The left panel shows the result-
ing two-dimensional map, which contains the
derived prototypes. These prototypes allow a
clear separation of the input dataset into differ-
ent morphological types, and by manually in-
specting the map, one can explore the range
of morphological types in the dataset, without
manually inspecting thousands of images. The
right panel shows eight outliers, which are ob-
jects which are not well-represented by any pro-
totype.

3.4. Anomaly Detection

Outlier detection is the natural step after clas-
sification and the analysis of the dataset struc-
ture. In Astronomy, outlier detection algo-
rithms were applied to various datasets, includ-
ing galaxy and stellar spectra, galaxy images,
astronomical light-curves such as variable stars,
radio images, and more (Meusinger et al. 2012;
Protopapas et al. 2006; Fustes et al. 2013; Nun
et al. 2016; Agnello 2017; Baron & Poznanski
2017; Solarz et al. 2017; Hocking et al. 2018;
Reis et al. 2018a; Segal et al. 2018; Giles &
Walkowicz 2019). There are various types of
outliers we expect to find in our datasets. Out-
liers can be objects that were not intended to be
in our datasets, such as a quasar in a sample of
stars, or various observational or pipeline errors.
Such outliers are not scientifically interesting,
but we wish to detect them and remove them

https://github.com/sevamoo/SOMPY
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Figure 18. Application of PINK to 200 000 radio images from Radio Galaxy Zoo, taken from Polsterer
et al. (2016). The left panel shows the resulting two-dimensional map containing the derived prototypes.
The right panel shows eight outliers that were selected based on their dissimilarity with the prototypes, and
heatmaps that indicate their distance to all the prototypes.

from our samples. Outliers can be extreme ob-
jects drawn from the tail of well-characterized
distributions, such as the most massive super-
massive black hole or the most luminous super-
nova. Such objects are interesting because they
allow us to test our models, which were built
to describe the bulk of the population, in ex-
treme regimes, and by studying them, we can
learn more about the bulk of the population.
The most interesting types of the outliers are
the ”unknown unknowns” (Baron & Poznan-
ski 2017), objects we did not know we should
be looking for, and may be completely new ob-
jects which offer the opportunity to unveil new
physics. Furthermore, in Astronomy, outliers
can actually be very common phenomena, that
occur on time-scales much shorter than other
time scales of the system. For example, if every
galaxy in the universe becomes green for 100
years, while in the rest of the time it evolves
on a time scale of hundereds of million of years
with its ”regular” blue or red color, the proba-
bility of detecting a galaxy in its ”green phase”
using surveys such as the SDSS is close to zero.

Therefore, although this ”green phase” occurs
in every galaxy and might be a fundamental
phase in galaxy evolution, green galaxies will
appear as outliers in our datasets.

Unknown unknowns are usually detected
serendipitously, when experts visually inspect
their datasets, and discover an object that does
not follow the accepted paradigm. Manual in-
spection becomes impractical in the big data
era, where surveys provide millions of observa-
tions of a particular class of objects. Indeed,
the vast majority of observations are no longer
inspected by humans. To facilitate new dis-
coveries, we must develop and use off-the-shelf
algorithms to perform anomaly detection (see
discussion by Norris 2017a,b). Outlier detec-
tion is in some sense the ultimate unsupervised
learning task, since we cannot define what we
are looking for. Therefore, outlier detection al-
gorithms must be as generic as possible, but at
the same time they must be optimized to learn
the characteristics of the dataset at hand, since
outliers are defined as being different, in some
sense, from the bulk of the population.
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In most supervised and unsupervised tasks,
the input dataset either consists of the origi-
nal astronomical observations (spectra, light-
curves, images, etc), or features that were
extracted from the original observations, and
there are advantages and disadvantages to both
of these choices. However, anomaly detection
should be carried out on a dataset which is as
close as possible to the original dataset, and
not on extracted features. First, defining fea-
tures directly limits the type of outliers one
might find. For example, in galaxy spectra, ex-
tracted features include the properties of the
stellar population, and measurements of differ-
ent emission lines. Such features will not carry
information about new unidentified emission
lines in a galaxy, and if such anomalous galaxies
exist, they will not be marked as outliers. Sec-
ond, extracted features are usually an output
of some pipeline, which can sometimes fail and
extract erroneous feature measurements. Such
errors typically occur in outlying objects, since
the models that are used to extract the fea-
tures cannot describe them well. In such cases,
the resulting features, which were wrongly mea-
sured, typically show values that are consistent
with features measured for the bulk of the pop-
ulation, and such outliers cannot be detected
(see Baron & Poznanski 2017 for examples).

3.4.1. Anomaly Detection with Supervised
Learning

Supervised learning algorithms can be used
to detect outliers, in both classification and re-
gression tasks. When applied to new previously
unseen objects, most supervised learning algo-
rithms provide some measure of uncertainty or
classification probability. Outliers can be de-
fined as objects that have a large classification
uncertainty or low classification probability. For
example, a Random Forest algorithm is trained
to distinguish between the spectra of stars and
quasars. Then, it predicts the class (and class
probabilities) of previously unseen objects. An

object that is classified as a star with a prob-
ability of 0.55 (and probability of 0.45 to be
a quasar) is probably more anomalous than an
object that is classified as a star with a proba-
bility of 0.95. Therefore, the anomaly score of
the different objects in the sample can be de-
fined according to the classification probability.
While easy to interpret, such a process will only
reveal the outliers that ”shout the loudest”. Us-
ing again the star-quasar classification example,
while a galaxy spectrum will be marked as an
outlier by such a procedure, more subtle out-
liers, such as stars with anomalous metallicity,
will not be detected. This is because supervised
learning algorithms are optimized to perform
classification (or regression), and as such, they
will use only the features that are relevant for
the classification task at hand. Therefore, ob-
jects which show outlier properties in these fea-
tures will be detected, while objects that show
outlier properties in features that are less rele-
vant for the classification task, will not be de-
tected.

3.4.2. Anomaly Detection with Unsupervised
Learning

There are several ways to perform outlier de-
tection in an unsupervised setting. First, one
can assign pair-wise distances between the ob-
jects in the sample, and define outliers as ob-
jects that have a large average distance from the
rest of the objects (see e.g., Protopapas et al.
2006; Baron & Poznanski 2017). As discussed
in section 3.1, in some cases, using a euclidean
metric might not result in an optimal perfor-
mance, and one should consider other metrics.
For example, the unsupervised Random Forest-
based distance was shown to work particularly
well on spectra (Baron & Poznanski 2017; Reis
et al. 2018a,b), and cross correlation-based dis-
tances work well for time series (Protopapas
et al. 2006; Nun et al. 2016).

An additional way to perform outlier detec-
tion is by applying dimensionality reduction
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(which sometimes requires distance assignment
as well). Once the high dimensional dataset
is embedded onto a low dimensional plane, it
can be visualized. Outliers can be defined as
objects that are located far from most of the
objects or on the edges of the observed distri-
butions. The success of this process strongly
depends on the procedure used to perform di-
mensionality reduction, and one must take into
account the internal choices and loss function of
the algorithm. For example, when using PCA
to project the dataset onto a two-dimensional
plane, one must take into account that while
some outliers will be objects with extreme val-
ues in this 2D projection, and thus will be de-
tected, other outliers can be objects that show
extreme values in the other eigenvectors, which
are not used for the projection and visualiza-
tion, and thus will not show up as outliers. An-
other example is an auto-encoder, where some
outliers will show up as extreme objects in the
latent space (the two-dimensional representa-
tion), while other outliers will show typical val-
ues in the latent space, but a large reconstruc-
tion error on the decoder side. The final exam-
ple is tSNE, where one must take into account
the fact that the distances of the objects in the
two-dimensional projection are not euclidean.
In particular, while short distances in the origi-
nal distance matrix are roughly conserved in the
tSNE map, long distances are not.

3.4.3. One-Class SVM

One of the most popular outlier detection
algorithms is one-class SVM (Schölkopf et al.
1999). In one-class SVM, the input data is con-
sidered to be composed of a single class, rep-
resented by a single label, and the algorithm
estimates a distribution that encompasses most
of the observations. This is done by estimating
a probability distribution function which makes
most of the observed data more likely than the
rest, and a decision rule that separates these ob-
servations by the largest possible margin. This

process is similar to the supervised version of
SVM, but applied to a dataset with a single la-
bel. To optimize over the free parameters of
SVM, such as the kernel shape and its param-
eters, the input dataset is usually divided into
a training set and a validation set (there is no
need for a test set, since this is an unsuper-
vised setting). The algorithm is trained on the
training set, resulting in some decision function,
while the free parameters are optimized using
the validation set. Therefore, the chosen ker-
nel shape and its free parameters are chosen to
give the highest classification accuracy on the
validation set, where the classification accuracy
is defined by the number of objects that are
classified as inliers (the opposite of outliers) by
the resulting decision function (see e.g., Solarz
et al. 2017). The learned decision function is
then used to define outliers. Outliers are ob-
jects that are outside the decision function, and
their anomaly score can be defined by the dis-
tance of the outliers from the decision function.

One-class SVM is feasible only with datasets
composed of a handful of features. Therefore, it
cannot be directly applied to astronomical ob-
servations such as images, light-curves, or spec-
tra, but can be applied to photometry or de-
rived features. One-class SVM is available in
the scikit-learn library17.

3.4.4. Isolation Forest

Another very popular outlier detection algo-
rithm is Isolation Forest (Liu et al. 2008). Iso-
lation Forest consists of a set of random trees.
The process of building such a forest is similar to
the training process of Random Forest, but here
both the feature and the splitting value are ran-
domly selected at each node. Within each tree,
outliers will tend to separate earlier from the
rest of the sample. Therefore, the anomaly score
can be defined as the depth at which a specific

17 https://scikit-learn.org/stable/modules/

generated/sklearn.svm.OneClassSVM.html

https://scikit-learn.org/stable/modules/generated/sklearn.svm.OneClassSVM.html
https://scikit-learn.org/stable/modules/generated/sklearn.svm.OneClassSVM.html
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object was split from the rest, averaged over all
the trees in the forest. The running time of Iso-
lation Forest is O(N), where N is the number
of objects in the sample, and it can be applied
to datasets with numerous features. Baron &
Poznanski (2017) compared its performance to
that of the unsupervised Random Forest-based
outlier detection, and found that Isolation For-
est is capable of finding the most obvious out-
liers, those that ”shout the loudest”, but cannot
detect subtle outliers, which are typically more
interesting in an astronomical context. On the
other hand, Reis et al. (2018a) and Reis et al.
(2018b) found that when tuning the range of
possible feature values that are randomly se-
lected in each node (i.e., instead of defining the
possible range to be between the minimum and
maximum feature values, one could define the
range to be between the 10th and 90th per-
centiles), Isolation Forest results in a compa-
rable performance to that of the unsupervised
Random Forest. Isolation Forest is available in
the scikit-learn library18.

4. SUMMARY

In recent years, machine learning algorithms
have gained increasing popularity in Astron-
omy, and have been used for a wide variety of
tasks. In this document I summarized some of
the popular machine learning algorithms and
their application to astronomical datasets. I re-
viewed basic topics in supervised learning, in
particular selection and preprocessing of the in-
put dataset, evaluation metrics of supervised al-
gorithms, and a brief description of three popu-
lar algorithms: SVM, Decision Trees and Ran-
dom Forest, and shallow Artificial Neural Net-
works. I mainly focused on unsupervised learn-
ing techniques, which can be roughly divided
into clustering analysis, dimensionality reduc-

18 https://scikit-learn.org/stable/modules/

generated/sklearn.ensemble.IsolationForest.

html

tion, and outlier detection. The most popu-
lar application of machine learning in Astron-
omy is its supervised setting, where a machine
is trained to perform classification or regres-
sion according to previously-acquired scientific
knowledge. While less popular in Astronomy,
unsupervised learning algorithms can be used
to mine our datasets for novel information, and
potentially enable new discoveries. In section
4.1 I list a number of open questions and issues
related to the application of machine learning
algorithms in Astronomy. Then, in section 4.2, I
refer the reader to textbooks and online courses
that give a more extensive overview of the sub-
ject.

4.1. Open Questions

The main issues of applying supervised learn-
ing algorithms to astronomical datasets include
uncertainty treatment, knowledge transfer, and
interpretability of the resulting models. As
noted in section 3.1.1, most supervised learning
algorithms are not constructed for astronomi-
cal datasets, and they implicitly assume that all
measured features are of the same quality, and
that the provided labels can be considered as
ground truth. However, astronomical datasets
are noisy and have gaps, and in many cases, the
labels provided by human experts suffer from
some level of ambiguity. As a result, super-
vised learning algorithms perform well when ap-
plied to high signal-to-noise ratio datasets, or
to datasets with uniform noise properties. The
performance of supervised learning algorithms
strongly depends on the noise characteristics of
the objects in the sample, and as such, an algo-
rithm that was trained on a dataset with partic-
ular noise characteristics will fail to generalize
to a similar dataset with different noise char-
acteristics. It is therefore necessary to change
existing tools and to develop new algorithms,
which take into account uncertainties in the
dataset during the model construction. Fur-
thermore, such algorithms should provide pre-

https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.IsolationForest.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.IsolationForest.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.IsolationForest.html
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diction uncertainties, which are based on the
intrinsic properties of the objects in the sample
and on their measurement uncertainties.

The second challenge in applying supervised
learning algorithms to astronomical datasets is
related to knowledge transfer. That is, an al-
gorithm that is trained on a particular survey,
with a particular instrument, cadence, and ob-
ject targeting selection, will usually fail to gen-
eralize to a different survey with different char-
acteristics, even if the intrinsic properties of the
objects observed by the two surveys are simi-
lar. As a result, machine learning algorithms
are typically applied to concluded surveys, and
rarely applied to ongoing surveys that have not
yet collected enough labeled data. The topic
of knowledge transfer is of particular impor-
tance when searching for rare phenomena, such
as gravitational lenses in galaxy images, where
supervised learning algorithms that are trained
on simulated data cannot generalize well to real
datasets. This challenge can be addressed with
transfer learning techniques. While such tech-
niques are discussed in the computer science lit-
erature, they are seldom applied in Astronomy.

The third challenge in applying supervised
learning algorithms to astronomical datasets is
related to the interpretation of the resulting
models. While supervised learning algorithms
offer an extremely flexible and general frame-
work to construct complex decision functions,
and can thus outperform traditional algorithms
in classification and regression tasks, the result-
ing models are often difficult to interpret. That
is, we do not always understand what the model
learned, and why it makes the decisions that it
makes. As scientists, we usually wish to un-
derstand the constructed model and the deci-
sion process, since this information can teach
us something new about the underlying physics.
This challenge is of particular importance in
state-of-the-art deep learning techniques, which
were shown to perform exceptionally-well in a

variety of tasks. As we continue to develop new
complex tools to perform classification and re-
gression, it is important to devise methods to
interpret their results as well.

When applying unsupervised learning algo-
rithms to astronomical datasets, the main chal-
lenges include the interpretation of the results
and comparison of different unsupervised learn-
ing algorithms. Unsupervised learning algo-
rithms often optimize some internal cost func-
tion, which does not necessarily coincide with
our scientific motivation, and since these algo-
rithms are not trained according to some def-
inition of ”ground truth”, their results might
lead to erroneous interpretations of trends and
patterns in our datasets. Many of the state-of-
the-art algorithms are modular, thus allowing
us to define a cost function that is more appro-
priate for the task at hand. It is therefore neces-
sary to formulate cost functions that match our
scientific goals better. To interpret the results
of an unsupervised learning algorithm and to
compare between different algorithms, we still
use domain knowledge, and the process can-
not be completely automatized. To improve
the process of interpreting the results, we must
improve the machine-human interface through
which discoveries are made, e.g., by construct-
ing visualization tools that incorporate post-
processing routines which are typically carried
out after applying unsupervised learning algo-
rithms. Finally, as we continue to apply un-
supervised learning algorithms to astronomical
datasets, it is necessary to construct evaluation
metrics that can be used to compare the outputs
of different algorithms.

4.2. Further Reading

To learn more about the basics of machine
learning algorithms, I recommend the publicly-
available machine learning course in cours-
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era19. For an in-depth reading on statistics,
data mining, and machine learning in Astron-
omy, I recommend the book by Ivezić et al.
(2014), which covers in greater depth many
of the topics presented in this document, and
many other related topics. For additional ex-
amples on machine learning in Astronomy, im-
plemented in python, I recommend astroML20

(Vanderplas et al. 2012).

I am grateful to I. Arcavi, N. Lubelchick, D.
Poznanski, I. Reis, S. Shahaf, and A. Stern-

berg for valuable discussions regarding the top-
ics represented in this document and for helpful
comments on the text.

Software: astroML (Vanderplas et al. 2012),
scikit-learn (Pedregosa et al. 2011), SciPy
(Jones et al. 2001–), matplotlib (Hunter 2007),
and IPython (Pérez & Granger 2007).

REFERENCES

Agnello, A. 2017, MNRAS, 471, 2013

Alibert, Y. 2019, arXiv e-prints, arXiv:1901.09719

Anders, F., Chiappini, C., Santiago, B. X., et al.
2018, A&A, 619, A125

Armstrong, D. J., Pollacco, D., & Santerne, A.
2017, MNRAS, 465, 2634

Armstrong, D. J., Kirk, J., Lam, K. W. F., et al.
2016, MNRAS, 456, 2260

Ascasibar, Y., & Sánchez Almeida, J. 2011,
MNRAS, 415, 2417

Bailey, S. 2012, PASP, 124, 1015

Balazs, L. G., Garibjanyan, A. T., Mirzoyan,
L. V., et al. 1996, A&A, 311, 145

Ball, N. M., & Brunner, R. J. 2010, International
Journal of Modern Physics D, 19, 1049

Banerji, M., Lahav, O., Lintott, C. J., et al. 2010,
MNRAS, 406, 342

Baron, D., & Poznanski, D. 2017, MNRAS, 465,
4530

Baron, D., Poznanski, D., Watson, D., et al. 2015,
MNRAS, 451, 332

Bellm, E. 2014, in The Third Hot-wiring the
Transient Universe Workshop, ed. P. R.
Wozniak, M. J. Graham, A. A. Mahabal, &
R. Seaman, 27–33

Bilicki, M., Hoekstra, H., Brown, M. J. I., et al.
2018, A&A, 616, A69

19 https://www.coursera.org/learn/

machine-learning
20 http://www.astroml.org/

Blake, C., Collister, A., Bridle, S., & Lahav, O.
2007, MNRAS, 374, 1527

Bloom, J. S., Richards, J. W., Nugent, P. E., et al.
2012, PASP, 124, 1175

Boroson, T. A., & Green, R. F. 1992, ApJS, 80,
109

Breiman, L. 2001, Machine Learning, 45, 5. http:

//dx.doi.org/10.1023/A:1010933404324

Breiman, L., Friedman, J. H., Olshen, R. A., &
Stone, C. J. 1984, Monterey, CA: Wadsworth &
Brooks/Cole Advanced Books & Software

Brescia, M., Cavuoti, S., D’Abrusco, R., Longo,
G., & Mercurio, A. 2013, ApJ, 772, 140

Brescia, M., Cavuoti, S., Longo, G., & De Stefano,
V. 2014, A&A, 568, A126

Brescia, M., Cavuoti, S., Paolillo, M., Longo, G.,
& Puzia, T. 2012, MNRAS, 421, 1155
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Kovács, A., & Szapudi, I. 2015, MNRAS, 448,
1305

http://dx.doi.org/10.1006/jcss.1997.1504
http://dx.doi.org/10.1016/S0893-6080(00)00026-5
http://dx.doi.org/10.1016/S0893-6080(00)00026-5
http://www.scipy.org/
https://doi.org/10.1007/BF00337288


36

Krakowski, T., Ma lek, K., Bilicki, M., et al. 2016,
A&A, 596, A39

Krone-Martins, A., Ishida, E. E. O., & de Souza,
R. S. 2014, MNRAS, 443, L34

Krone-Martins, A., & Moitinho, A. 2014, A&A,
561, A57

Krone-Martins, A., Delchambre, L., Wertz, O.,
et al. 2018, A&A, 616, L11

Ksoll, V. F., Gouliermis, D. A., Klessen, R. S.,
et al. 2018, MNRAS, 479, 2389

Kuncheva, L. I., & Whitaker, C. J. 2003, Machine
Learning, 51, 181.
https://doi.org/10.1023/A:1022859003006

Laurino, O., D’Abrusco, R., Longo, G., & Riccio,
G. 2011, MNRAS, 418, 2165

Levi, M., Bebek, C., Beers, T., et al. 2013, ArXiv :
1308.0847, arXiv:1308.0847

Liu, F. T., Ting, K. M., & Zhou, Z. H. 2008,
IEEE, 413

Lochner, M., McEwen, J. D., Peiris, H. V., Lahav,
O., & Winter, M. K. 2016, ArXiv e-prints:
1603.00882, arXiv:1603.00882

Ma, R., Angryk, R. A., Riley, P., & Filali
Boubrahimi, S. 2018a, ApJS, 236, 14

Ma, Z., Xu, H., Zhu, J., et al. 2018b, arXiv
e-prints, arXiv:1812.07190

MacQueen, J. B. 1967, in Proc. of the fifth
Berkeley Symposium on Mathematical
Statistics and Probability, ed. L. M. L. Cam &
J. Neyman, Vol. 1 (University of California
Press), 281–297

Mahabal, A., Sheth, K., Gieseke, F., et al. 2017,
ArXiv e-prints, arXiv:1709.06257

Mahabal, A., Djorgovski, S. G., Turmon, M., et al.
2008, Astronomische Nachrichten, 329, 288

Mahabal, A., Rebbapragada, U., Walters, R.,
et al. 2019, PASP, 131, 038002

Ma lek, K., Solarz, A., Pollo, A., et al. 2013, A&A,
557, A16

Masci, F. J., Hoffman, D. I., Grillmair, C. J., &
Cutri, R. M. 2014, AJ, 148, 21

McInnes, L., Healy, J., & Melville, J. 2018, arXiv
e-prints, arXiv:1802.03426
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