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Why should we look for clusters?



Clustering



K-means
Input: measured features, and the number of clusters, k. The algorithm will 

classify all the objects in the sample into k clusters.
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K-means
(I) The algorithm places randomly k points that represent the centroids of the clusters. 

The algorithm performs several iterations, in each of them:

(II) The algorithm associates each object with a single cluster, according to its distance from 

the cluster centroid.

(III) The algorithm recalculates the cluster centroid according to the objects that are associated 

with it.
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(I) The algorithm places randomly k points that represent the centroids of the clusters. 

The algorithm performs several iterations, in each of them:
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K-means
(I) The algorithm places randomly k points that represent the centroids of the clusters. 

The algorithm performs several iterations, in each of them:

(II) The algorithm associates each object with a single cluster, according to its distance from 

the cluster centroid.

(III) The algorithm recalculates the cluster centroid according to the objects that are associated 

with it.
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K-means
(I) The algorithm places randomly k points that represent the centroids of the clusters. 

The algorithm performs several iterations, in each of them:

(II) The algorithm associates each object with a single cluster, according to its distance from 

the cluster centroid.

(III) The algorithm recalculates the cluster centroid according to the objects that are associated 

with it.
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K-means
(I) The algorithm places randomly k points that represent the centroids of the clusters. 

The algorithm performs several iterations, in each of them:

(II) The algorithm associates each object with a single cluster, according to its distance from 

the cluster centroid.

(III) The algorithm recalculates the cluster centroid according to the objects that are associated 

with it.
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The anatomy of K-means

Internal choices and/or internal cost function: 
(I) Initial centroids are randomly selected from the set of examples.

(II) The global cost function that is minimized by K-means: 
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The anatomy of K-means

Internal choices and/or internal cost function: 
(I) Initial centroids are randomly selected from the set of examples.

(II) The global cost function that is minimized by K-means: 
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k=3, and two different random placements of centroids



The anatomy of K-means

Input dataset: a list of objects with measured features. 

For which datasets should we use K-means?
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The anatomy of K-means

Input dataset: a list of objects with measured features.  
What happens when we have an outlier in the dataset?
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The anatomy of K-means

Input dataset: a list of objects with measured features.  
What happens when the features have different physical units?

input dataset K-means output



The anatomy of K-means

Input dataset: a list of objects with measured features.  
What happens when the features have different physical units?

input dataset K-means output

How can we avoid this?



The anatomy of K-means

Hyper-parameters: the number of clusters, k.

Can we find the optimal k using the cost function?

k=2 k=3 k=5



The anatomy of K-means

Hyper-parameters: the number of clusters, k.

Can we find the optimal k using the cost function?

k=2 k=3 k=5
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Questions?



Hierarchal Clustering

Correa-Gallego+ 2016

or, how to visualize complicated similarity measures

https://www.researchgate.net/profile/Camilo_Correa-Gallego?_sg%5B_sg%5D=LKwqMdN4BUVxyNCM4tq1DSraM3mdbmWJuBZrz8hy7LKFszyf5-7l64UgDJtPXoqS6Xmi4j9rgFPJrg


Hierarchal Clustering
Input: measured features, or a distance matrix that represents the pair-wise 

distances between the objects. Also, we must specify a linkage method.


Initialization: each object is a cluster of size 1.
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Hierarchal Clustering
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Hierarchal Clustering
Input: measured features, or a distance matrix that represents the pair-wise 

distances between the objects. Also, we must specify a linkage method.


Initialization: each object is a cluster of size 1.
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The anatomy of Hierarchal Clustering

Internal choices and/or internal cost function: 
The linkage method is used to define a distance between two newly formed 
clusters. Methods include: single (minimal), complete (maximal), average, etc.
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The anatomy of Hierarchal Clustering

Internal choices and/or internal cost function: 
The linkage method is used to define a distance between two newly formed 
clusters. Methods include: single (minimal), complete (maximal), average, etc.
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The anatomy of Hierarchal Clustering

Internal choices and/or internal cost function: 
The linkage method is used to define a distance between two newly formed 
clusters. Methods include: single (minimal), complete (maximal), average, etc.
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The anatomy of Hierarchal Clustering

Hyper-parameters: clusters are defined beneath a threshold d. Alternatively, we 
can select a threshold d that corresponds to the desired number of clusters, k.
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The anatomy of Hierarchal Clustering

Input dataset: can either be a list of objects with measured properties, or a 
distance matrix that represents pair-wise distances between objects. 

What happens if we have an outlier in the dataset?



The anatomy of Hierarchal Clustering

Input dataset: can either be a list of objects with measured properties, or a 
distance matrix that represents pair-wise distances between objects. 

What happens if the dataset does not have clear clusters?
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The anatomy of Hierarchal Clustering

Input dataset: can either be a list of objects with measured properties, or a 
distance matrix that represents pair-wise distances between objects. 

Different linkage methods are helpful with different datasets.

single linkage complete linkage average linkage



“Statistics, Data Mining, and Machine Learning in Astronomy”, by Ivezic, Connolly, Vanderplas, and Gray (2013).

Hierarchal Clustering in Astronomy



Visualizing similarity matrices with Hierarchical 
Clustering

Input: 10,000 emission line spectra, covering the wavelength range 300 - 700 
nm. There are ~90 emission lines in each spectrum, with an average SNR of 2-4.
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Visualizing similarity matrices with Hierarchical 
Clustering

We compute a correlation matrix of all the observed wavelengths.
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Visualizing similarity matrices with Hierarchical 
Clustering

We convert the correlation matrix to a distance matrix, and build a dendrogram



Visualizing similarity matrices with Hierarchical 
Clustering

We reorder the correlation matrix (the wavelengths) according to the resulting 
dendrogram.

reordered axis



Visualizing similarity matrices with Hierarchical 
Clustering

de Souza et. al 2015

http://inspirehep.net/author/profile/de%20Souza%2C%20Rafael%20S.?recid=1356325&ln=en


Questions?



Gaussian Mixture models

See: http://scikit-learn.org/stable/auto_examples/mixture/plot_gmm_covariances.html#sphx-glr-auto-examples-mixture-plot-gmm-
covariances-py



Questions?


