Clustering Algorithms

Dalya Baron (Tel Aviv University) XXX Winter School, November 2018

Why should we look for clusters?

Input: measured features, and the number of clusters, **k**. The algorithm will classify **all** the objects in the sample into k clusters.

- (II) The algorithm associates each object with a single cluster, according to its distance from the cluster centroid.
- (III) The algorithm recalculates the cluster centroid according to the objects that are associated with it.

- (II) The algorithm associates each object with a single cluster, according to its distance from the cluster centroid.
- (III) The algorithm recalculates the cluster centroid according to the objects that are associated with it.

- (II) The algorithm associates each object with a single cluster, according to its distance from the cluster centroid.
- (III) The algorithm recalculates the cluster centroid according to the objects that are associated with it.

(I) The algorithm places randomly k points that represent the centroids of the clusters. The algorithm performs several iterations, in each of them:

- (II) The algorithm associates each object with a single cluster, according to its distance from the cluster centroid.
- (III) The algorithm recalculates the cluster centroid according to the objects that are associated with it.

New cluster centroids are computed using the average location of the cluster members.

- (II) The algorithm associates each object with a single cluster, according to its distance from the cluster centroid.
- (III) The algorithm recalculates the cluster centroid according to the objects that are associated with it.

(I) The algorithm places randomly k points that represent the centroids of the clusters. The algorithm performs several iterations, in each of them:

- (II) The algorithm associates each object with a single cluster, according to its distance from the cluster centroid.
- (III) The algorithm recalculates the cluster centroid according to the objects that are associated with it.

The process stops when the objects that are associated with a given class do not change.

Feature 1

The anatomy of K-means $f(\overrightarrow{X}, \{a_1, a_2, ...\}) = \overrightarrow{y}$

Internal choices and/or internal cost function:

(I) Initial centroids are randomly selected from the set of examples.

(II) The global cost function that is minimized by K-means:

The anatomy of K-means
$$f(\vec{X}, \{a_1, a_2, ...\}) = \vec{y}$$

Input dataset: a list of objects with measured features. For which datasets should we use K-means?

Hertzsprung-Russel Diagram

The anatomy of K-means
$$f(\vec{X}, \{a_1, a_2, ...\}) = \vec{y}$$

Input dataset: a list of objects with measured features. What happens when we have an outlier in the dataset?

outlier! ↓

The anatomy of K-means $f(\vec{X}, \{a_1, a_2, \ldots\}) = \vec{y}$

Input dataset: a list of objects with measured features. What happens when we have an outlier in the dataset?

The anatomy of K-means
$$f(\vec{X}, \{a_1, a_2, ...\}) = \vec{y}$$

Input dataset: a list of objects with measured features. What happens when the features have different physical units?

The anatomy of K-means
$$f(\vec{X}, \{a_1, a_2, ...\}) = \vec{y}$$

Input dataset: a list of objects with measured features. What happens when the features have different physical units?

How can we avoid this?

The anatomy of K-means
$$f(\overrightarrow{X}, \{a_1, a_2, ...\}) = \overrightarrow{y}$$

Hyper-parameters: the number of clusters, k. Can we find the optimal k using the cost function?

0.8

0.7

0.6

0.5

> ^{0.4}

0.3

0.2

0.1

0.0

Number of clusters

Questions?

or, how to visualize complicated similarity measures

Correa-Gallego+ 2016

Input: measured features, or a **distance matrix** that represents the pair-wise distances between the objects. Also, we must specify a **linkage method**.

Input: measured features, or a **distance matrix** that represents the pair-wise distances between the objects. Also, we must specify a **linkage method**.

Initialization: each object is a cluster of size 1.

Next: the algorithm merges the two closest clusters into a single cluster. Then, the algorithm re-calculates the distance of the newly-formed cluster to all the rest.

Input: measured features, or a **distance matrix** that represents the pair-wise distances between the objects. Also, we must specify a **linkage method**.

Input: measured features, or a **distance matrix** that represents the pair-wise distances between the objects. Also, we must specify a **linkage method**.

Input: measured features, or a **distance matrix** that represents the pair-wise distances between the objects. Also, we must specify a **linkage method**.

Input: measured features, or a **distance matrix** that represents the pair-wise distances between the objects. Also, we must specify a **linkage method**.

Input: measured features, or a **distance matrix** that represents the pair-wise distances between the objects. Also, we must specify a **linkage method**.

Input: measured features, or a **distance matrix** that represents the pair-wise distances between the objects. Also, we must specify a **linkage method**.

Input: measured features, or a **distance matrix** that represents the pair-wise distances between the objects. Also, we must specify a **linkage method**.

Input: measured features, or a **distance matrix** that represents the pair-wise distances between the objects. Also, we must specify a **linkage method**.

Initialization: each object is a cluster of size 1.

The process stops when all the objects are merged into a single cluster

$$f(\overrightarrow{X}, \{a_1, a_2, \dots\}) = \overrightarrow{y}$$

Internal choices and/or internal cost function:

The linkage method is used to define a distance between two newly formed clusters. Methods include: **single** (minimal), **complete** (maximal), **average**, etc.

$$f(\overrightarrow{X}, \{a_1, a_2, \dots\}) = \overrightarrow{y}$$

Internal choices and/or internal cost function:

The linkage method is used to define a distance between two newly formed clusters. Methods include: **single** (minimal), **complete** (maximal), **average**, etc.

$$f(\overrightarrow{X}, \{a_1, a_2, \dots\}) = \overrightarrow{y}$$

Internal choices and/or internal cost function:

The linkage method is used to define a distance between two newly formed clusters. Methods include: **single** (minimal), **complete** (maximal), **average**, etc.

$$f(\overrightarrow{X}, \{a_1, a_2, \dots\}) = \overrightarrow{y}$$

Hyper-parameters: clusters are defined beneath a threshold d. Alternatively, we can select a threshold d that corresponds to the desired number of clusters, k.

$$f(\overrightarrow{X}, \{a_1, a_2, \dots\}) = \overrightarrow{y}$$

Hyper-parameters: clusters are defined beneath a threshold d. Alternatively, we can select a threshold d that corresponds to the desired number of clusters, k.

$$f(\overrightarrow{X}, \{a_1, a_2, \dots\}) = \overrightarrow{y}$$

Hyper-parameters: clusters are defined beneath a threshold d. Alternatively, we can select a threshold d that corresponds to the desired number of clusters, k. We can use the resulting dendrogram to choose a "good" threshold:

$$f(\overrightarrow{X}, \{a_1, a_2, \dots\}) = \overrightarrow{y}$$

Hyper-parameters: clusters are defined beneath a threshold d. Alternatively, we can select a threshold d that corresponds to the desired number of clusters, k. We can use the resulting dendrogram to choose a "good" threshold:

$$f(\vec{X}, \{a_1, a_2, \dots\}) = \vec{y}$$

Input dataset: can either be a list of objects with measured properties, or a distance matrix that represents pair-wise distances between objects. What happens if we have an outlier in the dataset?

$$f(\vec{X}, \{a_1, a_2, \dots\}) = \vec{y}$$

Input dataset: can either be a list of objects with measured properties, or a distance matrix that represents pair-wise distances between objects. What happens if the dataset does not have clear clusters?

$$f(\vec{X}, \{a_1, a_2, \dots\}) = \vec{y}$$

Input dataset: can either be a list of objects with measured properties, or a distance matrix that represents pair-wise distances between objects. Different linkage methods are helpful with different datasets.

Hierarchal Clustering in Astronomy

"Statistics, Data Mining, and Machine Learning in Astronomy", by Ivezic, Connolly, Vanderplas, and Gray (2013).

Input: 10,000 emission line spectra, covering the wavelength range 300 - 700 nm. There are ~90 emission lines in each spectrum, with an average SNR of 2-4.

We compute a correlation matrix of all the observed wavelengths.

correlation matrix

We convert the correlation matrix to a distance matrix, and build a dendrogram

We reorder the correlation matrix (the wavelengths) according to the resulting dendrogram.

Questions?

Gaussian Mixture models

See: http://scikit-learn.org/stable/auto_examples/mixture/plot_gmm_covariances.html#sphx-glr-auto-examples-mixture-plot-gmm-covariances-py

Questions?