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Clustering

Why should we look for clusters?
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K-means

Input: measured features, and the number of clusters, k. The algorithm will
classify all the objects in the sample into k clusters.
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K-means

() The algorithm places randomly k points that represent the centroids of the clusters.

The algorithm performs several iterations, in each of them:

(I) The algorithm associates each object with a single cluster, according to its distance from
the cluster centroid.

() The algorithm recalculates the cluster centroid according to the objects that are associated
with it.
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The algorithm performs several iterations, in each of them:

(I) The algorithm associates each object with a single cluster, according to its distance from
the cluster centroid.

() The algorithm recalculates the cluster centroid according to the objects that are associated
with it.

N
@
S o
© °
@ ®
LL ® o
® ®
o ® o _
o ° o Two centroids are
o ® randomly placed

Feature 1



K-means

() The algorithm places randomly k points that represent the centroids of the clusters.

The algorithm performs several iterations, in each of them:

(I) The algorithm associates each object with a single cluster, according to its distance from
the cluster centroid.

() The algorithm recalculates the cluster centroid according to the objects that are associated
with it.
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K-means

() The algorithm places randomly k points that represent the centroids of the clusters.

The algorithm performs several iterations, in each of them:

(I) The algorithm associates each object with a single cluster, according to its distance from
the cluster centroid.

() The algorithm recalculates the cluster centroid according to the objects that are associated
with it.
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K-means

() The algorithm places randomly k points that represent the centroids of the clusters.

The algorithm performs several iterations, in each of them:

(I) The algorithm associates each object with a single cluster, according to its distance from
the cluster centroid.

() The algorithm recalculates the cluster centroid according to the objects that are associated
with it.
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K-means

() The algorithm places randomly k points that represent the centroids of the clusters.

The algorithm performs several iterations, in each of them:

(I) The algorithm associates each object with a single cluster, according to its distance from
the cluster centroid.

() The algorithm recalculates the cluster centroid according to the objects that are associated
with it.
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The anatomy of K-means
~ —
(X, {ai,a9,..}) =y

cluster
centroids

(I) Initial centroids are randomly selected from the set of examples. K
(I) The global cost function that is minimized by K-means: J = yj yj s — ps]|?
k=1:1eC} T T

cluster Euclidean
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The anatomy of K-means
~ —
(X, {ai,a9,..}) =y

cluster
centroids
(I) Initial centroids are randomly selected from the set of examples. K
(I) The global cost function that is minimized by K-means: J = sj yj s — ps]|?
k=1ieC} T T

cluster Euclidean
members distance

k=3, and two different random placements of centroids
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The anatomy of K-means
~ —
(X, {ai,a9,...}) =y

Input dataset: a list of objects with measured features.
For which datasets should we use K-means?
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The anatomy of K-means
~ —
(X, {ai,a9,...}) =y

Input dataset: a list of objects with measured features.
What happens when we have an outlier in the dataset?

outlier!
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Input dataset: a list of objects with measured features.
What happens when we have an outlier in the dataset?
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The anatomy of K-means

F(X, {ay, as,..})

—

Y

Input dataset: a list of objects with measured features.
What happens when the features have different physical units?

iInput dataset
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The anatomy of K-means
—>
(X, {ay,aq,...})

Input dataset: a list of objects with measured features.
What happens when the features have different physical units?

How can we avoid this?

iInput dataset
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The anatomy of K-means
~ —
f(X,{ai,a9,...}) =y

the number of clusters, k.
Can we find the optimal k using the cost function?

k=2 k=3 k=5
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the number of clusters, k.
Can we find the optimal k using the cost function?

k=3
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Questions?



Hierarchal Clustering

or, how to visualize complicated similarity measures

Correa-Gallego+ 2016


https://www.researchgate.net/profile/Camilo_Correa-Gallego?_sg%5B_sg%5D=LKwqMdN4BUVxyNCM4tq1DSraM3mdbmWJuBZrz8hy7LKFszyf5-7l64UgDJtPXoqS6Xmi4j9rgFPJrg

Hierarchal Clustering

Input: measured features, or a distance matrix that represents the pair-wise
distances between the objects. Also, we must specify a linkage method.

Initialization: each object is a cluster of size 1.
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Hierarchal Clustering

Input: measured features, or a distance matrix that represents the pair-wise
distances between the objects. Also, we must specify a linkage method.

Initialization: each object is a cluster of size 1.

Next: the algorithm merges the two
closest clusters into a single cluster.
Then, the algorithm re-calculates the
distance of the newly-formed cluster

to all the rest.
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Hierarchal Clustering

Input: measured features, or a distance matrix that represents the pair-wise
distances between the objects. Also, we must specify a linkage method.

Initialization: each object is a cluster of size 1.

Next: the algorithm merges the two

closest clusters into a single cluster.

Then, the algorithm re-calculates the

distance of the newly-formed cluster
to all the rest.
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Hierarchal Clustering

Input: measured features, or a distance matrix that represents the pair-wise
distances between the objects. Also, we must specify a linkage method.

Initialization: each object is a cluster of size 1.

Next: the algorithm merges the two

closest clusters into a single cluster.

Then, the algorithm re-calculates the

distance of the newly-formed cluster
to all the rest.
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Hierarchal Clustering

Input: measured features, or a distance matrix that represents the pair-wise
distances between the objects. Also, we must specify a linkage method.

Initialization: each object is a cluster of size 1.

Next: the algorithm merges the two

closest clusters into a single cluster.

Then, the algorithm re-calculates the

distance of the newly-formed cluster
to all the rest.
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Hierarchal Clustering

Input: measured features, or a distance matrix that represents the pair-wise
distances between the objects. Also, we must specify a linkage method.

Initialization: each object is a cluster of size 1.

The process stops when all the objects
are merged into a single cluster
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The anatomy of Hierarchal Clustering

f(ya {@1, a2, }) — 7

The linkage method is used to define a distance between two newly formed
clusters. Methods include: single (minimal), complete (maximal), average, etc.
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The anatomy of Hierarchal Clustering

f(ya {@1, a2, }) — 7

The linkage method is used to define a distance between two newly formed
clusters. Methods include: single (minimal), complete (maximal), average, etc.
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The anatomy of Hierarchal Clustering

F(X {ar,a0..}) =7

clusters are defined beneath a threshold d. Alternatively, we
can select a threshold d that corresponds to the desired number of clusters, k.

distance
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The anatomy of Hierarchal Clustering

F(X, {ar,a2,..}) =7

clusters are defined beneath a threshold d. Alternatively, we
can select a threshold d that corresponds to the desired number of clusters, k.
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The anatomy of Hierarchal Clustering

—
—
X,{CLl,CLQ,... — Y

clusters are defined beneath a threshold d. Alternatively, we
can select a threshold d that corresponds to the desired number of clusters, k.
We can use the resulting dendrogram to choose a “good” threshold:

Hierarchical Clustering Dendrogram
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The anatomy of Hierarchal Clustering

N
f X,{Cll,CLQ,... :7

clusters are defined beneath a threshold d. Alternatively, we
can select a threshold d that corresponds to the desired number of clusters, k.
We can use the resulting dendrogram to choose a “good” threshold:

Hierarchical Clustering, average linkage
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The anatomy of Hierarchal Clustering

(X {ar,a0,. ) =7

Input dataset: can either be a list of objects with measured properties, or a
distance matrix that represents pair-wise distances between objects.
What happens if we have an outlier in the dataset?



The anatomy of Hierarchal Clustering

H
f X,{CLl,CZQ,... :7

Input dataset: can either be a list of objects with measured properties, or a
distance matrix that represents pair-wise distances between objects.
What happens if the dataset does not have clear clusters?

Hierarchical Clustering, average linkage
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The anatomy of Hierarchal Clustering

(X, {ay,az,..})

Input dataset: can either be a list of objects with measured properties, or a
distance matrix that represents pair-wise distances between objects.
Different linkage methods are helpful with different datasets.

single linkage

s. -
H e | > 02
:i J! 0.0 1
.\. ‘0. -0.2 -
qh.. doqf. 0.4

-0.6

complete linkage

10 A
0.8 1

0.6 1

~.0’0 ’.0'.

»°

..’..

%

10 A

—

Y

average linkage

0.8 ~°
8 - o
..
0.6 -
.' ‘
04 o°
|
02 - .' ".
[s}
00 ® o
02 - o*
.‘
-0.4 1 ‘. T\
-'v.fo’.
_06 T T T T T T T
-10 -05 0.0 05 10 15 20
X




Hierarchal Clustering in Astronomy

Sr i Ja

{Mpc)

“Statistics, Data Mining, and Machine Learning in Astronomy”, by Ivezic, Connolly, Vanderplas, and Gray (2013).



normalized flux

Visualizing similarity matrices with Hierarchical
Clustering

Input: 10,000 emission line spectra, covering the wavelength range 300 - 700
nm. There are ~90 emission lines in each spectrum, with an average SNR of 2-4.
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Visualizing similarity matrices with Hierarchical
Clustering

We compute a correlation matrix of all the observed wavelengths.

correlation matrix
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Visualizing similarity matrices with Hierarchical
Clustering
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de Souza et. al 2015


http://inspirehep.net/author/profile/de%20Souza%2C%20Rafael%20S.?recid=1356325&ln=en
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Gaussian Mixture models

spherical diag
Train accuracy: 88.3 Train accuracy: 93.7
Test accdracy: 92.3 Test racy: 89.7
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See: http://scikit-learn.org/stable/auto_examples/mixture/plot_gmm_covariances.html#sphx-glr-auto-examples-mixture-plot-gmm-
covariances-py
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