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Context

Were used to performing analysis in catalog space, using objects and observations. But
how those catalogs are created is a mystery to most astronomers.

Yet science need push us towards:

- Measurements of subtle (10-6) effects

- Ever higher precision (<1% photometry, ~mas astrometry)

- Ever more data (and thus the need for automated operation)

At these precision levels it becomes critical to understand our instruments and the
measurement process. Otherwise, the instrumental noise (bias) may be misinterpreted
for a signal.

This lecture is a high-level walk-through to give you a feel for how we turn images to
catalogs, and the associated challenges today and in the future.



An analog universe (1950s)

Shane-Wirtanen 1967

Visual inspection:
Lick survey, 1246 plates
1.6 million “pixels”
10x10 arcmin pixels

Processing rate

Analysis 1947 — 1954
Published 1967

Map of galaxy counts down to V<19



A digitized universe (1980’s)

Automatic Plate Measuring facility in Cambridge, UK.

APM machine

Microdensitometers:
102 pixel sky
0.5 arcsec pixels

Processing rate
4 hours a plate
200 Mhz Pentium-pro



A digital universe (2000s)

Mosaic Cameras
101 pixels sky
0.45 arcsec pixels

Processing rate
4 MB/s
250K lines of code



producing equipment
(lower level)
1,380 m2 service and,
maintenance facility -

Calibration Screen

Stray lighizaB@Wind
Screen
350 ton telescope

A project to build the biggest optical astronomical survey
in existence, bringing data to topics ranging from the Solar
System to Dark Energy.




LSST camera: A 3.2 Gigapixel camera
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Modular design: 3200 Megapix = 189 x16 Megapix CCD
9 CCDs share electronics: raft (21=camera)
100 um deep depletion devices (10 um pixels)



6.5x10° pixels sky

0.2 arcsec pixels

1.1M lines of code
Credit: John Peterson

: Sensors at scale:
Processing rate
170 MB/s
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A Big Data Universe
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1 chip (4kx4k, 18 bits/pixel), 0.5% of the full image.

Expect ~2000 exposures per night, 300 nights a year,
for 10 years.

Roughly 4 PB of raw imaging data per year.




What do astronomers care about?

What's on the image?
Stars (point sources) ’

Galaxies (extended objects)
Where is it?

Relatively (in pixels, to ~few hundredths
of a pixel)

Absolutely (coordinates on the sky) i ’
How bright is it? :
Is it changing in time?
Is it moving?
What is its shape?

Of a particular object

Statistically, for a class of objects




Understanding Astronomical Images
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GOODS-South Field, deep VLT stack



How do
astronomical
Images come

to be?

Credit: John
Peterson (Purdue)
and the PhoSim
Team




+Detector

Perturbations
- - . »
+Lens Misalignments +Mirror Misalignments +Detector +High Altitude
Perturbations, Atmosphere

& Micro-roughness

N 3 »

+Mid Altitude +Low Altitude +Saturation &
Atmosphere




Astronomical Images (approximated)

I(x) = p(x) ® S(x) + &(x)

Observed PSF Truth Noise



(Today)
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Sampling, modeling, interpolation



Challenge: How could we do better?

i . ) ) +Detector
Optics +Tracking +Diffraction Misalignments &

Utilize all available information. e
- - » -

The PSF is a combination of e e o o

deterministic and stochastic elements. S L4 » »

+Mid Altitude +Low Altitude +Saturation &

Deterministic: Camera, Optics 'm."’ % p “i : s.oo'

Stochastic: Atmospheric perturbations

Directly measure the deterministic elements.
Constrain the stochastic elements (e.g., using the knowledge of the power
spectrum of fluctuations in the atmosphere).

e.g., Jee & Tyson 2011



Life is not so Simple: Tree Rings

d PSF mag
-0.01 0.0 0.01 0.02

4000.0 Y o wﬁ,,,,é. s are -0.02

3000.0

2000.0 — 0.056 pixels (15 mas)

Y (pixels)

1000.0

0.0 500.0 1000.0 1500.0 2000.0
X (pixels)

Plazas, Bernstein & Sheldon 2014
Magnier et al. 2017



https://www.youtube.com/watch?v=jh2z-g7GJXE



Charge Diffusion

two pixels , 10 x 10 micron each

In LSST sensors, one sees tree
rings variations at at a ~percent
level.

Varying dopant density in silicon

boules creates parasitic lateral 1"32";;;'::

E fields detector volume Channel stop
) implants

These DO NOT behave as QE 4 phase parallel

onfining
lock lines .poterttial -
variations. Naive flat-fielding ‘ 2 e ocks
makes the problem WORSE by

~2X.

confining potential in
x direction, due to channel stops




Nonlinearities: the Brighter-Fatter Effect

Most of toda As the potential wells fill up with electrons, the bias

are thick. The photon ca voltage drops making it easier for electrons to be

a long way to go to reach the botto diverted to neighboring pixels.

— Treerings (and related effects) Correlates the values of neighboring pixels; results in
»—  “Brighter-fatter” effect n intensity-dependent PSF.

‘two pixels , 10 x 10 micron each

HSC =

‘ LSST

100 micron
depleted

detector volume Channel stop

implants

nfining
potential

/I/ in y direction,

from parallel clocks

_LLL confining potential in

x direction, due to channel stops

4 phase parallel
clock lines




Measurement = Modeling



Deconvolve?

I(x) = p(x) ® S(x) + &(x)

Observed PSF Truth Noise

If we can estimate the PSF, can we simply deconvolve?

No. (at least not easily.)
Deconvolution without regularization amplifies noise.
Errors in the estimate of the PSF are further amplified in deconvolved images.



Forward Modeling

I(x) = ¢p(x) @ S(x) + £(x)

Observed PSF Truth Noise

Bulge Disk Bulge+disk

S(x) — ZMi(x) y) __residuals - residuals - residuals

Object characterization Models:
e Stars: Point Source model
e Galaxies: Double Exponential models Bulge only Disk only Bulgerdisk




Modeling object properties

Object characterization (models):
e Stars: Point Source model
e Galaxies: Double Exponential models

Instrumental Signature
Removal + PSF

Bulge
residuals

Model
Realization

Bulge only

Goodness of
Fit

Disk
residuals

Disk only

Bulge+disk
residuals

Bulge+disk
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Cataloging the Sky...

What we’re doing is
decomposing and

modeling the sky in a
way that makes

physical sense.



... Compressing the Sky

What we’re doing is
decomposing and
modeling the sky in a
way that makes
physical sense.

But you may also think
of this as developing a
very astronomy-
specific lossy
compression
technique.



Challenges:

B Jump to object: NGC 5614
2

.

Custom catalog upload (FITS table; RA,Dec,[name]):
Choose File No file chosen Upload




Beyond a Single Image
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Beyond a Single Image

Going Deep: Coaddition Changes in Time: Image Differencing




Image Differencing



Why Difference?




Why Difference?




Why Difference?

First image Second image  Difference image




Align, Subtract, Profit!  Right?...
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How to match image quality

Difference imaging requires solving for the mapping kernel

u?+v

2

k(x) = Z a; B;(x) = z ae 2n uPpl

i n,p,q

I, —2ia;B;(x) ® I, :

o

Alard and Lupton 97...




Works well but... D(x) = I,(x) — k(x) ® I,(x)

Assumes template PSF is smaller than image PSF
e Deconvolution otherwise -> BAD!

Assumes the “template” has no noise
e Derived from a previous set of observations

e Recent work has shown that for Gaussian, heteroschedastic noise
we can take a Fourier Transform, and compute the log-likelihood and

prewhiten the images ot
..;5?.10, S

P
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s .i [
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Zackay et al 2016 This is running on ZTF!




Real world is more complicated...

Pan-STARRS1 Systematic False Detection Gallery In real-world
applications, differencing
two images is never
perfect. In fact, it’s far
from perfect!

caustic z 5 ghost/caustic ' f j Typlcally, the observed
PR | PR 2r s ] difference images are
littered with artifacts,

false positives, that
make astronomers sad

2 . g £ S TR S
“chocolate chip
dropout (not real) diffraction spike cookies” : 5 x ¥ and unha P py

e & N S & ] Typically, we see 100:1
e | ? YW, L@ I o @ | to10:1falseto-true
dos” Ik 1 | N | detection ratios (that is
7 s ; ST | AR notatypO!)-

“arrowhead" “frisbee” o} a satellite trail readout artifact




Real world is more complicated...

Pan-STARRS1 Systematic False Detection Gallery Where do these things
come from?

* Image misalignments

* |mperfect knowledge
of PSF variation along

caustic the image

e (CCD defects

 Readout electronics
artifacts

e Optical ghosts and
glints

dropout (not re

“arrowhead"




Transient Transient Fake Fake CR/ Bad Bad
SN SN Bad Column Sub Sub

Machine Learning to the Rescue! Above: Figure 1, Goldstein al. (2015), AJ, 150, 82

Given a sample of real detections and false detections, teach the computer to recognize the
difference between the two and judge assign a “score”, 7, to each (z=1 -> real, =0 -> false).



L mar—e sow e | ' o ‘ o = g vy (g i e ]
0.05—— ‘ TABLE 4
(¢ * AN ON REPROCESSED DES Y1 TRANSIENT CANDIDATE
0.04+ :
{1'00)
0.03 No ML ML (7 =0.5) ML / No ML
L0
o N 2 100,450 7,489 0.075
(K 0.02} Ll | (N4/Ny4)® 13 0.34 0.027
€p® 1.0 0.990 0.990
0.01f (0.96)
0.00 ‘ ' ' L aTotal number of science candidates discovered.
0.00 0.02 0.04 0.06 0.08 0.10
(¢ MDR . bAverage ratio of artifact to non-artifact detections in

human scanning pool.
Fig. 7.— b5-fold cross-validated receiver operat- 0.99) ) )
ing characteristics of the best-performing classifier ‘autoScan candidate-level efficiency for fake SNe Ia.

o e Fake
from -3.5 Six visually indistinguishable curves are
Y 8 SN Bad Column Sub Sub Sub

plotted: one translucent curve for each round of
cross-validation, and one opaque curve represent-
ing the mean. Points on the mean ROC corre- Above: Figure 1, Goldstein al. (2015), AJ, 150, 82
sponding to different class discrimination bound-

aries 7 are labeled. 7 = 0.5 was adopted in DES- . .
'oN P se detections, teach the computer to recognize the

TCTIVC UTLVWITOUTT UIC WU dl'iu JUUYT do |gn d “SCOFe”, 7, tO eaCh (T:1 -> real, T:O -> false)



‘,, TABLE 4
AN ON REPROCESSED DES Y1 TRANSIENT CANDIDATE

(a)

No ML ML (r=0.5) ML /NoML

N2 100,450 7,489 0.075
(Na/Nna)® 13 0.34 0.027
€r° 1.0 0.990 0.990

(b)

aTotal number of science candidates discovered.

(c)

bAverage ratio of artifact to non-artifact detections in
human scanning pool.

! autoScan candidate-level efficiency for fake SNe Ia.
aKeE

SN Bad Column Sub Sub Sub

Ty = -~ Above: Figure 1, Goldstein al. (2015), AJ, 150, 82
Machine Learning 1o the xescue:

Given a sample of real detections and false detections, teach the computer to recognize the
difference between the two and judge assign a “score”, 7, to each (z=1 -> real, =0 -> false).




Option #2: Understand the root cause(s)

Example: Astrometric misalignment introduces dipoles
in the images, misalignment of >2% of a pixels
will dominate the number of false positives

Major source is Differential Chromatic Refraction

Atmosphere refracts (shifts) Sopucn
a source more for blue light Zenth Spewbes o
than red (even for light
measured through the same
filter)

\ AR Source

A bandpass is not a delta
function.




How differential refraction works
y(X)

Spatial

Wavelength

Less atmosphere More atmosphere

S(x) = B(x,A)y;(x)
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A solution

Instead of having just one template, infer the template as a
function of wavelength based on many observations at different
alrmasses.

=> “red” object => “blue” object



A solution

Instead of having just one template, infer the template as a
function of wavelength based on many observations at different
airmasses!

Effectively, given N exposures at different airmassess, infer the
images l{(A=blue), I;(A=center), l;(A=red) for the template(s).

Then, for each science image, we can construct the template
exactly for that airmass, before doing the differencing.



DCR-corrected Templates: lan Sullivan et al.

All pixels within a k x k size
kernel, from all N images

Each image has PSF Q4, Q,,

All pixels within a k x k size

kernel, from all M sub-bands

17 1=(B"B)"'BT(Q"Q)"*Q"Ps

Each sub-band image : -
has PSF Pa, Pg,...: P I3 |l=(PTP)"1PTQBY

Assume a model for the image, y, that is made up of series of images each of a
different wavelength (ie a “hyperspectral” cube)
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Figure 15 Example input spectrum for a type F star with surface temperature ~7130K (solid blue).
The flux measured in each sub-band is marked with a with red +, and the average values of the
simulated spectrum across each subfilter is marked with a blue x’ for comparison.

This is another example of utilizing all available information and
. : : ie Figure 14 Source measurements in three sub-bands of the DCR sky model are converted to RGB
it derSta e dl ng Of Image gen eration processes to extract addl tiona I values and used to fill the footprints of detected sources. The combined full-band model is displayed

information. behind the footprint overlay.




Going Deeper: Coaddition
(a.k.a. “astronomer’s HDR”)



Why co-add?

SDSS Southern Coadd

See fainter objects!
Computationally
inexpensive

P ‘ ,
% : - - . ¢ 3 i .‘. ; -
Fic. 2.— Comparison between single pass (left) and coadd (right) images in r-band for run 206, camcol 3, field 505, RA=15, Dec=0. L f .
Images are shown with the same scale, contrast and stretch. The single pass counterpart (run 5800, camcol 3, field 505) is one out of 28 e t-
images used in the coaddition of this particular image. This example illustrates the fact that a large number of objects bellow the detection g
threshold of each image can be well detected and measured in the coadd. AI’)I’)IS et al. 2011




Why co-add?

SDSS Southern Coadd

« e ‘
- - e < 3 ik ,. ; -

Fic. 2.— Comparison between single pass (left) and coadd (right) images in r-band for run 206, camcol 3, field 505, RA=15, Dec=0.
Images are shown with the same scale, contrast and stretch. The single pass counterpart (run 5800, camcol 3, field 505) is one out of 28
images used in the coaddition of this particular image. This example illustrates the fact that a large number of objects bellow the detection
threshold of each image can be well detected and measured in the coadd.

Pros:

See fainter objects!
Computationally
inexpensive

Cons:

- Complicated PSF

- Correlated noise

- Loss of motion and
time variability
information

- Loss of information.

Left:
Annis et al. 2011




Better than Coaddition:
Multi-Epoch Fitting
(MultiFit)



A very simple idea: instead of co-adding pixels of individual
observations, and then fitting the model to the result, why not fit
the model directly to each individual observation?

MultiFit (Simultaneous Multi-Epoch Fitting)



Lang (2009):

Opportunity: Recovering motion from the noise

Fit moving source models to
suspected moving stars in
SDSS Stripe 82 survey.

_PKIDSS 433825557752

Individual exposures: objects are
undetected or marginally detected

Moving point-source and galaxy models
are indistinguishable on the coadd

8
pixels pixels

data stack  star stack galaxy stack starresid galaxy resid data shifted star shifted shifted resid

.!I . o,
‘ e
u-. u-.




Downsides

Computationally extremely intensive. Scales with the number of epochs (so
~100-1000x more computationally expensive for modern surveys like LSST).

Worse, we're greedy: the physics we’re trying to study is so sensitive to biases
that ML estimators are not enough; we want posteriors PDFs for parameters of
each observed galaxy! (20-200x more output storage!)

But computing is getting cheaper. LSST is building a ~2 PFLOP machine to do
this (cca ~2025). Still cheaper than building a bigger telescope (and/or
launching it into space)!



Putting it all together

LSST Image Processing Input data

_ Pipeline (algorithms)

Raw
Images

Observatory o
Metadata <

Single Visit Processing
<

Output images

Image collection

- Output catalogs

Calibration
Data

Single Visit Images

External
Catalogs

Catalog collection

(6)

DIRSomces Only in nightly
processing

()
Multi-epoch Object (templates)
Ch: Generate and

~DIff.
Images

Only in nightly
processing
SS Objects

Figure 2: Illustration of the conceptual design of LSST science pipelines for
imaging processing.
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+Lens Misalignments +Mirror Misali its +De +High Altitude
Perturbations, Atmosphere

& Micro-roughness
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+Mid Altitude +Low Altitude +Pixelization +Saturation &
Atmosphere At re Blooi

Much of the information “loss” comes :

not from the physical instrument, but [N /

the data processing method. . @ ‘_ , o
By improving the processing : QR pe S :

behind the footprint overlay.

(algorithms, software), we can do a
factors of few better than with the
exact same dataset.

8 0
pixels

star stack  galaxy stack _ star resid hifted star shifted

500.0 1000.0 1 [ i =
X (pixels) v '




The “next gen” survey may be just software!

SDSS DR12

Relative photometric

calibration accuracy

(RMS)

S DSS D R5 (Padmanabhan et al.

2008)




Summary

- Measurement used to be simple: “CCDs are linear”, “pixels are independent
photon buckets’, ....

- We’'re in an era of high precision astronomy; this requires we drop these
simplifications
* Understand the physics of the instrument
e Properly perform inference (measurement)

- Thinking about these problems can reveal interesting new opportunities.
 Many instrumental effects are information preserving (or revealing!)
* |tis our poor measurement techniques that erase information.
 We now have enough computing power to do things right.



