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Were used to performing analysis in catalog space, using objects and observations. But 
how those catalogs are created is a mystery to most astronomers.

Yet science need push us towards:
• Measurements of subtle (10-6) effects
• Ever higher precision (<1% photometry, ~mas astrometry)
• Ever more data (and thus the need for automated operation)

At these precision levels it becomes critical to understand our instruments and the 
measurement process. Otherwise, the instrumental noise (bias) may be misinterpreted
for a signal.

This lecture is a high-level walk-through to give you a feel for how we turn images to 
catalogs, and the associated challenges today and in the future.

Context



Shane-Wirtanen 1967

An analog universe (1950s)

Visual inspection:
Lick survey, 1246 plates
1.6 million “pixels” 
10x10 arcmin pixels

Processing rate
Analysis 1947 – 1954       
Published 1967

Map of galaxy counts down to V<19



A digitized universe (1980’s)

Microdensitometers:
1012 pixel sky
0.5 arcsec pixels

Processing rate
4 hours a plate
200 Mhz Pentium-pro

APM machine

Automatic Plate Measuring facility in Cambridge, UK.



A digital universe (2000s)

Mosaic Cameras
1011 pixels sky
0.45 arcsec pixels

Processing rate
4 MB/s
250K lines of code

SDSS



1,380 m2 service and 
maintenance facility

30 m diameter dome

Control room and heat 
producing equipment 

(lower level)

1.2 m diameter 
atmospheric telescope

Stray light and Wind 
Screen
350 ton telescope

Calibration Screen

Base Facility

A project to build the biggest optical astronomical survey 
in existence, bringing data to topics ranging from the Solar 
System to Dark Energy.

The Large Synoptic Survey Telescope



LSST camera: A 3.2 Gigapixel camera

Modular design: 3200 Megapix = 189 x16 Megapix CCD
9 CCDs share electronics: raft  (21=camera)
100 µm deep depletion devices (10 µm pixels)



Sensors at scale:
6.5x109 pixels sky
0.2 arcsec pixels

Processing rate
170 MB/s
1.1M lines of code

Credit: John PetersonCredit: HSC



A Big Data Universe
1 chip (4kx4k, 18 bits/pixel), 0.5% of the full image.

Expect ~2000 exposures per night, 300 nights a year, 
for 10 years.

Roughly 4 PB of raw imaging data per year.



- What’s on the image?
- Stars (point sources)
- Galaxies (extended objects)

- Where is it?
- Relatively (in pixels, to ~few hundredths 

of a pixel)
- Absolutely (coordinates on the sky)

- How bright is it?
- Is it changing in time?
- Is it moving?
- What is its shape?

- Of a particular object
- Statistically, for a class of objects

What do astronomers care about?



Understanding Astronomical Images

GOODS-South Field, deep VLT stack



Credit: John 
Peterson (Purdue) 

and the PhoSim
Team

How do 
astronomical 
images come 

to be?
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Astronomical Images (approximated)

! ! = ! ! ⊗ ! ! +  ! ! 	
PSF Truth NoiseObserved



Point Spread Function Estimation (Today)

Sampling, modeling, interpolation



Utilize all available information.

The PSF is a combination of 
deterministic and stochastic elements.

Deterministic: Camera, Optics
Stochastic: Atmospheric perturbations

Challenge: How could we do better?

e.g., Jee & Tyson 2011

Directly measure the deterministic elements.
Constrain the stochastic elements (e.g., using the knowledge of the power

spectrum of fluctuations in the atmosphere).



Life is not so Simple: Tree Rings

Magnier et al. 2017
Plazas, Bernstein & Sheldon 2014



https://www.youtube.com/watch?v=jh2z-g7GJxE



Another Example: Tree Rings
In LSST sensors, one sees tree 
rings variations at at a ~percent 
level.

Varying dopant density in silicon 
boules creates parasitic lateral 
E fields.

These DO NOT behave as QE 
variations. Naïve flat-fielding 
makes the problem WORSE by 
~2x.

Charge Diffusion



Nonlinearities: the Brighter-Fatter Effect
Most of today’s devices (DES, HSC, LSST, GPC1) 
are thick. The photon converting at the top has 
a long way to go to reach the bottom
− Tree rings (and related effects)
− “Brighter-fatter” effect

As the potential wells fill up with electrons, the bias 
voltage drops making it easier for electrons to be 
diverted to neighboring pixels.
Correlates the values of neighboring pixels; results in 
an intensity-dependent PSF.

HSC

LSST



Measurement = Modeling



Deconvolve?

! ! = ! ! ⊗ ! ! +  ! ! 	
PSF Truth NoiseObserved

If we can estimate the PSF, can we simply deconvolve?

No. (at least not easily.)
Deconvolution without regularization amplifies noise.
Errors in the estimate of the PSF are further amplified in deconvolved images.



Forward Modeling

Object characterization Models:
� Stars: Point Source model
� Galaxies: Double Exponential models

! ! = ! ! ⊗ ! ! +  ! ! 	
PSF Truth NoiseObserved	

!(#) = 	∑()(#, +)	



Modeling object properties
Object characterization (models):

� Stars: Point Source model
� Galaxies: Double Exponential models

Model Model 
Realization

Instrumental Signature 
Removal + PSF

Goodness of 
Fit



1,231,051,050 rows (SDSS DR10, PhotoObjAll table)
~500 columns



Cataloging the Sky…
What we’re doing is 
decomposing and 
modeling the sky in a 
way that makes 
physical sense.



… Compressing the Sky
What we’re doing is 
decomposing and 
modeling the sky in a 
way that makes 
physical sense.

But you may also think 
of this as developing a 
very astronomy-
specific lossy 
compression 
technique.



Challenges: Incomplete model space



Beyond a Single Image



Beyond a Single Image



Beyond a Single Image

Going Deep: Coaddition Changes in Time: Image Differencing



Image Differencing



Why Difference?



Why Difference?



Why Difference?



Align, Subtract, Profit! Right?...







Alard-Lupton Algorithm

! ! = ! ! ⊗ ! ! +  ! ! 	

! ! = !! ! − ! ! ⊗ !! ! 	

Image

Image Difference
PSF Truth Noise

Image 1 Image 2 Image 1 – Image 2

Φ1(x) Φ2(x) ⲕ(x)



How to match image quality

Difference imaging requires solving for the mapping kernel

Alard and Lupton 97…
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Assumes template PSF is smaller than image PSF
� Deconvolution otherwise -> BAD!

Assumes the “template” has no noise
� Derived from a previous set of observations
� Recent work has shown that for Gaussian, heteroschedastic noise 

we can take a Fourier Transform, and compute the log-likelihood and 
prewhiten the images

Works well but…

Zackay et al 2016

! ! = !! ! − ! ! ⊗ !! ! 	

This is running on ZTF!



Real world is more complicated…
In real-world 
applications, differencing 
two images is never 
perfect. In fact, it’s far 
from perfect!

Typically, the observed 
difference images are 
littered with artifacts, 
false positives, that 
make astronomers sad 
and unhappy.

Typically, we see 100:1 
to 10:1 false-to-true 
detection ratios (that is 
not a typo!).



Real world is more complicated…
Where do these things 
come from?

• Image misalignments
• Imperfect knowledge 

of PSF variation along 
the image

• CCD defects
• Readout electronics 

artifacts
• Optical ghosts and 

glints
• …

http://www.ishootshows.com/2011/07/13/understanding-lens-flare-ghosting/



Above: Figure 1, Goldstein al. (2015), AJ, 150, 82Machine Learning to the Rescue!

Given a sample of real detections and false detections, teach the computer to recognize the 
difference between the two and judge assign a “score”, t,  to each (t=1 -> real, t = 0 -> false).
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Option #2: Understand the root cause(s)
Example: Astrometric misalignment introduces dipoles
in the images, misalignment of >2% of a pixels
will dominate the number of false positives

Major source is Differential Chromatic Refraction

Atmosphere refracts (shifts)
a source more for blue light 
than red (even for light 
measured through the same 
filter)

A bandpass is not a delta 
function.
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Less atmosphere More atmosphere

! ! = ! !,! !! ! 	

B(λ)

How differential refraction works

Bluer

Redder



A bandpass is not infinitely narrow



A few more details…

“Template Image”
(often a coadd)

Image Difference

Image 1 Image 2 Image 1 – Image 2

Φ1(x) Φ2(x) ⲕ(x)

“Science Image”



A solution

Instead of having just one template, infer the template as a 
function of wavelength based on many observations at different 
airmasses.

Airmass=1

Airmass=1.5

Airmass=2

=> “red” object => “blue” object



Instead of having just one template, infer the template as a 
function of wavelength based on many observations at different 
airmasses!

Effectively, given N exposures at different airmassess, infer the 
images IT(l=blue), IT(l=center), IT(l=red) for the template(s).

Then, for each science image, we can construct the template 
exactly for that airmass, before doing the differencing.

A solution



Assume a model for the image, y,  that is made up of series of images each of a 
different wavelength (ie a “hyperspectral” cube)

DCR-corrected Templates: Ian Sullivan et al.



Byproduct: measuring the intra-band spectrum!

This is another example of utilizing all available information and
understanding of image generation processes to extract additional 
information.



Going Deeper: Coaddition
(a.k.a. “astronomer’s HDR”)



Why co-add?

Left: 
Annis et al. 2011

Pros:
See fainter objects!

Computationally 
inexpensive



Why co-add?
Pros:

See fainter objects!
Computationally 

inexpensive

Cons:
- Complicated PSF
- Correlated noise

- Loss of motion and 
time variability 

information
- Loss of information.

Left: 
Annis et al. 2011



Better than Coaddition: 
Multi-Epoch Fitting 

(MultiFit)



Exposure 1

Exposure 2

Exposure 3

Galaxy / 
Star 

Models

Transformed Model 1

Transformed Model 2

Transformed Model 2

Warp, 
Convolve

Fi
tti

ng

MultiFit (Simultaneous Multi-Epoch Fitting)

A very simple idea: instead of co-adding pixels of individual 
observations, and then fitting the model to the result, why not fit 
the model directly to each individual observation?



Opportunity: Recovering motion from the noise
Lang (2009):

Fit moving source models to 
suspected moving stars in 

SDSS Stripe 82 survey.

Individual exposures: objects are 
undetected or marginally detected

Moving point-source and galaxy models 
are indistinguishable on the coadd



Computationally extremely intensive. Scales with the number of epochs (so 
~100-1000x more computationally expensive for modern surveys like LSST).

Worse, we’re greedy: the physics we’re trying to study is so sensitive to biases 
that ML estimators are not enough; we want posteriors PDFs for parameters of 
each observed galaxy! (20-200x more output storage!)

But computing is getting cheaper. LSST is building a ~2 PFLOP machine to do 
this (cca ~2025). Still cheaper than building a bigger telescope (and/or 
launching it into space)!

Downsides



Putting it all together



A Common Theme: Understanding -> Information

Much of the information “loss” comes 
not from the physical instrument, but 
the data processing method.

By improving the processing 
(algorithms, software), we can do a 
factors of few better than with the 
exact same dataset.



The “next gen” survey may be just software!

=>

SDSS DR5

SDSS DR12



• Measurement used to be simple: “CCDs are linear”, “pixels are independent 
photon buckets”, ….

• We’re in an era of high precision astronomy; this requires we drop these 
simplifications

• Understand the physics of the instrument
• Properly perform inference (measurement)

• Thinking about these problems can reveal interesting new opportunities.
• Many instrumental effects are information preserving (or revealing!)
• It is our poor measurement techniques that erase information.
• We now have enough computing power to do things right.

Summary


