

NEURAL NETWORK TO PREDICT RESULTS OF MIDTERM
ELECTIONS

Total Population | Labels ! & !

Median Age

Proportion of residents over 18

Proportion of residents over 65

Hidden Layer 1
Hidden Layer 2

Proportion of white residents
Democratypote share

Features Median Income | .

[X) Graduation Rate

Proportion of residents with bachelors degree |
Presidential Popularity |

GOP vote share
Generic Congressional Ballot |

Incumbency

Unemployment (By State)

Ratio of Funds Raised

2 hidden
layers SOURCE

Ratio of Funds Spent

NEURAL NETWORK TO PREDICT RESULTS OF MIDTERM
ELECTIONS

p = g3(Wsg2(Wagi1(Wi2p)))
Total Population / ‘ L ab elS[]

Median Age
Proportion of residents over 18

Proportion of residents over 65

Hidden Layer 1
Hidden Layer 2

Proportion of white residents
Democratypote share

Featu res Median Income

[X) Graduation Rate

Proportion of residents with bachelors degree

Presidential Popularity

GOP vote share

Generic Congressional Ballot

Incumbency

Unemployment (By State)

Ratio of Funds Raised

2 hidden
layers SOURCE

Ratio of Funds Spent

NEURAL NETWORK TO PREDICT RESULTS OF MIDTERM
ELECTIONS

Total Population
Median Age

Proportion of residents over 18

n Layer 1
n Layer 2

Drannare inn Af racidante Anuar GC \

Table 2 — Results of both Models:
Model not including past elections (Model A) | Model including past elections (Model B)

D +3 D+17
Democrat Seats: 219 Democrat Seats: 226
Republican Seats: 216 Republican Seats: 209

33% chance of Republicans keeping house* 0.3% chance of Republicans keeping house*

Generic Congressional Ballot

Incumbency

Unemployment (By State)
Ratio of Funds Raised /

Ratio of Funds Spent

SOURCE

OK, SO NOW LET’S FIND
THE WEIGHTS

OPTIMIZATION
[OR HOW TO FIND THE WEIGHTS?]

input layer

hidden layer 1 hidden layer 2

= NETWORK
p = g3(W3g2(Wsg1(W125))) € FUNCTION

OPT
[OR HOW TO

ZATION

D THE WEIGHTS?]

input layer

hidden layer 1 hidden layer 2

p = g3(W3g2(Wag1(W120)))

N

1

N Z(yz _pi)2 PR LOSS
1=1

FUNCTION

WE SIMPLY WANT TO MINIMIZE THE LOSS FUNCTION WITH
RESPECT TO THE WEIGHTS, 1.e. FIND THE WEIGHTS THAT
GENERATE THE MINIMUM LOSS

WE SIMPLY WANT TO MINIMIZE THE LOSS FUNCTION WITH
RESPECT TO THE WEIGHTS, 1.e. FIND THE WEIGHTS THAT
GENERATE THE MINIMUM LOSS

WE THEN USE STANDARD MINIMIZATION ALGORITHMS
THAT YOU ALL KNOW...

FOR EXAMPLE....

Gradient Descent | Newton

Wit =W, — MV, | Wiy = Wy — A[H LW "IV (W)

t 1

[gradient] [hessian]

NEWTON CONVERGES FASTER...

FOR EXAMPLE....

Gradient Descent | Newton

Wit =W, — MV, | Wiy = Wy — A[H LW "IV (W)

t 1

[gradient] [hessian]

NEWTON CONVERGES FASTER...

BUT NEEDS THE HESSIAN

[O°f &*f Ff

OWE W, oW, OW,0W,
&2 f &2 f & f

o | W20 W3 W, W,
| rr il
OW, 0W, OW,0W, = OW2

FOR EXAMPLE....

Gradient Descent | Newton

Wit =Wy = MV (W) | Wi = W = NH (W) V(W)

t 1

. hessian
[gradient] []
NEWTON CONVERGES FASTER...
BUT NEEDS THE HESSIAN
- of o 0*f]
‘ OWE W, oW, OW,0W,
| 82 f *r 8
MOST USED BY FAR.... « H_ |Wow on? oW, OW,,
“ & i i
OW,OW, OW,0W, W2 |

FOR EXAMPLE....

Gradient Descent | Newton

—1
Wi = Wy Wi =Wy = AMH (W) V(W)
. hessian
[gradient] []
| . _ ﬁ NEWTON CONVERGES FASTER...
EVERYTHING RELIES I
ON (ZSMPIJTING FEHE GRADIENT , | BUT NEEDS THE HESSIAN
* 92 f 02 f &2 f
| OWZ AW, 0W, 0w, 0W,
Cal A N]
MOST USED BY FAR.... « Ho | W00 oW; oW, Wy,
f 82 f 82 f 82 f
oW, W, OW,oW, OWZ |

NICE, BUT I NEED TO COMPUTE TE
GRADIENT AT EVERY ITERATION OF
AN ARBITRARY COMPLEX FUNCTION!

BACKPROPAGATION

[AT THE NEURON LEVEL]

activations

B

Credit: A. Karpathy

BACKPROPAGATION

[AT THE NEURON LEVEL]

activations

“local gradient”

f

Credit: A. Karpathy

BACKPROPAGATION

[AT THE NEURON LEVEL]

activations

“local gradient”

Z

f

oL
0z

gradients

Credit: A. Karpathy

BACKPROPAGATION

[AT THE NEURON LEVEL]
=] activations
“local gradient”
BN Sy
AL
% B
gradients

Credit: A. Karpathy

BACKPROPAGATION

[AT THE NEURON LEVEL]

-] activations

“local gradient”
= &

Z

oL
0z

gradients

Credit: A. Karpathy

BACKPROPAGATION

[AT THE NEURON LEVEL]

/ -] activations
“local gradient”
X 9

Z

oL
0z

gradients

Credit: A. Karpathy

LET’S FOLLOW A NETWORK
WHILE IT LEARNS...

b1 b2

EXAMPLE TAKEN FROM HERE

b1 b2
1 1

LET’S ASSUME A VERY SIMPLE TRAINING SET:
X=(0.05, 0.10) —> Y=(0.01,0.99)

EXAMPLE TAKEN FROM HERE

-~ 1nitial weights

b1 b2

1. THE FORWARD PASS

MK = W1l + walz + by
inp1 = 0.15 X 0.0540.2x 0.1 4+0.35 =0.3775

[with initial weights]

-~ 1nitial weights

b1 b2

1. THE FORWARD PASS

MK = W1l + walz + by

inp1 = 0.15 %X 0.0540.2 x 0.1 +0.35 = 0.3775

[with initial weights]
1
th1 = . = (.5932
OUlh1 1+ e—inn

[after the activation function]

-~ 1nitial weights

b1 b2

1. THE FORWARD PASS

WE CONTINUE TO ol

Myl = Wsoutp1 + wgoutyo + bo
my1 = 0.4 x 0.593 4+ 0.45 x 0.596 + 0.6 = 1.105

1
out,;] = [1105 — 0.751

-~ 1nitial weights

b1 b2

1. THE FORWARD PASS

AND THE SAME FOR 02

out,o = 0.7729

-~ 1nitial weights

2. THE LOSS FUNCTION

Livtal = Z 0.5(target — output)?

Loi = 0.5(target,1 — outputor)® = 0.5 x (0.01 — 0.751)% = 0.274
Lo = 0.023

-~ 1nitial weights

b1 b2

2. THE LOSS FUNCTION

Livtal = Z 0.5(target — output)?

Loi = 0.5(target,1 — outputor)® = 0.5 x (0.01 — 0.751)% = 0.274
Lo = 0.023

* Ltota,l — Lol + LOQ = (.298

-~ 1nitial weights

b1 b2

3. THE BACKWARD PASS
aLtotal

FOR W5 WE WANT: [gradient of loss function]
(911}5

4’//1/“1 l,lill/“l !’l'.'a Wl '//'..a il
— . — SREARAR —
output du's dnet dout Ju's

h1
w5
-
output W8 N net E o1 = Y4(target o1 - out o)?
Etotal = Eo1 + Eoz
b2
1
3. THE BACKWARD PASS
aLtotal . .
FOR W5 WE WANT: [gradient of loss function]
(911}5
WE APPLY THE CHAIN RULE:

aLtotal _ aLtotal v aOU’tOl > az.’nol
Ows, dout 1 0in,1 Ows,

dnet,1 . dout,1 . OEs otat OE} ot al

_ *
output du's e ,-'l ”””/.,I Ju's
h1

w5

output w6 net .

E o1 = Y2(target 5 - out ;)

Etotal - Eo1 +E 02
b2

1

3. THE BACKWARD PASS

8Ltotal ml aOfUJtol az.nol

—13

ows, out 5’zn01 (9w5

Liotar = 0.5(targetor — outor)* + 0.5(target o — outys)?

6Ltotal
dout,q

= 2 x 0.5(target,1 —outy,y) X (—1) = 0.741

dnet,1 . oout, | OE; ot al OE} 100

output Jws onet " dout dwy,
h1
w5
output wb i
hg net o1 E o1 = Y2(target ;- out 4)*
Etotal - Eo1 +E 02
b2
1

3. THE BACKWARD PASS

6Lt0tal _ 8Ltotal < az.nol
Ows dout Ows
B 1
outyl = | & oo
dout,q

= out,1 X (1 —out,1) = 0.186

0@'7101

onet dout,1 . (/l'../“y,,,' l’/'.‘/,,y,,f
—_— *

output dws Onet,
h1

' 4):1/1/“1 Ju's

w5

output w6 net.
h2 o1

E o1 = Y2(target ;- out 4)*

Etotal - Eo1 +E 02
b2

1

3. THE BACKWARD PASS
8Lt0tal 8Ltotal < aOfUJtol

Ows Ooutyy 01Ny1

z’nol = Wg X outp1 + Weg X outpo + b2

5’in01

— outy1 X w5_1 = outy1 = 0.593
8’(1]5

l’//l/“l . l,l'///“l l’/'.:a,,y,,,r’ l’l'.'j,l_r‘..'."

output 4’;/"' - 4’//{/“1 : 4)41/1/“[I’II"'
h1

w5

output w6 net .

E o1 = Y2(target 5 - out ;)

Etotal - Eo1 + Eoz
b2

1

3. THE BACKWARD PASS

ALL TOGETHER:
aLtotal L 6Ltota,l % aOUtol v ainol
Ows Ooutyy 01N 1 Ows,
aLtotal

= (0.741 x 0.186 x 0.593 = 0.082

6’w5

/’I/lfl,] . l/ffll/“] . l,/'..,a_y,;,' l’l'..‘a,,r,,,r'

Output l’l[" N ',“'/-'l 4’/!/{/“1 l/r('|
h1

w5
output w6
hg net E o1 = '4(target o1 - out)’
Etotal - Eo1 + EoZ
b2
1

4. UPDATE WEIGHTS WITH GRADIENT
AND LEARNING RATE

OLiotal
wé+1:w5—)\>< e
611)5

wit! = 0.4 — 0.5 x 0.082 = 0.358

THIS IS REPEATED FOR THE OTHER WEIGHTS
OF THE OUTPUT LAYER

wi™ = 0.408
wit = 0.511

wit! = 0.561

AND BACK-PROPAGATED TO THE HIDDEN

LAYERS

VISUALIZE SIMPLE
NETWORK LEARNING

ONE KEY PROBLEM WITH GRADIENT DESCENT IS THAT IT
EASILY CONVERGES TO LOCAL MINIMA BY FOLLOWING
THE STEEPEST DESCENT

ONE KEY PROBLEM WITH GRADIENT DESCENT IS THAT IT
EASILY CONVERGES TO LOCAL MINIMA BY FOLLOWING
THE STEEPEST DESCENT

THE CHOICES OF THE INITIAL WEIGHTS AND THE
LEARNING RATES ARE IMPORTANT

ONE KEY PROBLEM WITH GRADIENT DESCENT IS THAT IT
EASILY CONVERGES TO LOCAL MINIMA BY FOLLOWING
THE STEEPEST DESCENT

THE CHOICES OF THEINITIAL WEIGHTS AND THE
LEARNING RATES AREIMPORTANT

WE WILL TALK ABOUT
THIS LATER

LEARNING RATES

loss

low learning rate

high learning rate

good learning rate

epoch

Credit:

LEARNING RATES

Wipr = Wi = AV (W)

THERE ARE DIFFERENT WAYS
TO UPDATE THE LEARNING RATE

Credit:

LEARNING RATES

Wir = Wi = AV (W)

THERE ARE DIFFERENT WAYS
TO UPDATE THE LEARNING RATE

ADAGRAD:
THE LEARNING RATE IS SCALED DEPENDING ON THE HISTORY OF PREVIOUS GRADIENTS
A
Wt_|_1 — Wt — Vf(Wt)
\/ G t + €

G IS A MATRIX CONTAINING ALL PREVIOUS GRADIENTS. WHEN THE GRADIENT BECOMES
LARGE THE LEARNING RATE IS DECREASED AND VICE VERSA.

GH’l — Gt + (Vf)2 Credit:

LEARNING RATES

Wir = Wi = AV (W)

THERE ARE DIFFERENT WAYS
TO UPDATE THE LEARNING RATE

RMSPROP:
THE LEARNING RATE IS SCALED DEPENDING ON THE HISTORY OF PREVIOUS GRADIENTS
A
Wt_|_1 — Wt — Vf(Wt)
\/ G t + €

SAME AS ADAGRAD BUT G IS CALCULATED BY EXPONENTIALLY DECAYING AVERAGE

Gir1 = AGe + (1 = N)(Vf)? Credit:

ADAM [Adaptive moment estimator]:

SAME IDEA, USING FIRST AND SECOND ORDER
MOMENTUMS

Gip1 = PG+ (1= B2)(V[f)? M1 = BiMy + (1 - B1)(VS)

py N
Wit1 =Wy — — M;
\/Gt —+ €
. M A G
with: My = = tﬁl Gip1 =] _%2

ADAM [Adaptive moment estimator]:

SAME IDEA, USING FIRST AND SECOND ORDER
MOMENTUMS

Gip1 = PG+ (1 — B2)(V[f)? M1 = B My + (1 - 51)(VS)
ONLY FOR YOUR

I RECORDS
\/Gt—|—€

with: M1 = Gip1 =

IN KERAS:

RMSprop [source]

keras.optimizers.RMSprop(1lr=0.601, rho=0.9, epsilon=None, decay=0.0)
RMSProp optimizer.

It is recommended to leave the parameters of this optimizer at their default values (except the learning rate, which

can be freely tuned).
This optimizer is usually a good choice for recurrent neural networks.
Arguments

e Ir:float >=0. Learning rate.

e rho:float >=0.
o epsilon: float >=0. Fuzz factor. If None ,defaultsto K.epsilon() .

» decay: float >= 0. Learning rate decay over each update.

References

e rmsprop: Divide the gradient by a running average of its recent magnitude

IN KERAS:

Adam [source]

keras.optimizers.Adam(1lr=0.001, beta_1=0.9, beta_2=0.999, epsilon=None, decay=6.0, amsgrad=False)

Adam optimizer.

Default parameters follow those provided in the original paper.

Arguments

e Ir:float >=0. Learning rate.

e beta_1:float, 0 < beta < 1. Generally close to 1.

e beta_2:float, O < beta < 1. Generally close to 1.

o epsilon: float >= 0. Fuzz factor. If None ,defaultsto K.epsilon() .

* decay: float >= 0. Learning rate decay over each update.

* amsgrad: boolean. Whether to apply the AMSGrad variant of this algorithm from the paper "On the Convergence of Adam
and Beyond".

References

o Adam - A Method for Stochastic Optimization
e Onthe Convergence of Adam and Beyond

training cost

=
=
o

MNIST Multilayer Neural Network + dropout

A

AdaGrad
RMSProp

SGDNesterov

AdaDelta
Adam

A

S0

100
iterations over entire dataset

150

200

Credit

N AR ~aomatacoente
- SGD

N '
| == Momentum E

= NAG
- Adagrad

AN | ~—— Adadelta

~ Rmsprop

BATCH GRADIENT DESCENT

LOCAL MINIMA CAN ALSO BE AVOIDED BY COMPUTING THE
GRADIENT IN SMALL BATCHES INSTEAD OF OVER THE FULL
DATASET

BATCH GRADIENT DESCENT

LOCAL MINIMA CAN ALSO BE AVOIDED BY COMPUTING THE
GRADIENT IN SMALL BATCHES INSTEAD OF OVER THE FULL
DATASET

MINI-BATCH GRADIENT DESCENT

Vt—l—l/num = Wi — Atvf(WtE x(i’i_l_b)a y(i7i+b))

THE GRADIENT IS COMPUTED OVER A BATCH OF SIZE B

STOCHASTIC GRADIENT
DESCENT

THE EXTREME CASE IS TO COMPUTE THE GRADIENT ON EVERY
TRAINING EXAMPLE.

STOCHASTIC GRADIENT DESCENT

Vt—l—l/num — Wt _ Atvf(WtE x(i’i_l_b)a y(i7i+b))

b=1

' " ' I L L
500 1000 1500 2000 2500 3000 3500

| A - 4 4 A
-1%00 -500 0 500 1000 1500 2000 Fluctuations in the total objective

0, function as gradient steps with respect
to mini-batches are taken.

CAN WE GO DEEP NOW?

CAN WE GO DEEP NOW?

ALMOST THERE...LET’S THINK FOR A
MOMENT ABOUT WHAT WE PUT AS
INPUT...

LIGe Wagang Doud

What do we put as input?

ll""'
%‘_
————
-'.2. -
=
é
1
~A -
e
{ Rackid |
Lol
- o

'L PR YT KA
> D
=4 =
-
-
—C
-

-
e
-+

e
o

] i’ b . ’
: L i+ A 12
i
=) 4] Bl o i { TN e
- kR ./ri (v)F R, .j-j_ % |
- as k 1 \7! T e |
- ,*| ’ A | |. ,A w \. |
(=W | -E"'v-."\‘- o/ (W, :

-
e B AT

What do we put as mput?

F - M

p: & ¥ s | | i
C b, i S A { % i
W :ELO I N' { g ettt 1
L : 4 "] “ WM 1. F gt 2l . E
i G asa i ¥ ‘ y | " ! 1 . 1
Sk ![. R 44
S, e 3 |) ‘}Jt\ I ! L
” = of . { 3 sl '
: I " 1 E Ay WA Y 1
2 - ¢ | v Frar
oS, o *.y . ¢ I Fooa RI44 SAPGZTS0)

‘l, LY
i 3
:
P -
' <
3
i+
| | 1
. S—— A 3 I i
4] | ay ! 3 L b :
: = : AU ARG TR P A il Oy
"; 05§.‘1"" Ahba \ | tj"“: | | LI
o 1Y’ ;E‘_.,-f#“ '
_ Y
(w I ‘
‘
Tt t—t—f—tife- '-f{—_'-bf-*—o—f-ﬂ.—v‘-o—_-o-:+-o—-« S e
] BY

-
o} i
- e e
’ . L 3 '
1A 2«0 048 1= o000, ting
‘ .
A

PRE-PROCESS DATA TO EXTRACT MEANINGFUL
INFORMATION

THIS IS GENERALLY CALLED FEATURE EXTRACTION

Spiral!

Emission line!

Merger!

Clump!
AGN!

Spiral!

Emission line!

Merger!

Clump!
AGN!

—»‘) LABEL

L " Q(0), SF(1)
NETWORK FUNCTI(?N/ l
\, (U-V, V-J) FEATURES

sgn[(u-v)-0.8*(v-j)-0.7]

UVJ(U=-V versus V—))
2.5 T T T T T T T T T i
| (a) All 0.5<z<1.0 |
WEIGHTS El i
- o2
— 4 SN TS O TR
>I 1.5} OB E RS, v .
i} .
v
% 1.0 -
0
-+
o e AAy=1.0
“ o5t '.'I_" Cag SO .
It log SSFRyy cor [yr—1
-11.2-10.6 -10.0 -9.4 -8.8 -8.2 -
0'0 1 L 1 L 1 " 1 s 1 L
0.0 0.5 1.0 ils 2.0 25

Rest-frame V—J [mag] Liu+18

THE “CLASSICAL” APPROACH

Pre-Processing:

Dimension
reduction
\ Learning
algorithm
— I\fgt?l\llgfll(, morphs.
/V SVM...) photoz’s

PCA or manual (colors,
C,A,n...)

“CLASSICAL” MACHINE LEARNING

e Y
Pre-Prog dosing: “\ > @’
= 4
Diny onsion ,l
reuctlon

Learning
algorithm

(Neural s g

Network, morphs.
Dililocd) photoz’s

__

PCA ok manual (colors,
%A, n...)

In Astronomy

+ Colors, Fluxes
- Shape indicators
- Line ratios, spectral features

- Stellar Masses, Velocity Dispersions

el

IT IMPLIES A DIMENSIONALITY REDUCTION!

Requires specialized software before
feeding the machine learning algorithm

PHOTOMETRIC REDSHIFTS

SDSS

N = = 0Q

Collister+08

EVERYTHING IS IN THE FEATURES....WHAT IF 1
IGNORED SOME IMPORTANT FEATURES?

EVERYTHING IS IN THE FEATURES....WHAT IF 1
IGNORED SOME IMPORTANT FEATURES?

NEURAL NETWORK TO PREDICT RESULTS OF MIDTERM
ELECTIONS

Total Population

Median Age
Proportion of residents over 18 \\\

Proportion of residents over 65

Hidden Layer 1

Proportion of white residents

Features Median Income

[X) Graduation Rate

Proportion of residents with bachelors degree

Bad Weather, Known to
Lower Turnout, Will Greet
Many Voters

Presidential Popularity

Rain can decrease voter
numbers, which studies
show tends to help
Republicans. “I hope it
rains hard tomorrow,” one
2 hidde Republican candidate said.

Generic Congressional Ballot

Incumbency

Unemployment (By State)

Ratio of Funds Raised

Ratio of Funds Spent

10h ago
layers -

Other general computer
vision features [for images!]|

« Pixel Concatenation

FOR MANY YEARS COMPUTER

» Color histograms VISION
- . RESEARCHERS HAVE BEEN
exture Features TRYING TO FIND THE MOST

GENERAL FEATURES

» Histogram of Gradients

- SIFT

Other general computer
vision features [for images! |

« Pixel Concatenation

- Texture Features

- SIFT

, FOR MANY YEARS COMPUTER
» Color histograms VISION

RESEARCHERS HAVE BEEN
TRYING TO FIND THE MOST
GENERAL FEATURES

» Histogram of Gradients

HISTOGRAM OF ORIENTED
GRADIENTS (HoG)

1. DIVIDE IMAGE INTO SMALL
SPATIAL REGIONS CALLED CELLS

2. COMPUTE INTENSITY GRADIENTS
OVER N DIRECTIONS [TYPICALLY 9
FOR IMAGE]

90
135 45

3. COMPUTE WEIGHTED 1-D
HISTOGRAM OF ALL DIRECTIONS. A
CELL IS REDUCED TO N NUMBERS

180 0

225 315
270

HISTOGRAM OF ORIENTED
GRADIENTS (HoG)

S W A

i — ?.~'=~.:?~'-—+--'~: T TR

HISTOGRAM OF ORIENTED
GRADIENTS (HoG)

KEEP THIS IMAGE IN MIND FOR LATER...

What about using raw data?

ALL INFORMATION IS IN THE INPUT DATA
WHY REDUCING *?

LET THE NETWORK FIND THE INFO

What about using raw data?

ALL INFORMATION IS IN THE INPUT DATA

WHY REDUCING *?

LARGE DIMENSION SIGNALS SUCH AS IMAGES OR
SPECTRA WOULD REQUIRE TREMENDOUSLY LARGE
MODELS

A 512x512 image as input of a fully connected layer producing
output of same size:

(512 x 512)% = 7el0

FEEDING INDIVIDUAL RESOLUTION ELEMENTS IS NOT
VERY EFFICIENT SINCE IT LOOSES ALL INVARIANCE TO
TRANSLATION AND IGNORES CORRELATION IN THE DATA

ge wagmang Do

t ¢

4 L

F e -

F |

~. | ‘
% 0 |

p—g Vr‘, "o
[T

13
+
I ey
+
1 .
}
3 11
.
'
¥
}
s

FEEDING INDIVIDUAL RESOLUTION ELEMENTS IS NOT
VERY EFFICIENT SINCE IT LOOSES ALL INVARIANCE TO
TRANSLATION

\ 4

SO?

DEEP LEARNING o LABEL
‘ — " Q,SF

LET THE MACHINE FIGURE THIS OUT (“unsupervised feature extraction”)

LET’S GO A STEP FORWARD INTO LOOSING CONTROL....

PART III:CONVOLUTIONAL
NEURAL NETWORKS

Discrete Convolution

1D g >=k:§+joof<k> gk —
[Spectra] =
k=—+o0c0 =400

[Images] h=—ool=—co

DISCRETE CONVOLUTION

1D: !
[Spectra]

2D: f(x,y)xg(x,y), 4
[Images]

CONVOLUTION KERNEL INPU DATA

1-D CONVOLUTION

Input

X

Kernel

1 2 0 -1

W

1-D CONVOLUTION

Input

-2

1-D CONVOLUTION

Input

&
-

X

1 2 0 -1

1-D CONVOLUTION

Input

w

1-D CONVOLUTION

Input

w

1-D CONVOLUTION

Input

Input

1-D CONVOLUTION

) ,

1

2

0

-1

w

1-D CONVOLUTION

Input

e |2 frfs sl
5 :
-1
3 "

TE

5 CONVOLUTION BUILDING BLOCK OPERATION IS

EQUIVALENT TO A NEURON WITH AS MANY INPUTS AS
KERNEL ELEMENTS AND WEIGHTS EQUAL TO THE

KERNEL

Ao wo

Input *® synapse

axon from a neuron
WoT(

cell body f (Z"‘"I l b)

output axon

activation
function

wo 2

THE CONVOLUTION BUILDING BLOCK OPERATION IS

EQUIVALENT TO A NEURON WITH AS MANY INPUTS AS
KERNEL ELEMENTS AND WEIGHTS EQUAL TO THE
KERNEL

wo
*@® synapse

f (Zw;zi + b)

output axon

activation
function

THE CONVOLUTION BUILDING BLOCK OPERATION IS

EQUIVALENT TO A NEURON WITH AS MANY INPUTS AS
KERNEL ELEMENTS AND WEIGHTS EQUAL TO THE
KERNEL

Wo

e *@ synapse
gfi¥a neuron

f (Zw,-:r.i + b)

outputaxoﬁ

activation
function

THE CONVOLUTION BUILDING BLOCK OPERATION IS

EQUIVALENT TO A NEURON WITH AS MANY INPUTS AS
KERNEL ELEMENTS AND WEIGHTS EQUAL TO THE
KERNEL

Wo

B *@® synapse
gfi¥a neuron

f (Z w;z; + b)

output axon

activation
function

WITH THE ADVANTAGE THAT THE SAME WEIGHTS ARE
APPLIED TO ALL THE SIGNAL: TRANSLATION INVARIANCE

2-D CONVOLUTION

SAME IDEA, BUT THE KERNEL IS NOW 2D

KERNEL INPUT (IMAGE) OUTPUT

Credit: animations from https://github.com/vdumoulin/conv_arithmetic

2-D CONVOLUTION

SAME IDEA, BUT THE KERNEL IS NOW 2D

IN THE EXAMPLE: EACH 3x3 REGION GENERATES AN OUTPUT
lbyizeoutput — Sizeinput — Sizekernel +]I

Credit: animations from https://github.com/vdumoulin/conv_arithmetic

EQUIVALENT TO A NEURON
WITH 9 INPUTS

WEIGHTS ARE CODED
IN THE KERNEL

EQUIVALENT TO A NEURON
\\“ WITH 9 INPUTS
i i

>
THIS IS WHAT —

THE /
NETWORK Q _—— S 7z -
LEARNS! ‘

THE KEY IS AGAIN THAT

THE SAME WEIGHTS ARE

APPLIED TO ALL IMAGE
REGIONS

, Wy
[weights]

ACTIVATION FUNCTION
AT EVERY KERNEL POSITION

-

= relu(wx + b)

, Wy
[weights]

ACTIVATION FUNCTION
AT EVERY KERNEL POSITION

2(x) = relu(wx + b)

CONVOLUTIONS CAN ALSO BE COMPUTED ACROSS
CHANNELS (OR COLORS)

28x28x3
24x24
Vi

A COLOR IMAGE IS A
TENSOR @

OF SIZE height x width x
channels p

/ 4

W

.

3D
tensor H

CONVOLUTIONS CAN ALSO BE COMPUTED ACROSS
CHANNELS (OR COLORS)

A COLOR IMAGE IS A
TENSOR

OF SIZE height x width x
channels

W

.

3D
tensor H

28x28x3
24x24
Vi

5x5x3

i

//////// h////

THEN THE KERNEL
HAS ALSO 3
CHANNELS

IN ASTRONOMY ...

IT OPENS THE DOOR TO ANALYZE MULTIPLE
FILTERS () SIMULTANEOUSLY

MULTIPLE CONVOLUTIONS WITH DIFFERENT KERNELS

CAN BE PERFORMED

£

y

MULTIPLE CONVOLUTIONS WITH DIFFERENT KERNELS

CAN BE PERFORMED

/

4

MULTIPLE CONVOLUTIONS WITH DIFFERENT KERNELS

CAN BE PERFORMED

/

/

MULTIPLE CONVOLUTIONS WITH DIFFERENT KERNELS
CAN BE PERFORMED

MULTIPLE CONVOLUTIONS WITH DIFFERENT KERNELS

CAN BE PERFORMED

28x28x3

5x5x3x4

24x24x4

MULTIPLE CONVOLUTIONS WITH DIFFERENT KERNELS

/

28x28x3

5x5x3x4

CAN BE PERFORMED

24x24 -

X

&I

IN KERAS...

model = Sequential()

model.add(Convolution2D(4,5,5, activation="relu”))

5x5x3x4 |

sizeX, sizeY

depth

SINCE CONVOLUTIONS OUTPUT ONE SCALAR, THEY CAN BE SEEN AS AN
INDIVIDUAL NEURON WITH A RECEPTIVE FIELD LIMITED TO THE KERNEL
DIMENSIONS

2-dimensional

input features a bank of 2 filters
output features

Credit

SINCE CONVOLUTIONS OUTPUT ONE SCALAR<THEY CAN BE SEEN AS AN
INDIVIDUAL NEURON WITH A RECEPTIVE FIELD LIMITED TO THE KERNEL
DIMENSIONS

THE SAME NEURON IS FIRED WITH DIFFERENT AREAS FROM THE INPUT

2-dimensional

input features a bank of 2 filters
output features

Credit

EXAMPLE OF 32 FILTERS LEARNED IN
A CONVOLUTIONAL LAYER

LR L
ELRILC
R
= LT
e AL 1S
7

(a) red channel

FRGERE
EFDL M
F_i EEn
B R ™
Rl [,
|

(b) green channel

el albed 4]
RS0
T EFF] s
Y EEFn
FE

(c) blue channel

Dieleman+16

EXAMPLE OF 32 FILTERS LEARNED IN
A CONVOLUTIONAL LAYER

L Anbetd L
S EONE
E . T RN
oL
= *FEr
rHE

(a) red channel

e [P E Ll
EFDL M
F_iEEn
BT ™
Rl |,
|

(b) green channel

TSN ER
EEDENE
HQ-E EF' I
TEF] s
sl | A
FE

(c) blue channel

Dieleman+16

THESE ARE CALLED FEATURE MAPS

ESTIMATING SHAPES AND

NUMBER OF PARAMETERS
KERNEL SHAPE: PADDING: STRIDES:
(F,F,C", C°) P S

OUTPUT SIZE: Wy = (W'—=F +2P)/S +1

OPTIONS: STRIDES

NO STRIDES STRIDES

OPTIONS: DILATION

NO STRIDES DILATION

OPTIONS: PADDING

NO STRIDES PADDING

ESTIMATING SHAPES AND

NUMBER OF PARAMETERS
KERNEL SHAPE: PADDING: STRIDES:
(F,F,C", C°) P S

OUTPUT SIZE: Wy = (W'—=F +2P)/S +1

NUMBER OF PARAMETERS: (F x F x C* 4+ 1) x C°

ESTIMATING SHAPES AND

NUMBER OF PARAMETERS
KERNEL SHAPE: PADDING: STRIDES:
(F,F,C", C°) P S

OUTPUT SIZE: Wy = (W'—=F +2P)/S +1

NUMBER OF PARAMETERS: (F x F x C* 4+ 1) x C°

the number of parameters increases fast!

32 filters of 5*5 on a color image —> 2432 parameters to learn

DOWNSAMPLING

DOWNSAMPLING IS APPLIED TO REDUCE THE OVERALL
SIZE OF TENSORS

) ()
AN
AN

POOLING

CONVOLUTIONS ARE OFTEN FOLLOWED BY AN
OPERATION OF DOWNSAMPLING [POOLING]

VERY SIMPLE OPERATION - ONLY ONE OUT OF EVERY
N PIXELS ARE KEPT

OFTEN MATCHED WITH AN INCREASE OF THE FEATURE
CHANNELS

TYPES OF POOLING

SUM POOLING Y=Y Tuw

SQUARE SUMPOOLING =1/ 42,

MAX POOLING Y = max(Tyy)

TYPES OF POOLING

SUM POOLING Y=Y Tuw

SQUARE SUMPOOLING =1/ 42,

~ MAXPOOLING ¥y = maz(Tuy)

MAX POOLING 1D

Qutput

Credit: F. Fleuret

MAX POOLING 1D

w

Qutput

Credit: F. Fleuret

MAX POOLING 1D

Credit: F. Fleuret

MAX POOLING 1D

w

Output

Credit: F. Fleuret

MAX POOLING 1D

Input

w

Credit: F. Fleuret

CONVNET OR CNN

A CONCATENATION OF MULTIPLE
CONVOLUTIONAL BLOCKS

CONVNET OR CNN

L1

N

L3

L4

EACH BLOCK TYPICALLY MADE OF:

CONV ACTIVATION POOLING

(+dropout
for training)

EXAMPLE OF VERY SIMPLE CNN

%
Input Images 3 @ \:(5:9 /\
7
(RGB) & | @9 N)

% 7
& T, " 3 z 7
\)) \% \Zb A P 36992
% 7 \\:»Jr \:,s 64
< v

u | O 2x2 |:| =

+—
6x6 - [@ []

3x3
| 1 | L |
conv (RelLu) + conv (RelLu) + MaxPooling + conv (RelLu) + MaxPooling + conv (RelLu) + Fully
dropout (0.5) dropout (0.25) dropout (0.25) dropout (0.25) connected
W = 3488 W = 51264 W = 32896 W= 147584 W= 2367552

Dominguez-Sanchez+18

EXAMPLE OF VERY SIMPLE CNN

3 convolutional layers

Input Images
(RGB)

conv (RelLu) + conv (RelLu) + MaxPooling + conv (RelLu) + MaxPooling + conv (RelLu) + Fully
dropout (0.5) dropout (0.25) dropout (0.25) dropout (0.25) connected
W = 3488 W = 51264 W = 32896 W= 147584 W= 2367552

Dominguez-Sanchez+18

EXAMPLE OF VERY SIMPLE CNN

3 convolutional layers

KERNEL SIZE

Input Images
(RGB)

conv (RelLu) + conv (RelLu) + MaxPooling + conv (RelLu) + MaxPooling + conv (RelLu) + Fully
dropout (0.5) dropout (0.25) dropout (0.25) dropout (0.25) connected
W = 3488 W = 51264 W = 32896 W= 147584 W= 2367552

Dominguez-Sanchez+18

EXAMPLE OF VERY SIMPLE CNN

3 convolutional layers

Input Images
(RGB)

conv (RelLu) + conv (RelLu) + MaxPooling + conv (RelLu) + MaxPooling + conv (RelLu) + Fully
dropout (0.5) dropout (0.25) dropout (0.25) dropout (0.25) connected
W = 3488 W = 51264 W = 32896 W= 147584 W= 2367552

Dominguez-Sanchez+18

EXAMPLE OF VERY SIMPLE CNN

3 convolutional layers

Input Images
(RGB)

ReLu) + MaxPooling + &/
segrgpoUt (0.25)
W = 51264

Fully
connected
W= 2367552

Rel u activation

Dominguez-Sanchez+18

EXAMPLE OF VERY SIMPLE CNN

3 convolutional layers

Input Images
(RGB)

conv (RelLu) + conv (Relfy)) + MaxPooling + dl L ing conv (RelLu) + Fully
dropout (0.5) AropOUTHERE e i O8R5y~ dropout (0.25) connected
W = 3488 W = 51264 £ - W= 147584 W= 2367552

Pooling

Dominguez-Sanchez+18

EXAMPLE OF VERY SIMPLE CNN

- decrease of tensor size

OVERALL.:

- increase of depth

67
Input Images o @ \\/6:9 ; /\
(RGB) % & QG &
4 | 7= 4 G /.
% % & 07 < “
9 9 % 7 Gy > 36992

%, / \:’»Jr Y’» 64
N N 1
7 >
O | O 2x2 |:| =
ﬁ

6x6 ™ s [[]
I | | 1 3 |
conv (RelLu) + conv (ReLu) + MaxPooling + conv (RelLu) + MaxPooling + conv (RelLu) + Fully
dropout (0.5) dropout (0.25) dropout (0.25) dropout (0.25) connected
W = 3488 W = 51264 W = 32896 W= 147584 W= 2367552

Dominguez-Sanchez+18

IMPLEMENTATION IN KERAS

#========= Model definition
#Convolutional Layers

model = Sequential()

model.add{Convolution2D(32, 6,6, border_mode='same',
input_shape=(img_channels, img_rows, img_cols)))

model.add(Activation('relu'))

model.add(Dropout(0.5))

model.add{Convolution2D(64, 5, 5, border_mode='same'))
model.add(Activation('relu'))

model.add(MaxPooling2D(pool_size=(2, 2)))
model.add{Dropout(@.25))

model.add{Convolution2D(128, 2, 2, border_mode='same'))
model.add(Activation('relu'))

model.add(MaxPooling2D(pool_size=(2, 2)))
model.add{Dropout(@.25))

model.add{Convolution2D(128, 3, 3, border_mode='same'))
model.add(Activation('relu'))

model.add(Dropout(0.25))

#Fully Connected start here
#

model.add(Flatten())

model.add(Dense(64, activation='relu'))
model.add(Dropout(.5))

model.add(Dense(1, init='uniform', activation='sigmoid'))

print("Compilation...")

model.compile(loss='binary_crossentropy',optimizer="'adam',metrics=['accuracy'])

o o
& d Q3: Bar

0.4z Accuracy=96.6 %

1 Nirain = 10000
0.2 Niesi = 1618
BARS A
0.0
0.0 0.2 0.4 0.6 0.8 1.0

FPR

MERGERS

Q6: Merger
Accuracy=97.1 %
Nirain = 5000
Niest = 903
N‘UU.S - 103

0.4 0.6 0.8 1.0

FPR *

P=0.99 P=0.99
P=0.98 P=0.99

EXAMPLE OF VERY SIMPLE CNN

OVERALL- - decrease of tensor size

- increase of depth

%
Input Images & @ ‘\/6:9 /\
V7 7
(RGB) % N\ QG &
e 7+, 4 I 7
% %, 3 o X 2
9 9 A 7 ® > 36992
v Z, 7 Is
%) % > 75 64
A A 1
-7 7

O |:|
6x6

| 0 2x2 =
— *
5x5 @ D
I | | 1 3

conv (RelLu) + conv (ReLu) + MaxPooling + conv (RelLu) + MaxPooling + conv (RelLu) + Fully
dropout (0.5) dropout (0.25) dropout (0.25) dropout (0.25) connected

W = 3488 W = 51264 W = 32896 W= 147584 W= 2367552
E e e = e e e] 2 S ¥ SRR 1 - =

Dominguez-Sanchez+18

Number of parameters

EXAMPLE OF VERY SIMPLE CNN

OVERALL- - decrease of tensor size

- increase of depth

67
Input Images & @ \\/6:9 /\
V7 7
(RGB) % N\ QG &
e 7+, 4 I 7
% % & 07 < “
< 9 A 7 ® & 36992
v Z, 7 Is
%) % > 75 64
A 1A 1
-7 7

O |:|
6x6

L] o o O
2x2
—
5x5 @ D

I | | 1 3

conv (RelLu) + conv (ReLu) + MaxPooling + conv (RelLu) + MaxPooling + conv (RelLu) + Fully

dropout (0.5) dropout (0.25) dropout (0.25) dropout (0.25) connected

WV =3488 W =51264 W = 32896 W=147584 | | W= 2367552

™~

2 million of parameters for this very simple network!

Dominguez-Sanchez+18

CHECKING THE NUMBER OF
PARAMETERS / LAYERS WITH KERAS

Layer (type) Output Shape Param #
input_1 (InputLayer) (None, 1, 16, 112, 112) ©
conv3d_1 (Conv3D) (None, 16, 16, 112, 112) 448

batch_normalization_1 (Batch (None, 16, 16, 112, 112) 448

activation_1 (Activation) (None, 16, 16, 112, 112) ©

max_pooling3d_1 (MaxPooling3 (None, 16, 8, 56, 56) 0
conv3d_2 (Conv3D) (None, 32, 8, 56, 56) 13856
mOdel Summarv() ; batch_normalization_2 (Batch (None, 32, 8, 56, 56) 224
.
- activation_2 (Activation) (None, 32, 8, 56, 56) 0
max_pooling3d_2 (MaxPooling3 (None, 32, 4, 28, 28) 0
conv3d_3 (Conv3D) (None, 64, 4, 28, 28) 55360
batch_normalization_3 (Batch (None, 64, 4, 28, 28) 112
activation_3 (Activation) (None, 64, 4, 28, 28) 0
max_pooling3d_3 (MaxPooling3 (None, 64, 2, 14, 14) 0
activation_12 (Activation) (None, 64, 2, 14, 14) 0

Total params: 790,448
Trainable params: 70,056
Non-trainable params: 392

IN THE REAL LIFE.. e o

image
| 3x3 conv, 256

3x3 conv, 256

\ 4
3x3 conv, 256

RESNET

3x3 conv, 256

\ 4
3x3 conv, 256

3x3 conv, 256

\ 4
3x3 conv, 256

3x3conv, 256 |

e ———

3x3 conv, 128

| 3x3 conv, 512

\ 4
3x3 conv, 256
l Yy
3x3 conv, 512,/2 |
| 3x3comv,128,2 | T, v M
[Y Y| 33conv,512 ey
l

3x3 conv, 128

\ 4
l ™ “:v 128 3x3 conv, 512
[33 conv, 128 3x3 conv, 512
| 3x3conv, 128
| 3x3conv, 128

\ 4
| 3x3conv, 128

IN THE RE AL LIFE | 3layer residual

image

RESNET

DO WE
THIS
AST
APPL

NEE
DEE
RON

D TO GO
P FOR
OMY

CATIONS?

[34 layers - authors
explored up to 1202!]

He+15

<

3x3 conv, 128,72 | v V
A4 v| 3a3conw,512 L
Mcow, 128 | T Ypemsaszecettt
""" | 33conv,512 |
33 conv, 128 ¥
Y
3x3 conv, 128

3x3 conv, 128

\ 4

3x3 conv, 128

3x3 conv, 128

|
[
I
[
[
[
|
l
[
[
[
[
[
[

\ 4

3x3 conv, 128

DEEPER TENDS TO BE BETTER...

ImageNet experiments 28.2
‘ 152 layers ’ .
A\
\\‘\ 16.4
\\‘ 11.7

‘ 22 layers ’ 19 Iayers I

ILSVRC'15 ILSVRC'14 ILSVRC'14 ILSVRC'13 ILSVRC'12 ILSVRC'11 ILSVRC'10
ResNet GoogleNet VGG AlexNet

ImageNet Classification top-5 error (%)

THE PROBLEMS OF
GOING “TOO DEEP”

- DEEP NETWORKS ARE MORE DIFFICULT TO

OPTIMIZE

- NEED MORE DATA - MORE SUBJECT TO OVER-

FITTING

- AND ALSO NEED MORE TIME ...

OVER-FITTING

THE TEST STAYS CONSTANT
OR INCREASES

Training Performance: Loss

/@ loss
0.55 X “ # —@— val_loss

THE TRAINING
LOSS DECREASES

(%]
N, N
a\\N\§$4Lig;

0.354

0.30 A

0.25 A

Epoch

DROPOUT

Hinton+12]

[

- THE IDEA IS TO REMOVE NEURONS RANDOMLY DURING

THE TRAINING

- ALL NEURONS ARE PUT BACK DURING THE TEST PHASE

(_d
(L
A

I\

/‘\0/‘\ ,
‘ww»w%&\\.ww’o%&\m

BAXN

\W
00700
7

R kK
Ny
/Q RN

b) After applying dropout.

a) Standard Neural Net

DROPOUT

WHY DOES IT WORK?

1. SINCE NEURONS ARE REMOVED RANDOMLY, IT AVO

CO-ADAPTATION AMONG TE

CEMSELVES

DROPOUT

validation

L ‘ t ' ,:] | Ir‘l

0.23| | ¥ train(final+averaging)
1| Htest (final+avera ging)

Jrtest(final)

WITH A LITTLE BIT
OF DROPOUT

RMSE

| L |

1500 2000 2500

| I S U S S |

0 500 1000
chunks

Huertas-Company+15

CAPTURING THE MODEL UNCERTAINTY

NEURAL NETWORKS AS BAYESIAN MODELS

Denker&LEcun91, Neal+95, Graves+11, Kingma+15, Gal+15...

BNNs ADD A PRIOR DISTRIBUTION TO GAL+15 SHOW THAT DROPOUT CAN
EACH WEIGHT - HARD TO TRAIN BE USED TO ESTIMATE UNCERTAINTY

IMPLEMENTATION IN KERAS / TENSORFLOW

#========= Model definition
#Convolutional Layers

model = Sequential()
model.add{Convolution2D(32, 6,6, border_mode='same',
input_shape=(img_channels, img_rows, img_cols)))

model.a '))
model.f#dd(Dropout(@.5))

model.add{Convolution2D(64, 5, 5, border_mode='same'))
model.add(Activation('relu'))

mode 1. add&MaxPoo L1ng20Te size=(2, 2)))

model.afld(Dropout(@.25))

model.add(Convolution2D(128, 2, 2, border_mode='same'))
model.add(Activation('relu'))

mode L. add(M size=(2, 2)))

model.afd(Dropout(@

25))

model.add(ConvolufionZD(lZS, 3, 3, border_mode='same'))
model.add(Activation('relu'))

model.add(Dropout(0.25))

#Fully Connected start here
—#

model.add(Flatten())

model.add(Dense(64, activation='relu'))
model.add(Dropout(.5))

model.add(Dense(1, init='uniform', activation='sigmoid'))

print("Compilation...")

model.compile(loss='binary_crossentropy',optimizer="'adam',metrics=['accuracy'])

VANISHING / EXPLODING
GRADIENT PROBLEM

REMEMBER THAT:

Yi+1 = U[Z w;Yi]

output layer 1

output layer 1+1 weights

activation
function

VANISHING / EXPLODING
GRADIENT PROBLEM

WITH MANY LAYERS:

VANISHING/EXPLODING
GRADIENT PROBLEM

oo)

VANISHING/EXPLODING
GRADIENT PROBLEM

TRAINING BECOMES UNSTABLE

VERY SLOW OR NO CONVERGENCE
'\ N\ /) /7

VANISHING/EXPLODING
GRADIENT PROBLEM

; . / \ / 7N) 77N N 7N N
" {)) A
X1 ¥ O N OO OO OO OO
\ 7\ \ \ \ \ \ 7\ \ y \ / ./ \ \ 7 N
/ \ \ / \ / \/ \/
X X X \l‘ X l'\ \l/ \'j/

IF WE ASSUME AN IDENTITY ACTIVATION FUNCTION:

@:xn’wz‘
n

VANISHING/EXPLODING
GRADIENT PROBLEM

' T \ N\ / \L 77N \ £ N N 7N 7N N
5 * X N
x \ "» 7\ .‘ 7\ " «‘F\ '\ /\ '\ 7\ '\ J\ '\ /\ '\ 7\ '\ 7 N\
\ / \ / \N / N 4 N N \ / N/ ™\ / \ / N ™\ -~
N/ - \/ \ / \/ \./ \ / / ;
X X X X b X ’ »
A /'(/\ /\ >‘\ P AW, =" y

.// \\ o~ // (\\ o~ ’// ‘__ —~ // \ —~ /" "‘\\ ~7 SN~/ g~ / \, ~ / g~
bl O O O 0= 0= 0= 0= 0 —.0;
2 _— L L — N L — L — L —

0 A
=4 o) i=e]]w
n

- — <33 1> IF WEIGHTS ARE ALL INITIALIZED

TO VALUES <<1:

wi — 0
VANISHING GRADIENT

VANISHING/EXPLODING
GRADIENT PROBLEM

' T \ N\ 7\ Y e 7N 7N " N
; \d ~ X » -~ '
x \ "» J\ .\ 7\ " "F\ '\ 7\ '\ 7N '\ 7N\ '\ AN '\ PN .\ 7 N\
L St \ / \N/ =~ \/ N/ — \/ N/ \/ \ / g
\/ \ \/ \/ \/ \ \./ \/ / Y\
X X X X X X)

// \ \ / (\ S ! ‘\ J/ 4 k.\ / / "\ / # \\ / /.\\'\ / / \'\ /'/ | \ /"/ -
/ -/ \a ™ / ™ / ™ / "V N -~ ~~ N
poln O 0 . 00000 02000
2 _— L L — N L — L — L —

0 A
=4 o) i=e]]w
n

TO VALUES >1:

wF — 00

EXPLODING GRADIENT

- — <33 1> IF WEIGHTS ARE ALL INITIALIZED

VANISHING/EXPLODING
GRADIENT PROBLEM

TRAINING BECOMES UNSTABLE
VERY SLOW OR NO CONVERGENCE

lterations lterations

WEIGHT INITIALIZATION IS A KEY POINT...

X1\,
\\
X2 .\
e Y e P
J—) >y Z = T1W1 LoW9 LnWn
X3 N
/ a=g(z)

WEIGHT INITIALIZATION IS A KEY POINT...

X1 \

\\\
X9 >-~._\ :

" » 9 z2=mwr + T2we + ...+ Tpwy
X3) p

THE LARGER n, THE SMALLER
WEIGHTS SHOULD BE...

WEIGHT INITIALIZATION IS A KEY POINT...

X1\,
\\
SN PO
Xy — /_/_/’.\) >y Z = T1W1 ZC;’&UQ LnWn
X4 / a=g(z) rv
THE LARGER n, THE SMALLER
WEIGHTS SHOULD BE...
variance
N : 1
ONE SIMPLE SOLUTION: ¢~ (w;) = — number
n 4 of

inputs

WEIGHT INITIALIZATION IS A KEY POINT...

X1\,
\\
SN PO
Xy — /_/_/’.\) >y Z = T1W1 ZC;’&UQ LnWn
X4 / a=g(z) rv
THE LARGER n, THE SMALLER
WEIGHTS SHOULD BE...
variance
N : 1
ONE SIMPLE SOLUTION: ¢~ (w;) = — number
n 4 of

inputs

WEIGHT INITIALIZATION IS A KEY POINT...

For ReLU activation functions we typically use:

2
2 . : —
o (w;) "

[He 1nitialization, He+15]

WEIGHT INITIALIZATION IS A KEY POINT...

IMPLEMENTATION IN KERAS:

initialization = 'he normal'
act = ‘relu’

model = Sequential ()
model.add (Convolution2D (depth eeenvmedatm,eOnv size, activation=act, border mode='same',
name = "conv%i"%(layer_n)Hfinit:initialization W constraint=constraint))

WEIGHT INITIALIZATION IS A KEY POINT...

IMPLEMENTATION IN KERAS:

initialization = 'he normal'
act = ‘relu’

model = Sequential ()
model.add (Convolution2D (depth econvmsdiem,cONnv size, activation=act, border mode='same',

name = "conv%i"%(layer n)¢ init=initializationy W constraint=constraint))

MANY OTHER INITIALIZATIONS AVAILABLE:

https://keras.io/initializers/

keras.initializers oS e «aﬁ

BATCH NORMALIZATION

[SZEGEDY+15]

ANOTHER SOLUTION TO KEEP REASONABLE VALUES OF
THE ACTIVATIONS IN DEEP NETWORKS

BATCH NORMALIZATION PREVENTS LOW OR LARGE
VALUES BY RE-NORMALIZING THE VALUES BEFORE
ACTIVATION FOR EVERY BATCH

INPUT

E(y)

//vyz_ o (y;) -7

NORMALIZED INPUT \
SCATTER

BATCH NORMALIZATION

[SZEGEDY+15]

BATCH NORMALIZATION SPEEDS UP AND STABILIZES
TRAINING

AS FOR THE DROPOUT, THERE IS A DIFFERENT BEHAVIOR
BETWEEN TRAINING AND TESTING

//vy@— o (y;) -7

NORMALIZED INPUT \
~ SCATTER

BATCH NORMALIZATION

[SZEGEDY+15]

IN KERAS, IT IS IMPLEMENTED AS AN ADDITIONAL LAYER

BatchNormalization [source]

keras.layers.BatchNormalization(axis=-1, momentum=0.99, epsilon=0.001, center=True, scale=True, beta_initializer
Batch normalization layer (loffe and Szegedy, 2014).

Normalize the activations of the previous layer at each batch, i.e. applies a transformation that maintains the mean
activation close to O and the activation standard deviation close to 1.

Arguments

THIS IS A CHANGE OF PARADIGM!

Machine Learning

& &y 2273 -

Input Feature extraction Classification Output

Deep Learning

& - i - I

Input Feature extraction + Classification Output

Raw data

Learning

DATA FEATURE LEARNING algorithm g 4
LAYERS prediction

THE LEARNING ALGORITHM
CAN BE CHANGED

Raw data

<

DATA FEATURE LEARNING —
LAYERS prediction

THE LEARNING ALGORITHM
CAN BE CHANGED

Raw data

N

DATA FEATURE LEARNING SVM? g
LAYERS prediction

THE LEARNING ALGORITHM
CAN BE CHANGED

Raw data

N

DATA FEATURE LEARNING SVM? g

LAYERS prediction
OR
ANY
OTHER
LEARNING
ALGORITHM

THE FEATURES CAN
BE MANIPULATED OR COMBINED

Raw data

FEATURE LEARNING

DATA LAYERS SVM? _>
prediction

OR
ANY
OTHER
LEARNING

ALGORITHM
manual (colors, C, A, n

)

THE FEATURES CAN
BE MANITPIIT ATEDN NR COMRINED

Raw dat Features Learned from
N another CNN...

FEATURE LEARNING
DATA LAYERS 3 L —

prediction
0) 28
ANY
OTHER
LEARNING

ALGORITHM
manual (colors, C, A, n

..

THIS IS A CHANGE OF PARADIGM!

Fisher Vectors CNNs

ImageNet
top-5 error (%)

2010 2011 2012 2013 2014 2014 2015 Human

meoyan and
Unetal Sarche: and Srithevsky et o 2eder aod S‘;L::T‘"
n et Permonnin (AexNet) Ferpus o

Stegedy et al He et ol

Russ uke "
(GoogleNet) (Reshet) ek et o

‘annon Spider Web

ALSO FOR GALAXY MORPHOLOGY

ISVMs] |CNNs|
[HUERTAS-COMPANY+14] [HUERTAS-COMPANY+15b]
AUTOMATIC
Unc & _E
Late-Type @ 9 :
= . E
<
% IRR —E
@ |5 DISK _;
Early-Type = =
< {EROID | _E
Early-T Late-T > ; :
ar y_ ype ate- ype SPHEROD Dls}\(/ISUALDOI:/IFI{EANTCLASSPS tne
VISUAL
VISUAL

ZPHOT

AUTOMATICALLY COMBINING MORPHOLOGY AND COLOR

PHOTOMETRIC REDSHIFTS

0.30f CNN B16 10
<Az>=0.00010 <Az>=0.00062
0.25} O'A”ADZO.OOng 0’_‘7\[‘41):0-01350
n=0.31% n=1.34% s
0.20f
16
0.15
Bl 4
¥ :
0.05 'l F gy 2
0.00 — ~ L 1 L ! | Ao \ . . | l
0.05 0.10 0.15 0.20 0.25 0.30 0.05 0.10 0.15 0.20 0.25 0.30
ZSPEC ZSPEC
Pasquet+18

FOR PHOTOZ ESTIMATION

GALAXY DENSITY

DATA QUALITY SELECTION FOR EUCLID

Thanks to H. McCracken

Training and validation accuracy
1.0 — o ® 0 o o8
o0 ® e ® -

DATA QUALITY SE

® Training acc
— Validation acc

model = models.Sequential()
model.add(layers.Conv2D(32, (3, 3), activation="relu’,
input_shape=(150, 150, 1)))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Conv2D(64, (3, 3), activation='relu'))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Conv2D(64, (3, 3), activation="relu'))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Flatten())
model.add(layers.Dense(128, activation="relu'))

model.add(layers.Dense(1, activation='sigmoid')) Thanks to H. McCracken

WELL, BUT THIS IS AN
“OLD” IDEA - WHY NOW?

/McCuIloch/Pitts Neurons
/Hebbs Organization of Behavior
/Rosenblatts Perceptron
/Multi-Layer Perceptrons
/Backpropagation

/Convolutional Neural Networks

/Deep Learning

(Deep Learning with GPUs

T

1940 1950 1960 1970 1980 § 1990 ; 2000 2010

WELL, BUT THIS IS AN
“OLD” IDEA - WHY NOW?

1 - MORE DATA TO TRAIN! DEEP NETWORKS HAVE A
LARGE NUMBER OF PARAMETERS - THX TO SOCIAL
MEDIA ...

WELL, BUT THIS IS AN
“OLD” IDEA - WHY NOW?

2 - GPUs - TRAINING OF THESE DEEP NETWORKS
HAS REMAINED PROHIBITIVELY TIME CONSUMING

WITH CPUs - THX TO VIDEO GA

ES. L

lllllllllllllllllllllllllllllllllllll L e

NVIDA TITANX GPU

GPUs vs. CPUs

i
CPUs | GPUs

FEWER CORES (~10x) MORE CORES (100x)

EACH CORE IS SLOWER

ERNRET =& NIRRT

EACH CORE IS FASTER

USEFUL FOR - USEFUL FOR PARALLEL
SEQUENTIAL TASKS | TASKS

CPU (Multiple Cores) GPU (Hundreds of Cores)

System Memory

(esssssssssssssss

core 1 I Core 2 SESESESESEEEEEES
SESESEEEEEEEEEES

SESEEESESEEEEEES

SESESESESEEEEEES

SESESEEESEEEEEES

SESEEESESEEEEEES

SESESEEESEEEEEES

\ /
(. J/

Slide Credit;

24000
m
3
o 18000
S
B
g
&
& 12000
+
B
©
g
&
- 6000
n
2
0

GPUs vs. CPUs

More benchmarks available here.

B ntel E5-2620 v3 [Pascal Titan X (no cuDNN) Pascal Titan X (CuDNN 5.1)

\

66X 67x 71x 64x 76X

AN AN BN K

VGG-16 VGG-19 ResNet-18 Res-Net-50 ResNet-200

Figure credit: J. Johnson

GPUs for deep learning

NVIDIA GPUs ARE PROGRAMMED THROUGH CUDA
[Compute Unified Device Architecture]

ANOTHER ALTERNATIVE IS OPENCL, SUPPORTED BY

SEVERAL MANUFACTURES, LESS INVEST
used]

ENT [Way less

CuDNN IS A LIBRARY FOR SPECIFIC DEEP LEARNING
COMPUTATIONS ON NVIDIA GPUs

THE PRICE TO PAY?

1. LARGE NUMBER OF PARAMETERS IMPLIES LARGE
DATASETS TO TRAIN

2. LOOSE EVEN MORE DEGREE OF CONTROL OF WHAT
THE ALGORITHM IS DOING SINCE THE FEATURE
EXTRACTION PROCESS BECOMES UNSUPERVISED

IMAGE OF THE BACK OF THE EYE

DEEP LEARNING CAN
IDENTIFY
THE PATIENT’S

GENDER WITH 95%
ACCURACY

IMAGE OF THE BACK OF THE EYE

VISUALIZING CNNs
[what happens inside a CNN?]

DEEP NETWORKS ARE “BLACK BOXES™?

INTERPRETING THE RESULTS IS
EXTREMELY DIFFICULT

THIS IS TRUE BUT A LOT OF WORK
IS DONE TO UNVEIL THEIR BEHAVIOR

TE

5 SIMPLEST APPROACH IS TO VISUALIZE THE LEARNED

WEIGHTS AT INTERMEDIATE LAYERS

convl weights

- A
MENFEFEJE
REL M
R T

THE SIMPLEST APPROACH IS TO VISUALIZE THE LEARNED
WEIGHTS AT INTERMEDIATE LAYERS

o I.. conv1 weighs
: 1L F

NOT VERY INFORMATIVE
o THOUGH...
BT e

5 SIMPLEST APPROACH IS TO VISUALIZE THE LEARNED

WEIGHTS AT INTERMEDIATE LAYERS

IN KERAS:

model = Sequential ()
model.add (Convolution2D (depth, conv size0, conv size(, activation=act,
border mode='same', name = "conv0",

input shape=(img channels, img rows, img cols),
init=initialization, W constraint=constraint))
model .add (Dropout (dropout rate conv))

layer dict = dict([(layer.name, layer) for layer in model.layers])

layer dict[layer name] .W.get value (borrow=True)
W = np.squeeze (W)
print ("W shape : ", W.shape)

pl.figure(figsize= (15,))
pl.title('convl weights')
nice imshow(pl.gca (), make mosaic (W, ,), cmap=cm.binary)

5 SIMPLEST APPROACH IS TO VISUALIZE THE LEARNED

WEIGHTS AT INTERMEDIATE LAYERS

IN KERAS: give names to layers

model = Sequential () '
model.add (Convolutiopzbscremptiymeeny sizeO, conv size0, activation=act,
border mode='same'§ : iy
‘ input shae€= (img channels, img rows, img cols),
init=initialization, W_constrafnt=constrgint))
model.add (Dropout (dropout rate conv))

layer dict = dict([(layer.name, layer) for layer in model.layers])

layer dict[layer name] .W.get value (borrow=True)
W = np.squeeze (W)
print ("W shape : ", W.shape)

pl.figure(figsize= (15, 15))
pl.title('convl weights')
nice imshow(pl.gca (), make mosaic (W, 6, 6), cmap=cm.binary)

5 SIMPLEST APPROACH IS TO VISUALIZE THE LEARNED

WEIGHTS AT INTERMEDIATE LAYERS

IN KERAS: create dictionary to link layers to names

build model
model = Sequential ()
model.add(ConvolutionZD(depth,‘f

border mode='same', name = "cghv0",
¥ shape=(img channels, img rows, img cols),
C=initialization, W constraint=constraint))

fonv_size(O, conv_size(0, activation=act,

e Sl S, 1AMES) .

([(layer.name, layer) for layer in model.layers]) __ .@®

— RS SR i - Tr—
layer dict[layer name] .W.get value (borrow=True)
W = nE.squeeze(WT B
print ("W shape : ", W.shape)

plot weights
pl.figure(figsize= (15, 15))

pl.title('convl weights')

nice imshow(pl.gca (), make mosaic (W, 6, 6), cmap=cm.binary)

5 SIMPLEST APPROACH IS TO VISUALIZE THE LEARNED

WEIGHTS AT INTERMEDIATE LAYERS

IN KERAS: for a given name, get the weights

build model

model = Sequential () \
model.add (Convolution2D (depth, cgpnv size0O, conv size(, activation=act,
border mode='same', name = "con®0",

input Shape=(img channels, img rows, 1img cols),
initslnitialization, W constraint=constraint))
model.add (Dropout (dropout rgte conv))

get the symbolic outpu@é of each "key" layer (we gave them unique names).

print ("W shape : ", W.shape)

plot weights

pl.figure(figsize= (15, 15))

pl.title('convl weights')

nice imshow(pl.gca (), make mosaic (W, 6, 6), cmap=cm.binary)

USING THE SAME IDEA, ONE CAN ALSO VISUALIZE
THE FEATURE MAPS AT INTERMEDIATE LAYERS

THIS HELPS TRACING THE FEATURES LEARNED BY TH

NETWORK

USE “DECONVNETS” TO MAP BACK THE FEATURE MAP
INTO THE PIXEL SPACE

i

ove
ccccccccccc ion . Pooled Maps
Switches

- Max Pooling
Max Unpooling @ O—‘w

@ TS et IT ALLOWS TO SEE
e —— WHICH
Conluons u {F Comohsons REGIONS OF THE INPUT
o s GENERATED
e o | - A MAXIMUM RESPONSE
reorsmen ‘{&L =% IN A NEURON

Unpooling @ “ [3 Pooling

“‘ “‘IL Max Locations
-

“Switches” “%
Q;qll

Yo M“‘ﬁ‘

Zeiler+14

= A,..,.
—) a.
,.,..\..f, \ P

[m S

BiED

Zeiler+14

EVERY BLOCK OF 9 SHOWS
THE 9 STRONGEST RESPONSES TO A GIVEN FILTER OF LAYER2

\ i

|
|

?

Hudwm.

Wi ‘m”.
M“W’

%) - L ﬁ
IPI]
8)

i N
JNR
EEE
18
3

1'. t

i l
4

)

7

D P

e

ﬂ

u_|~

-

S0l 5 F

P
1/
L)

Y

=

L N

iR
|

N

Layer 2

Zeiler+14

THE CORRESPONDING REGIONS OF IMAGES THAT
GENERATED THE MAXIMUM RESPONSE

’h |
'?

Hulwm.

|

R B

, i W'll[lll’ ’

N
N e -k
| IPI
e

N
EEE
18

3

“Mw
e

NS ERE =
|“ .‘1.-/_,”
.l .‘-.‘& k./, F .

AR

T J—
<5

N

]

Layer 2 Sy ppmn= | |

Zeiler+14

¥ ORDINANCE]
1 runa

E A

ﬂ

L

/ @
) 7 :
e
i X
- ’ S .\.
e —
Al 2 Ws /T T
= 7 {
- /
L o == A < o >
. — ~ — R N
I~ Vil i £
lr\/n "N 'O —- = == q e - :
7 N L X Y4
JO / Y J \ G . » o e P
x4 QX N e e e\ : =010 | B o G
25 DQr /AT

CAN BE
REPEATED
FOR DEEPER
LAYERS

ALTHOUGH IT _ .

k 7

Zeiler+14

KERAS IMPLEMENTATION OF VISUALIZATIONS
THROUGH DECONVNETS

https://github.com/jalused/Deconvnet-keras

OCCLUSION SENSITIVITY TRIES ALSO TO FIND
THE REGION OF THE IMAGE THAT TRIGGERED THE
NETWORK DECISION BY MASKING DIFFERENT REGIONS
OF THE INPUT IMAGE AND ANALYZING THE NETWORK
OUPUT

ITALLOWS TO IF THE NETWORK IS TAKING THE
DECISIONS BASED ON THE EXPECTED FEATURES

VERY TIME CONSUMING!

(c) Layer 5, strongest (d) Classifier, probability
of correct class

(@) Input Image (b) Layer 5, strongest feature map feature map projections

e

True Label: Pomeranian|

Zeiler+14

OCCLUSION SENSITIVITY TRIES ALSO TO FIND
THE REGION OF THE IMAGE THAT TRIGGERED THE
NETWORK DECISION BY MASKING DIFFERENT REGIONS
OF THE INPUT IMAGE AND ANALYZING THE NETWORK
OUPUT

for every position
of the square the maximum response of a given layer

\ the output probability as a
1s averaged

function of the occluding square

occluded region position

(e) Classifier, most
probable class

(c) Layer 5, strongest
feature map projections

(d) Classifier, probal ’Iity

7 . (a) Input Image (b) Layger 5, strongest feature map

True Label: Pomeranian f'"':

Zeiler+14

INCEPTIONISM - DEEP DREAM

THE IDEA BEHIND INCEPTIONISM TECHNIQUES
IS TO INVERT THE NETWORK TO GENERATE AN IMAGE
THAT MAXIMIZES THE OUTPUT SCORE

image I

Score of class ¢ for image I

arg maz Sc(I) —)\HIH%

TRY TO FIND AN IMAGE THAT GENERATES A
HIGH SCORE FOR A GIVEN CLASS

Simonyan+14

INCEPTIONISM - DEEP DREAM

DURING THE TRAINING PHASE THE WEIGHTS ARE
LEARNED TO MAPITINTO Sc

Simonyan+14

INCEPTIONISM - DEEP DREAM

DURING THE RECONSTRUCTION PHASE, I

S LEARNT

TRHOUG BACKPROPAGATION KEEPING TE

E WEIGHTS

FIXED

Simonyan+14

INCEPTIONISM - DEEP DREAM

RESULTS REVEAL INTERESTING INFORMATION ON

HOW TE

5 NETWORKS BUILD REPRESENTATIONS OF

OBJECTS

Anemone Fish Banana Parachute Screw

INCEPTIONISM - DEEP DREAM

RESULTS REVEAL INTERESTING INFORMATION ON
HOW THE NETWORKS BUILD REPRESENTATIONS OF

OBJECTS

SOME STRANGE CASES...

DEEP DREAM

https://deepdreamgenerator.com/

IT HAS NOW BECOME A SORT OF ART?

s =/

¥ Previous ‘ A
(N

INTEGRATED GRADIENTS

Integrated Gradient Visualization

Original Image Perturbed Image Sensitivity Map

Sundararajan+17

INTEGRATED GRADIENTS

Pre-Compaction F160W F125W F105W
0.90 0.08 0.032
0.75 0.06 0.024
0.60
0.04 0.016
0.45
0.02 0.008
0.30)
: -~ 4 0.00 . . 0.000
- A
0.15 —0.02 -0.008
-0.04 -0.016
000 ~0.06 —0.024
008 -0.032
Compaction F160W F125W F105W
0.90 0.20
0.75 0.15 0.24
0.60 010 0.16
0.45
0.05 0.08
0.30 '
’ - 0.00 2 0.00 .
015 = ~0.05 _0.08
-0.10 o6
0.00 -0.15 ~0.24
-0.20
Post-Compaction F160W F125W F105W
0.90 0.20
0.24
075 015
0.60 0.16 010
0.45
0.08 0.05
0.30
‘ N 0.00 ‘ 0.00 ‘
0.15 —o.08 -0.05
-0.10
-0.16
-0.15
-0.24
0.00 ~0.20

0.08

0.06

0.04

0.02

0.00

-0.02

-0.04

-0.06

-0.08

0.12

0.08

0.04

0.00

—-0.04

-0.08

-0.12

0.08

0.06

0.04

0.02

0.00

—-0.02

-0.04

—-0.06

—-0.08

INTEGRATED GRADIENTS

KERAS IMPLEMENTATION:
https://github.com/hiranumn/IntegratedGradients

PART IV: IMAGE 2 IMAGE NETWORKS +
INTRODUCTION TO GENERATIVE
MODELS

