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NEURAL NETWORK TO PREDICT RESULTS OF MIDTERM 
ELECTIONS

SOURCE

Features  
(x)

Labels (y)

2 hidden  
layers

p = g3(W3g2(W2g1(W1 ~x0)))



NEURAL NETWORK TO PREDICT RESULTS OF MIDTERM 
ELECTIONS

SOURCE



OK, SO NOW LET’S FIND 
THE WEIGHTS



OPTIMIZATION
[OR HOW TO FIND THE WEIGHTS?]

p = g3(W3g2(W2g1(W1 ~x0)))
NETWORK 
FUNCTION



OPTIMIZATION
[OR HOW TO FIND THE WEIGHTS?]

p = g3(W3g2(W2g1(W1 ~x0)))

1

N

NX

i=1

(yi � pi)
2 LOSS  

FUNCTION



WE SIMPLY WANT TO MINIMIZE THE LOSS FUNCTION WITH 
RESPECT TO THE WEIGHTS, i.e. FIND THE WEIGHTS THAT 

GENERATE THE MINIMUM LOSS



WE SIMPLY WANT TO MINIMIZE THE LOSS FUNCTION WITH 
RESPECT TO THE WEIGHTS, i.e. FIND THE WEIGHTS THAT 

GENERATE THE MINIMUM LOSS

WE THEN USE STANDARD MINIMIZATION ALGORITHMS 
THAT YOU ALL KNOW…



FOR EXAMPLE….

Gradient Descent Newton

Wt+1 = Wt � �trf(Wt) Wt+1 = Wt � �[Hf(Wt)]
�1rf(Wt)

[gradient] [hessian]

NEWTON CONVERGES FASTER…



FOR EXAMPLE….

Gradient Descent Newton

Wt+1 = Wt � �trf(Wt) Wt+1 = Wt � �[Hf(Wt)]
�1rf(Wt)

[gradient] [hessian]

NEWTON CONVERGES FASTER…

BUT NEEDS THE HESSIAN



FOR EXAMPLE….

Gradient Descent Newton

Wt+1 = Wt � �trf(Wt) Wt+1 = Wt � �[Hf(Wt)]
�1rf(Wt)

[gradient] [hessian]

NEWTON CONVERGES FASTER…

BUT NEEDS THE HESSIAN

MOST USED BY FAR….



FOR EXAMPLE….

Gradient Descent Newton

Wt+1 = Wt � �trf(Wt) Wt+1 = Wt � �[Hf(Wt)]
�1rf(Wt)

[gradient] [hessian]

NEWTON CONVERGES FASTER…

BUT NEEDS THE HESSIAN

MOST USED BY FAR….

EVERYTHING RELIES  
ON COMPUTING THE GRADIENT



NICE, BUT I NEED TO COMPUTE TE 
GRADIENT AT EVERY ITERATION OF 

AN ARBITRARY COMPLEX FUNCTION! 



BACKPROPAGATION
[AT THE NEURON LEVEL]

Credit: A. Karpathy
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BACKPROPAGATION
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BACKPROPAGATION
[AT THE NEURON LEVEL]

Credit: A. Karpathy



LET’S FOLLOW A NETWORK 
WHILE IT LEARNS…



EXAMPLE TAKEN FROM HERE



EXAMPLE TAKEN FROM HERE

LET’S ASSUME A VERY SIMPLE TRAINING SET: 
X=(0.05, 0.10) —> Y=(0.01,0.99)



1. THE FORWARD PASS

inh1 = 0.15⇥ 0.05 + 0.2⇥ 0.1 + 0.35 = 0.3775

inh1 = w1i1 + w2i2 + b1

[with initial weights]

initial weights



1. THE FORWARD PASS

inh1 = 0.15⇥ 0.05 + 0.2⇥ 0.1 + 0.35 = 0.3775

inh1 = w1i1 + w2i2 + b1

[with initial weights]

initial weights

outh1 =
1

1 + e�inh1
= 0.5932

[after the activation function]



1. THE FORWARD PASS

initial weights

WE CONTINUE TO o1

ino1 = w5outh1 + w6outh2 + b2

ino1 = 0.4⇥ 0.593 + 0.45⇥ 0.596 + 0.6 = 1.105

outo1 =
1

1 + e�1.105
= 0.751



1. THE FORWARD PASS

initial weights

AND THE SAME FOR o2

outo2 = 0.7729



2. THE LOSS FUNCTION

initial weights

Ltotal =
X

0.5(target� output)2

Lo1 = 0.5(targeto1 � output01)
2 = 0.5⇥ (0.01� 0.751)2 = 0.274

Lo2 = 0.023



2. THE LOSS FUNCTION

initial weights

Ltotal =
X

0.5(target� output)2

Lo1 = 0.5(targeto1 � output01)
2 = 0.5⇥ (0.01� 0.751)2 = 0.274

Lo2 = 0.023

Ltotal = Lo1 + Lo2 = 0.298



3. THE BACKWARD PASS

initial weights

FOR W5 WE WANT: 
@Ltotal

@w5

[gradient of loss function]



3. THE BACKWARD PASS
FOR W5 WE WANT: 

@Ltotal

@w5

[gradient of loss function]

WE APPLY THE CHAIN RULE:

@Ltotal

@w5
=

@Ltotal

@outo1
⇥ @outo1

@ino1
⇥ @ino1

@w5



3. THE BACKWARD PASS
@Ltotal

@w5
=

@Ltotal

@outo1
⇥ @outo1

@ino1
⇥ @ino1

@w5

Ltotal = 0.5(targeto1 � outo1)
2 + 0.5(targeto2 � outo2)

2

@Ltotal

@outo1
= 2⇥ 0.5(targeto1 � outo1)⇥ (�1) = 0.741



3. THE BACKWARD PASS
@Ltotal

@w5
=

@Ltotal

@outo1
⇥ @outo1

@ino1
⇥ @ino1

@w5

outo1 =
1

1 + e�ino1

@outo1
@ino1

= outo1 ⇥ (1� outo1) = 0.186



3. THE BACKWARD PASS
@Ltotal

@w5
=

@Ltotal

@outo1
⇥ @outo1

@ino1
⇥ @ino1

@w5

ino1 = w5 ⇥ outh1 + w6 ⇥ outh2 + b2

@ino1

@w5
= outh1 ⇥ w1�1

5 = outh1 = 0.593



3. THE BACKWARD PASS

ALL TOGETHER:

@Ltotal

@w5
=

@Ltotal

@outo1
⇥ @outo1

@ino1
⇥ @ino1

@w5

@Ltotal

@w5
= 0.741⇥ 0.186⇥ 0.593 = 0.082



4. UPDATE WEIGHTS WITH GRADIENT  
AND LEARNING RATE

wt+1
5 = w5 � �⇥ @Ltotal

@w5

wt+1
5 = 0.4� 0.5⇥ 0.082 = 0.358



THIS IS REPEATED FOR THE OTHER WEIGHTS 
OF THE OUTPUT LAYER

wt+1
6 = 0.408

wt+1
7 = 0.511

wt+1
8 = 0.561



AND BACK-PROPAGATED TO THE HIDDEN 
LAYERS



VISUALIZE SIMPLE 
NETWORK LEARNING



ONE KEY PROBLEM WITH GRADIENT DESCENT IS THAT IT 
EASILY CONVERGES TO LOCAL MINIMA BY FOLLOWING 

THE STEEPEST DESCENT
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THE CHOICES OF THE INITIAL WEIGHTS AND THE 
LEARNING RATES ARE IMPORTANT



ONE KEY PROBLEM WITH GRADIENT DESCENT IS THAT IT 
EASILY CONVERGES TO LOCAL MINIMA BY FOLLOWING 

THE STEEPEST DESCENT

THE CHOICES OF THE INITIAL WEIGHTS AND THE 
LEARNING RATES ARE IMPORTANT

WE WILL TALK ABOUT  
THIS LATER



LEARNING RATES

Credit: 



LEARNING RATES

Credit: 

Wt+1 = Wt � �rf(Wt)

THERE ARE DIFFERENT WAYS  
TO UPDATE THE LEARNING RATE



LEARNING RATES

Credit: 

Wt+1 = Wt � �rf(Wt)

THERE ARE DIFFERENT WAYS  
TO UPDATE THE LEARNING RATE

ADAGRAD:

Wt+1 = Wt �
�p

Gt + ✏
rf(Wt)

THE LEARNING RATE IS SCALED DEPENDING ON THE HISTORY OF PREVIOUS GRADIENTS

G IS A MATRIX CONTAINING ALL PREVIOUS GRADIENTS. WHEN THE GRADIENT BECOMES 
LARGE THE LEARNING RATE IS DECREASED AND VICE VERSA.

Gt+1 = Gt + (rf)2



LEARNING RATES

Credit: 

Wt+1 = Wt � �rf(Wt)

THERE ARE DIFFERENT WAYS  
TO UPDATE THE LEARNING RATE

RMSPROP:

Wt+1 = Wt �
�p

Gt + ✏
rf(Wt)

THE LEARNING RATE IS SCALED DEPENDING ON THE HISTORY OF PREVIOUS GRADIENTS

SAME AS ADAGRAD BUT G IS CALCULATED BY EXPONENTIALLY DECAYING AVERAGE

Gt+1 = �Gt + (1� �)(rf)2



ADAM [Adaptive moment estimator]:

SAME IDEA, USING FIRST AND SECOND ORDER 
MOMENTUMS

Gt+1 = �2Gt + (1� �2)(rf)2 Mt+1 = �1Mt + (1� �1)(rf)

Wt+1 = Wt �
�p

Ĝt + ✏
M̂t

with: M̂t+1 =
Mt

1� �1
Ĝt+1 =

Gt

1� �2



ADAM [Adaptive moment estimator]:

SAME IDEA, USING FIRST AND SECOND ORDER 
MOMENTUMS

Gt+1 = �2Gt + (1� �2)(rf)2 Mt+1 = �1Mt + (1� �1)(rf)

Wt+1 = Wt �
�p

Ĝt + ✏
M̂t

with: M̂t+1 =
Mt

1� �1
Ĝt+1 =

Gt

1� �2

ONLY FOR YOUR 
RECORDS



IN KERAS:



IN KERAS:



Credit



Credit



BATCH GRADIENT DESCENT

LOCAL MINIMA CAN ALSO BE AVOIDED BY COMPUTING THE 
GRADIENT IN SMALL BATCHES INSTEAD OF OVER THE FULL 

DATASET



BATCH GRADIENT DESCENT

LOCAL MINIMA CAN ALSO BE AVOIDED BY COMPUTING THE 
GRADIENT IN SMALL BATCHES INSTEAD OF OVER THE FULL 

DATASET

MINI-BATCH GRADIENT DESCENT

Wt+1/num = Wt � �trf(Wt;x
(i,i+b), y(i,i+b))

THE GRADIENT IS COMPUTED OVER A BATCH OF SIZE B



STOCHASTIC GRADIENT 
DESCENT

THE EXTREME CASE IS TO COMPUTE THE GRADIENT ON EVERY 
TRAINING EXAMPLE.

STOCHASTIC GRADIENT DESCENT

Wt+1/num = Wt � �trf(Wt;x
(i,i+b), y(i,i+b))

b=1



Credit



CAN WE GO DEEP NOW?



CAN WE GO DEEP NOW?

ALMOST THERE…LET’S THINK FOR A 
MOMENT ABOUT WHAT WE PUT AS 

INPUT…



What do we put as input?

THIS IS WHAT 
MACHINES SEE



What do we put as input?

PRE-PROCESS DATA TO EXTRACT MEANINGFUL 
INFORMATION

THIS IS GENERALLY CALLED FEATURE EXTRACTION



DATA

Spiral!

Emission line!

Merger!
Clump!

AGN!



DATA

Spiral!

Emission line!

Merger!
Clump!

AGN!



fW (~x) = ~y LABEL
Q(0) , SF(1)

(U-V, V-J) FEATURES
sgn[(u-v)-0.8*(v-j)-0.7]

WEIGHTS

NETWORK FUNCTION

Liu+18



Learning 
algorithm

(Neural 
Network, 
SVM…)

DATA

Pre-Processing:  
Dimension  
reduction

PCA or manual (colors, 
C, A, n …) 

morphs. 
photoz’s 

….

N 
parameters

THE “CLASSICAL” APPROACH



Learning 
algorithm

(Neural 
Network, 
SVM…)

DATA

PCA or manual (colors, 
C, A, n …) 

morphs. 
photoz’s 

….

N 
parameters

“CLASSICAL” MACHINE LEARNING

Pre-Processing:  
Dimension  
reduction



In Astronomy
• Colors, Fluxes 

• Shape indicators 

• Line ratios, spectral features 

• Stellar Masses, Velocity Dispersions

Requires specialized software before 
feeding the machine learning algorithm 

IT IMPLIES A DIMENSIONALITY REDUCTION!



PHOTOMETRIC REDSHIFTS

Collister+08

g
r
i
z

SDSS



EVERYTHING IS IN THE FEATURES….WHAT IF I 
IGNORED SOME IMPORTANT FEATURES?



EVERYTHING IS IN THE FEATURES….WHAT IF I 
IGNORED SOME IMPORTANT FEATURES?



NEURAL NETWORK TO PREDICT RESULTS OF MIDTERM 
ELECTIONS

SOURCE

Features  
(x)

Labels (y)

2 hidden  
layers



Other general computer 
vision features [for images!]

• Pixel Concatenation 

• Color histograms 

• Texture Features 

• Histogram of Gradients 

• SIFT

FOR MANY YEARS COMPUTER 
VISION  

RESEARCHERS HAVE BEEN 
TRYING TO FIND THE MOST  

GENERAL FEATURES



Other general computer 
vision features [for images!]

• Pixel Concatenation 

• Color histograms 

• Texture Features 

• Histogram of Gradients 

• SIFT

FOR MANY YEARS COMPUTER 
VISION  

RESEARCHERS HAVE BEEN 
TRYING TO FIND THE MOST  

GENERAL FEATURES

THE BEST CLASSICAL 
SOLUTION [BEFORE 2012] 
WHERE BASED ON LOCAL 

FEATURES



HISTOGRAM OF ORIENTED 
GRADIENTS (HoG)

1. DIVIDE IMAGE INTO SMALL  
SPATIAL REGIONS CALLED CELLS

2. COMPUTE INTENSITY GRADIENTS 
OVER N DIRECTIONS [TYPICALLY 9 

FOR IMAGE ]

3. COMPUTE WEIGHTED 1-D 
HISTOGRAM OF ALL DIRECTIONS. A 
CELL IS REDUCED TO N NUMBERS



HISTOGRAM OF ORIENTED 
GRADIENTS (HoG)



HISTOGRAM OF ORIENTED 
GRADIENTS (HoG)

KEEP THIS IMAGE IN MIND FOR LATER…



What about using raw data?
ALL INFORMATION IS IN THE INPUT DATA  

WHY REDUCING ?

LET THE NETWORK FIND THE INFO



What about using raw data?

LARGE DIMENSION SIGNALS SUCH AS IMAGES OR 
SPECTRA WOULD REQUIRE TREMENDOUSLY LARGE 

MODELS

A 512x512 image as input of a fully connected layer producing 
output of same size:

(512⇥ 512)2 = 7e10

ALL INFORMATION IS IN THE INPUT DATA  

WHY REDUCING ?

LET THE NETWORK FIND THE INFO



FEEDING INDIVIDUAL RESOLUTION ELEMENTS IS NOT 
VERY EFFICIENT SINCE IT LOOSES ALL INVARIANCE TO 

TRANSLATION AND IGNORES CORRELATION IN THE DATA

BUT



FEEDING INDIVIDUAL RESOLUTION ELEMENTS IS NOT 
VERY EFFICIENT SINCE IT LOOSES ALL INVARIANCE TO 

TRANSLATION

SO?



fW (~x) = ~y LABEL
Q , SF

LET THE MACHINE FIGURE THIS OUT (“unsupervised feature extraction”)

DEEP LEARNING

LET’S GO A STEP FORWARD INTO LOOSING CONTROL….



PART III:CONVOLUTIONAL 
NEURAL NETWORKS



Discrete Convolution

f(x) ⇤ g(x) =
k=+1X

k=�1
f(k).g(k � x)1D:

[Spectra]

2D:
[Images]

f(x, y) ⇤ g(x, y) =
k=+1X

k=�1

l=+1X

l=�1
f(k, l).g(x� k, y � l)



DISCRETE CONVOLUTION

f(x) ⇤ g(x) =
k=+1X

k=�1
f(k).g(k � x)1D:

[Spectra]

2D:
[Images]

f(x, y) ⇤ g(x, y) =
k=+1X

k=�1

l=+1X

l=�1
f(k, l).g(x� k, y � l)

CONVOLUTION KERNEL INPUT DATA



1-D CONVOLUTION 

credit

x
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1-D CONVOLUTION 

credit

x



THE CONVOLUTION BUILDING BLOCK OPERATION IS 
EQUIVALENT TO A NEURON WITH AS MANY INPUTS AS 

KERNEL ELEMENTS AND WEIGHTS EQUAL TO THE 
KERNEL 

w3x3

x



w3x3

THE CONVOLUTION BUILDING BLOCK OPERATION IS 
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KERNEL 



w3x3

THE CONVOLUTION BUILDING BLOCK OPERATION IS 
EQUIVALENT TO A NEURON WITH AS MANY INPUTS AS 

KERNEL ELEMENTS AND WEIGHTS EQUAL TO THE 
KERNEL 



w3x3

WITH THE ADVANTAGE THAT THE SAME WEIGHTS ARE 
APPLIED TO ALL THE SIGNAL: TRANSLATION INVARIANCE

THE CONVOLUTION BUILDING BLOCK OPERATION IS 
EQUIVALENT TO A NEURON WITH AS MANY INPUTS AS 

KERNEL ELEMENTS AND WEIGHTS EQUAL TO THE 
KERNEL 



2-D CONVOLUTION 

SAME IDEA, BUT THE KERNEL IS NOW 2D

Credit: animations from https://github.com/vdumoulin/conv_arithmetic

1/9 1/9 1/9

1/9 1/9 1/9

1/9 1/9 1/9

KERNEL INPUT (IMAGE) OUTPUT



2-D CONVOLUTION 

SAME IDEA, BUT THE KERNEL IS NOW 2D

IN THE EXAMPLE: EACH 3x3 REGION GENERATES AN OUTPUT

Credit: animations from https://github.com/vdumoulin/conv_arithmetic

Sizeoutput = Sizeinput � Sizekernel + 1

1/9 1/9 1/9

1/9 1/9 1/9

1/9 1/9 1/9



X

EQUIVALENT TO A NEURON  
WITH 9 INPUTS

WEIGHTS ARE CODED  
IN THE KERNEL

1/9 1/9 1/9

1/9 1/9 1/9

1/9 1/9 1/9



X

EQUIVALENT TO A NEURON  
WITH 9 INPUTS

WEIGHTS ARE CODED  
IN THE KERNEL

THIS IS WHAT 
THE 

NETWORK 
LEARNS!

1/9 1/9 1/9

1/9 1/9 1/9

1/9 1/9 1/9



X

THE KEY IS AGAIN THAT  
THE SAME WEIGHTS ARE  
APPLIED TO ALL IMAGE 

REGIONS

1/9 1/9 1/9

1/9 1/9 1/9

1/9 1/9 1/9



X

wi
[weights]

ACTIVATION FUNCTION  
AT EVERY KERNEL POSITION

xi

xi

wi

z(x) = relu(wx+ b)

1/9 1/9 1/9

1/9 1/9 1/9

1/9 1/9 1/9



X

wi
[weights]

ACTIVATION FUNCTION  
AT EVERY KERNEL POSITION

xi

xi

wi

z(x) = relu(wx+ b)

IN DEEP NETWORKS ReLU is the 
most commonly used activation 

function - see Vanishing Gradient 
Problem

1/9 1/9 1/9

1/9 1/9 1/9

1/9 1/9 1/9



CONVOLUTIONS CAN ALSO BE COMPUTED ACROSS 
CHANNELS (OR COLORS)

A COLOR IMAGE IS A 
TENSOR  

OF SIZE height x width x 
channels 



CONVOLUTIONS CAN ALSO BE COMPUTED ACROSS 
CHANNELS (OR COLORS)

A COLOR IMAGE IS A 
TENSOR  

OF SIZE height x width x 
channels 

THEN THE KERNEL 
HAS ALSO 3 
CHANNELS



IN ASTRONOMY …  

IT OPENS THE DOOR TO ANALYZE MULTIPLE  
FILTERS () SIMULTANEOUSLY



MULTIPLE CONVOLUTIONS WITH DIFFERENT KERNELS 
CAN BE PERFORMED  

credit
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MULTIPLE CONVOLUTIONS WITH DIFFERENT KERNELS 
CAN BE PERFORMED  

credit



MULTIPLE CONVOLUTIONS WITH DIFFERENT KERNELS 
CAN BE PERFORMED  

credit



IN KERAS…

model.add(Convolution2D(4,5,5, activation=“relu”))

model = Sequential()

depth
sizeX, sizeY



Credit

SINCE CONVOLUTIONS OUTPUT ONE SCALAR,  THEY CAN BE SEEN AS AN 
INDIVIDUAL NEURON WITH A RECEPTIVE FIELD LIMITED TO THE KERNEL 

DIMENSIONS



Credit

SINCE CONVOLUTIONS OUTPUT ONE SCALAR< THEY CAN BE SEEN AS AN 
INDIVIDUAL NEURON WITH A RECEPTIVE FIELD LIMITED TO THE KERNEL 

DIMENSIONS

THE SAME NEURON IS FIRED WITH DIFFERENT AREAS FROM THE INPUT



Dieleman+16

EXAMPLE OF 32 FILTERS LEARNED IN  
A CONVOLUTIONAL LAYER



Dieleman+16

EXAMPLE OF 32 FILTERS LEARNED IN  
A CONVOLUTIONAL LAYER

THESE ARE CALLED FEATURE MAPS



ESTIMATING SHAPES AND 
NUMBER OF PARAMETERS

KERNEL SHAPE:
(F, F,Ci, Co)

PADDING: 
P

STRIDES: 
S

OUTPUT SIZE: W0 = (W i � F + 2P )/S + 1



OPTIONS: STRIDES

NO STRIDES STRIDES



OPTIONS: DILATION

NO STRIDES DILATION



OPTIONS: PADDING

NO STRIDES PADDING



ESTIMATING SHAPES AND 
NUMBER OF PARAMETERS

KERNEL SHAPE:
(F, F,Ci, Co)

NUMBER OF PARAMETERS: (F ⇥ F ⇥ Ci + 1)⇥ Co

PADDING: 
P

STRIDES: 
S

OUTPUT SIZE: W0 = (W i � F + 2P )/S + 1



ESTIMATING SHAPES AND 
NUMBER OF PARAMETERS

KERNEL SHAPE:
(F, F,Ci, Co)

NUMBER OF PARAMETERS: (F ⇥ F ⇥ Ci + 1)⇥ Co

PADDING: 
P

STRIDES: 
S

OUTPUT SIZE: W0 = (W i � F + 2P )/S + 1

the number of parameters increases fast!

32 filters of 5*5 on a color image —> 2432 parameters to learn



DOWNSAMPLING
DOWNSAMPLING IS APPLIED TO REDUCE THE OVERALL 

SIZE OF TENSORS



POOLING
CONVOLUTIONS ARE OFTEN FOLLOWED BY AN 

OPERATION OF DOWNSAMPLING [POOLING]

VERY SIMPLE OPERATION - ONLY ONE OUT OF EVERY  
N PIXELS ARE KEPT

OFTEN MATCHED WITH AN INCREASE OF THE FEATURE 
CHANNELS 



TYPES OF POOLING

SUM POOLING

SQUARE SUM POOLING

MAX POOLING y = max(xuv)

y =
X

xuv

y =
qX

x2
uv



TYPES OF POOLING

SUM POOLING

SQUARE SUM POOLING

MAX POOLING y = max(xuv)

y =
X

xuv

y =
qX

x2
uv



MAX POOLING 1D

Credit: F. Fleuret



MAX POOLING 1D

Credit: F. Fleuret



MAX POOLING 1D

Credit: F. Fleuret



MAX POOLING 1D

Credit: F. Fleuret



MAX POOLING 1D

Credit: F. Fleuret



CONVNET OR CNN

L1 L2 L3 L4

A CONCATENATION OF MULTIPLE 
CONVOLUTIONAL BLOCKS



CONVNET OR CNN

L1 L2 L3 L4

EACH BLOCK TYPICALLY MADE OF: 

CONV ACTIVATION POOLING (+dropout 
for training)



EXAMPLE OF VERY SIMPLE CNN

Dominguez-Sanchez+18



EXAMPLE OF VERY SIMPLE CNN

Dominguez-Sanchez+18

3 convolutional layers



EXAMPLE OF VERY SIMPLE CNN

Dominguez-Sanchez+18

3 convolutional layers

KERNEL SIZE



EXAMPLE OF VERY SIMPLE CNN

Dominguez-Sanchez+18

3 convolutional layers

DEPTH



EXAMPLE OF VERY SIMPLE CNN

3 convolutional layers

Dominguez-Sanchez+18
ReLu activation



EXAMPLE OF VERY SIMPLE CNN

3 convolutional layers

Dominguez-Sanchez+18
Pooling



EXAMPLE OF VERY SIMPLE CNN

Dominguez-Sanchez+18

OVERALL: - decrease of tensor size
- increase of depth



IMPLEMENTATION IN KERAS



MERGERS

BARS



EXAMPLE OF VERY SIMPLE CNN

Dominguez-Sanchez+18

OVERALL:
- decrease of tensor size

- increase of depth

Number of parameters



EXAMPLE OF VERY SIMPLE CNN

Dominguez-Sanchez+18

OVERALL:
- decrease of tensor size

- increase of depth

2 million of parameters for this very simple network!



CHECKING THE NUMBER OF 
PARAMETERS / LAYERS WITH KERAS

model.summary()



IN THE REAL LIFE…

RESNET



IN THE REAL LIFE…

RESNET

DO WE NEED TO GO  
THIS DEEP FOR  
ASTRONOMY  

APPLICATIONS?

[34 layers - authors  
explored up to 1202!]

He+15



DEEPER TENDS TO BE BETTER…



THE PROBLEMS OF 
GOING “TOO DEEP”

• DEEP NETWORKS ARE MORE DIFFICULT TO 
OPTIMIZE 

• NEED MORE DATA - MORE SUBJECT TO OVER-
FITTING 

• AND ALSO NEED MORE TIME … 



OVER-FITTING

THE TRAINING  
LOSS DECREASES

THE TEST STAYS CONSTANT  
OR INCREASES



DROPOUT 
[Hinton+12]

- THE IDEA IS TO REMOVE NEURONS RANDOMLY DURING 
THE TRAINING

- ALL NEURONS ARE PUT BACK DURING THE TEST PHASE



DROPOUT
WHY DOES IT WORK?

1. SINCE NEURONS ARE REMOVED RANDOMLY, IT AVOIDS 
CO-ADAPTATION AMONG THEMSELVES

2. DIFFERENT SETS OF NEURONS WHICH ARE SWITCHED 
OFF, REPRESENT A DIFFERENT ARCHITECTURE AND ALL 

THESE DIFFERENT ARCHITECTURES ARE TRAINED IN 
PARALLEL. FOR N NEURONS ATTACHED TO DROPOUT, THE 
NUMBER OF SUBSET ARCHITECTURES FORMED IS 2^N. SO 

IT AMOUNTS TO PREDICTION BEING AVERAGED OVER 
THESE ENSEMBLES OF MODELS.



DROPOUT

WITH A LITTLE BIT  
OF DROPOUT

Huertas-Company+15



CAPTURING THE MODEL UNCERTAINTY
NEURAL NETWORKS AS BAYESIAN MODELS

Denker&LEcun91, Neal+95, Graves+11, Kingma+15, Gal+15…

BNNs ADD A PRIOR DISTRIBUTION TO  
EACH WEIGHT - HARD TO TRAIN

GAL+15 SHOW THAT DROPOUT CAN  
BE USED TO ESTIMATE UNCERTAINTY



IMPLEMENTATION IN KERAS / TENSORFLOW



VANISHING / EXPLODING 
GRADIENT  PROBLEM

REMEMBER THAT:

output layer i+1

activation  
function

weights

yi+1 = �[
X

wiyi]

output layer i



VANISHING / EXPLODING 
GRADIENT  PROBLEM

WITH MANY LAYERS:

yn = �
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VANISHING/EXPLODING 
GRADIENT  PROBLEM

yn = �

 
...�

 
...�

 
X

w0x

!!!

L1 L2 L3 Ln

x
. . .

w1 w2 w3

TRAINING BECOMES UNSTABLE  
VERY SLOW OR NO CONVERGENCE



VANISHING/EXPLODING 
GRADIENT  PROBLEM

IF WE ASSUME AN IDENTITY ACTIVATION FUNCTION:

ŷ = x
Y

n

wi
with:

x =

✓
x1

x2

◆
wi =

✓
w0

i 0
0 w1

i

◆



VANISHING/EXPLODING 
GRADIENT  PROBLEM

ŷ = x
Y

n

wi

x =

✓
x1

x2

◆

wi =

✓
w0

i 0
0 w1

i

◆

IF WEIGHTS ARE ALL INITIALIZED  
TO VALUES <<1:

wL
i ! 0

VANISHING GRADIENT



VANISHING/EXPLODING 
GRADIENT  PROBLEM

ŷ = x
Y

n

wi

x =

✓
x1

x2

◆

wi =

✓
w0

i 0
0 w1

i

◆

IF WEIGHTS ARE ALL INITIALIZED  
TO VALUES >1:

EXPLODING GRADIENT

wL
i ! 1



TRAINING BECOMES UNSTABLE  
VERY SLOW OR NO CONVERGENCE

VANISHING/EXPLODING 
GRADIENT  PROBLEM



WEIGHT INITIALIZATION IS A KEY POINT… 

z = x1w1 + x2w2 + ...+ xnwn
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THE LARGER n, THE SMALLER  
WEIGHTS SHOULD BE…
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1
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inputs

variance



WEIGHT INITIALIZATION IS A KEY POINT… 

z = x1w1 + x2w2 + ...+ xnwn

THE LARGER n, THE SMALLER  
WEIGHTS SHOULD BE…

ONE SIMPLE SOLUTION: �2(wi) =
1

n
number  

of  
inputs

variance



WEIGHT INITIALIZATION IS A KEY POINT… 

For ReLU activation functions we typically use: 

�2(wi) =
2

n

[He initialization, He+15]



WEIGHT INITIALIZATION IS A KEY POINT… 

IMPLEMENTATION IN KERAS: 

initialization = 'he_normal' 
act = ‘relu' 

model = Sequential() 
model.add(Convolution2D(depth, conv_size, conv_size, activation=act, border_mode='same', 
name = "conv%i"%(layer_n), init=initialization, W_constraint=constraint)) 



WEIGHT INITIALIZATION IS A KEY POINT… 

IMPLEMENTATION IN KERAS: 

initialization = 'he_normal' 
act = ‘relu' 

model = Sequential() 
model.add(Convolution2D(depth, conv_size, conv_size, activation=act, border_mode='same', 
name = "conv%i"%(layer_n), init=initialization, W_constraint=constraint)) 

MANY OTHER INITIALIZATIONS AVAILABLE: 

keras.initializers https://keras.io/initializers/



BATCH NORMALIZATION  
[SZEGEDY+15]

ANOTHER SOLUTION TO KEEP REASONABLE VALUES OF 
THE ACTIVATIONS IN DEEP NETWORKS

BATCH NORMALIZATION PREVENTS LOW OR LARGE 
VALUES BY RE-NORMALIZING THE VALUES BEFORE 

ACTIVATION FOR EVERY BATCH

ŷi = �
yi � E(yi)

�(yi)
+ �

NORMALIZED INPUT

SCATTER

INPUT



BATCH NORMALIZATION  
[SZEGEDY+15]

BATCH NORMALIZATION SPEEDS UP AND STABILIZES 
TRAINING

ŷi = �
yi � E(yi)

�(yi)
+ �

NORMALIZED INPUT

SCATTER

INPUT

AS FOR THE DROPOUT, THERE IS A DIFFERENT BEHAVIOR 
BETWEEN TRAINING AND TESTING



BATCH NORMALIZATION  
[SZEGEDY+15]

IN KERAS, IT IS IMPLEMENTED AS AN ADDITIONAL LAYER



THIS IS A CHANGE OF PARADIGM!
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reduction

PCA or manual 
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N 

parameters
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LAYERS

Raw data
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LEARNING  

ALGORITHM

THE LEARNING ALGORITHM  
CAN BE CHANGED
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SVM?DATA

manual (colors, C, A, n 
…) 

prediction
N 

parameters

FEATURE LEARNING 
LAYERS

Raw data

OR  
ANY  

OTHER  
LEARNING  

ALGORITHM

THE FEATURES CAN  
BE MANIPULATED OR COMBINED

Features Learned from  
another CNN…



THIS IS A CHANGE OF PARADIGM!
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[HUERTAS-COMPANY+14]
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Early-Type

Late-Type

SVMs CNNs
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U
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VISUAL
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[HUERTAS-COMPANY+15b]

ALSO FOR GALAXY MORPHOLOGY



PHOTOMETRIC REDSHIFTS

Pasquet+18

AUTOMATICALLY COMBINING MORPHOLOGY AND COLOR 
FOR PHOTOZ ESTIMATION



DATA QUALITY SELECTION FOR EUCLID

Thanks to H. McCracken



DATA QUALITY SELECTION FOR EUCLID

model = models.Sequential() 
model.add(layers.Conv2D(32, (3, 3), activation='relu', 
                       input_shape=(150, 150, 1))) 
model.add(layers.MaxPooling2D((2, 2))) 
model.add(layers.Conv2D(64, (3, 3), activation='relu')) 
model.add(layers.MaxPooling2D((2, 2))) 
model.add(layers.Conv2D(64, (3, 3), activation='relu')) 
model.add(layers.MaxPooling2D((2, 2))) 
model.add(layers.Flatten()) 
model.add(layers.Dense(128, activation='relu')) 
model.add(layers.Dense(1, activation='sigmoid')) Thanks to H. McCracken



WELL, BUT THIS IS AN 
“OLD” IDEA - WHY NOW?



WELL, BUT THIS IS AN 
“OLD” IDEA - WHY NOW?

1 - MORE DATA TO TRAIN! DEEP NETWORKS HAVE A 
LARGE NUMBER OF PARAMETERS - THX TO SOCIAL 

MEDIA … 



WELL, BUT THIS IS AN 
“OLD” IDEA - WHY NOW?

2 - GPUs - TRAINING OF THESE DEEP NETWORKS 
HAS REMAINED PROHIBITIVELY TIME CONSUMING 

WITH CPUs - THX TO VIDEO GAMES…



GPUs

NVIDA TITANX GPU



GPUs vs. CPUs
CPUs GPUs

FEWER CORES (~10x)

EACH CORE IS FASTER 

USEFUL FOR 
SEQUENTIAL TASKS

MORE CORES (100x)

EACH CORE IS SLOWER 

USEFUL FOR PARALLEL 
TASKS

Slide Credit: 



GPUs vs. CPUs
More benchmarks available here.

Figure credit: J. Johnson



GPUs for deep learning

NVIDIA GPUs ARE PROGRAMMED THROUGH CUDA 
[Compute Unified Device Architecture]

ANOTHER ALTERNATIVE IS OPENCL, SUPPORTED BY 
SEVERAL MANUFACTURES, LESS INVESTMENT [Way less 

used]

CuDNN IS A LIBRARY FOR SPECIFIC DEEP LEARNING 
COMPUTATIONS ON NVIDIA GPUs



THE PRICE TO PAY?

1. LARGE NUMBER OF PARAMETERS IMPLIES LARGE  
DATASETS TO TRAIN

2. LOOSE EVEN MORE DEGREE OF CONTROL OF WHAT  
THE ALGORITHM IS DOING SINCE THE FEATURE 

EXTRACTION PROCESS BECOMES UNSUPERVISED 



IMAGE OF THE BACK OF THE EYE



IMAGE OF THE BACK OF THE EYE

DEEP LEARNING CAN 
IDENTIFY  

THE PATIENT’S  
 GENDER WITH 95% 

ACCURACY



VISUALIZING CNNs 
[what happens inside a CNN?]



DEEP NETWORKS ARE “BLACK BOXES”? 

INTERPRETING THE RESULTS IS  
EXTREMELY DIFFICULT

THIS IS TRUE BUT A LOT OF WORK  
IS DONE TO UNVEIL THEIR BEHAVIOR



THE SIMPLEST APPROACH IS TO VISUALIZE THE LEARNED 
WEIGHTS AT INTERMEDIATE LAYERS



THE SIMPLEST APPROACH IS TO VISUALIZE THE LEARNED 
WEIGHTS AT INTERMEDIATE LAYERS

NOT VERY INFORMATIVE  
THOUGH…



THE SIMPLEST APPROACH IS TO VISUALIZE THE LEARNED 
WEIGHTS AT INTERMEDIATE LAYERS

IN KERAS:
# build model 
model = Sequential() 
model.add(Convolution2D(depth, conv_size0, conv_size0, activation=act, 
border_mode='same', name = "conv0", 
                        input_shape=(img_channels, img_rows, img_cols), 
                        init=initialization, W_constraint=constraint)) 
model.add(Dropout(dropout_rate_conv)) 

# get the symbolic outputs of each "key" layer (we gave them unique names). 
layer_dict = dict([(layer.name, layer) for layer in model.layers]) 

layer_dict[layer_name].W.get_value(borrow=True) 
W = np.squeeze(W) 
print("W shape : ", W.shape) 

# plot weights 
pl.figure(figsize=(15, 15)) 
pl.title('conv1 weights') 
nice_imshow(pl.gca(), make_mosaic(W, 6, 6), cmap=cm.binary) 



THE SIMPLEST APPROACH IS TO VISUALIZE THE LEARNED 
WEIGHTS AT INTERMEDIATE LAYERS

IN KERAS:
# build model 
model = Sequential() 
model.add(Convolution2D(depth, conv_size0, conv_size0, activation=act, 
border_mode='same', name = "conv0", 
                        input_shape=(img_channels, img_rows, img_cols), 
                        init=initialization, W_constraint=constraint)) 
model.add(Dropout(dropout_rate_conv)) 

# get the symbolic outputs of each "key" layer (we gave them unique names). 
layer_dict = dict([(layer.name, layer) for layer in model.layers]) 

layer_dict[layer_name].W.get_value(borrow=True) 
W = np.squeeze(W) 
print("W shape : ", W.shape) 

# plot weights 
pl.figure(figsize=(15, 15)) 
pl.title('conv1 weights') 
nice_imshow(pl.gca(), make_mosaic(W, 6, 6), cmap=cm.binary) 

give names to layers



THE SIMPLEST APPROACH IS TO VISUALIZE THE LEARNED 
WEIGHTS AT INTERMEDIATE LAYERS

IN KERAS:
# build model 
model = Sequential() 
model.add(Convolution2D(depth, conv_size0, conv_size0, activation=act, 
border_mode='same', name = "conv0", 
                        input_shape=(img_channels, img_rows, img_cols), 
                        init=initialization, W_constraint=constraint)) 
model.add(Dropout(dropout_rate_conv)) 

# get the symbolic outputs of each "key" layer (we gave them unique names). 
layer_dict = dict([(layer.name, layer) for layer in model.layers]) 

layer_dict[layer_name].W.get_value(borrow=True) 
W = np.squeeze(W) 
print("W shape : ", W.shape) 

# plot weights 
pl.figure(figsize=(15, 15)) 
pl.title('conv1 weights') 
nice_imshow(pl.gca(), make_mosaic(W, 6, 6), cmap=cm.binary) 

create dictionary to link layers to names



THE SIMPLEST APPROACH IS TO VISUALIZE THE LEARNED 
WEIGHTS AT INTERMEDIATE LAYERS

IN KERAS:
# build model 
model = Sequential() 
model.add(Convolution2D(depth, conv_size0, conv_size0, activation=act, 
border_mode='same', name = "conv0", 
                        input_shape=(img_channels, img_rows, img_cols), 
                        init=initialization, W_constraint=constraint)) 
model.add(Dropout(dropout_rate_conv)) 

# get the symbolic outputs of each "key" layer (we gave them unique names). 
layer_dict = dict([(layer.name, layer) for layer in model.layers]) 

layer_dict[layer_name].W.get_value(borrow=True) 
W = np.squeeze(W) 
print("W shape : ", W.shape) 

# plot weights 
pl.figure(figsize=(15, 15)) 
pl.title('conv1 weights') 
nice_imshow(pl.gca(), make_mosaic(W, 6, 6), cmap=cm.binary) 

for a given name, get the weights



USING THE SAME IDEA, ONE CAN ALSO VISUALIZE  
THE FEATURE MAPS AT INTERMEDIATE LAYERS

THIS HELPS TRACING THE FEATURES LEARNED BY THE 
NETWORK



USE “DECONVNETS” TO MAP BACK THE FEATURE MAP 
INTO THE PIXEL SPACE

Zeiler+14

IT ALLOWS TO SEE 
WHICH  

REGIONS OF THE INPUT 
GENERATED  

A MAXIMUM RESPONSE 
IN A NEURON



Zeiler+14



Zeiler+14

EVERY BLOCK OF 9 SHOWS  
THE 9 STRONGEST RESPONSES TO A GIVEN FILTER OF LAYER2



Zeiler+14

THE CORRESPONDING REGIONS OF IMAGES THAT  
GENERATED THE MAXIMUM RESPONSE



CAN BE 
REPEATED  

FOR DEEPER 
LAYERS  

ALTHOUGH IT 
BECOMES LESS  

INTUITIVE

Zeiler+14



CAN BE 
REPEATED  

FOR DEEPER 
LAYERS  

ALTHOUGH IT 
BECOMES LESS  

INTUITIVE

Zeiler+14



KERAS IMPLEMENTATION OF VISUALIZATIONS 
THROUGH DECONVNETS

https://github.com/jalused/Deconvnet-keras



OCCLUSION SENSITIVITY TRIES ALSO TO FIND  
THE REGION OF THE IMAGE THAT TRIGGERED THE  

NETWORK DECISION BY MASKING DIFFERENT REGIONS  
OF THE INPUT IMAGE AND ANALYZING THE NETWORK 

OUPUT

VERY TIME CONSUMING!

IT ALLOWS TO IF THE NETWORK IS TAKING THE  
DECISIONS BASED ON THE EXPECTED FEATURES

Zeiler+14



OCCLUSION SENSITIVITY TRIES ALSO TO FIND  
THE REGION OF THE IMAGE THAT TRIGGERED THE  

NETWORK DECISION BY MASKING DIFFERENT REGIONS  
OF THE INPUT IMAGE AND ANALYZING THE NETWORK 

OUPUT

occluded region

for every position  
of the square the maximum response of  a given layer  

is averaged
the output probability as a  

function of the occluding square  
position

Zeiler+14



INCEPTIONISM - DEEP DREAM

THE IDEA BEHIND INCEPTIONISM TECHNIQUES  
IS TO INVERT THE NETWORK TO GENERATE AN IMAGE  

THAT MAXIMIZES THE OUTPUT SCORE

arg max Sc(I)� �||I||22

TRY TO FIND AN IMAGE THAT GENERATES A  
HIGH SCORE FOR A GIVEN CLASS

Simonyan+14

Score of class c for image I

I

image I



INCEPTIONISM - DEEP DREAM

Simonyan+14

L1 L2 L3 Ln. . .

w1 w2 w3

I

SC(I)

DURING THE TRAINING PHASE THE WEIGHTS ARE 
LEARNED TO MAP I INTO Sc



INCEPTIONISM - DEEP DREAM

Simonyan+14

L1 L2 L3 Ln. . .

w1 w2 w3

I SC(I)

DURING THE RECONSTRUCTION PHASE, I IS LEARNT 
TRHOUG BACKPROPAGATION KEEPING THE WEIGHTS 

FIXED  



INCEPTIONISM - DEEP DREAM

RESULTS REVEAL INTERESTING INFORMATION ON  
HOW THE NETWORKS BUILD REPRESENTATIONS OF 

OBJECTS



INCEPTIONISM - DEEP DREAM

RESULTS REVEAL INTERESTING INFORMATION ON  
HOW THE NETWORKS BUILD REPRESENTATIONS OF 

OBJECTS

SOME STRANGE CASES…



DEEP DREAM

https://deepdreamgenerator.com/

IT HAS NOW BECOME A SORT OF ART?



INTEGRATED GRADIENTS

Sundararajan+17



INTEGRATED GRADIENTS



INTEGRATED GRADIENTS

KERAS IMPLEMENTATION: 
https://github.com/hiranumn/IntegratedGradients



PART IV: IMAGE 2 IMAGE NETWORKS + 
INTRODUCTION TO GENERATIVE 

MODELS


