

NEURAL NETWORK TO PREDICT RESULTS OF MIDTERM
ELECTIONS

SOURCE

Features  
(x)

Labels (y)

2 hidden  
layers

NEURAL NETWORK TO PREDICT RESULTS OF MIDTERM
ELECTIONS

SOURCE

Features  
(x)

Labels (y)

2 hidden  
layers

p = g3(W3g2(W2g1(W1 ~x0)))

NEURAL NETWORK TO PREDICT RESULTS OF MIDTERM
ELECTIONS

SOURCE

OK, SO NOW LET’S FIND
THE WEIGHTS

OPTIMIZATION
[OR HOW TO FIND THE WEIGHTS?]

p = g3(W3g2(W2g1(W1 ~x0)))
NETWORK 
FUNCTION

OPTIMIZATION
[OR HOW TO FIND THE WEIGHTS?]

p = g3(W3g2(W2g1(W1 ~x0)))

1

N

NX

i=1

(yi � pi)
2 LOSS  

FUNCTION

WE SIMPLY WANT TO MINIMIZE THE LOSS FUNCTION WITH
RESPECT TO THE WEIGHTS, i.e. FIND THE WEIGHTS THAT

GENERATE THE MINIMUM LOSS

WE SIMPLY WANT TO MINIMIZE THE LOSS FUNCTION WITH
RESPECT TO THE WEIGHTS, i.e. FIND THE WEIGHTS THAT

GENERATE THE MINIMUM LOSS

WE THEN USE STANDARD MINIMIZATION ALGORITHMS 
THAT YOU ALL KNOW…

FOR EXAMPLE….

Gradient Descent Newton

Wt+1 = Wt � �trf(Wt) Wt+1 = Wt � �[Hf(Wt)]
�1rf(Wt)

[gradient] [hessian]

NEWTON CONVERGES FASTER…

FOR EXAMPLE….

Gradient Descent Newton

Wt+1 = Wt � �trf(Wt) Wt+1 = Wt � �[Hf(Wt)]
�1rf(Wt)

[gradient] [hessian]

NEWTON CONVERGES FASTER…

BUT NEEDS THE HESSIAN

FOR EXAMPLE….

Gradient Descent Newton

Wt+1 = Wt � �trf(Wt) Wt+1 = Wt � �[Hf(Wt)]
�1rf(Wt)

[gradient] [hessian]

NEWTON CONVERGES FASTER…

BUT NEEDS THE HESSIAN

MOST USED BY FAR….

FOR EXAMPLE….

Gradient Descent Newton

Wt+1 = Wt � �trf(Wt) Wt+1 = Wt � �[Hf(Wt)]
�1rf(Wt)

[gradient] [hessian]

NEWTON CONVERGES FASTER…

BUT NEEDS THE HESSIAN

MOST USED BY FAR….

EVERYTHING RELIES  
ON COMPUTING THE GRADIENT

NICE, BUT I NEED TO COMPUTE TE
GRADIENT AT EVERY ITERATION OF

AN ARBITRARY COMPLEX FUNCTION!

BACKPROPAGATION
[AT THE NEURON LEVEL]

Credit: A. Karpathy

BACKPROPAGATION
[AT THE NEURON LEVEL]

Credit: A. Karpathy

BACKPROPAGATION
[AT THE NEURON LEVEL]

Credit: A. Karpathy

BACKPROPAGATION
[AT THE NEURON LEVEL]

Credit: A. Karpathy

BACKPROPAGATION
[AT THE NEURON LEVEL]

Credit: A. Karpathy

BACKPROPAGATION
[AT THE NEURON LEVEL]

Credit: A. Karpathy

LET’S FOLLOW A NETWORK
WHILE IT LEARNS…

EXAMPLE TAKEN FROM HERE

EXAMPLE TAKEN FROM HERE

LET’S ASSUME A VERY SIMPLE TRAINING SET: 
X=(0.05, 0.10) —> Y=(0.01,0.99)

1. THE FORWARD PASS

inh1 = 0.15⇥ 0.05 + 0.2⇥ 0.1 + 0.35 = 0.3775

inh1 = w1i1 + w2i2 + b1

[with initial weights]

initial weights

1. THE FORWARD PASS

inh1 = 0.15⇥ 0.05 + 0.2⇥ 0.1 + 0.35 = 0.3775

inh1 = w1i1 + w2i2 + b1

[with initial weights]

initial weights

outh1 =
1

1 + e�inh1
= 0.5932

[after the activation function]

1. THE FORWARD PASS

initial weights

WE CONTINUE TO o1

ino1 = w5outh1 + w6outh2 + b2

ino1 = 0.4⇥ 0.593 + 0.45⇥ 0.596 + 0.6 = 1.105

outo1 =
1

1 + e�1.105
= 0.751

1. THE FORWARD PASS

initial weights

AND THE SAME FOR o2

outo2 = 0.7729

2. THE LOSS FUNCTION

initial weights

Ltotal =
X

0.5(target� output)2

Lo1 = 0.5(targeto1 � output01)
2 = 0.5⇥ (0.01� 0.751)2 = 0.274

Lo2 = 0.023

2. THE LOSS FUNCTION

initial weights

Ltotal =
X

0.5(target� output)2

Lo1 = 0.5(targeto1 � output01)
2 = 0.5⇥ (0.01� 0.751)2 = 0.274

Lo2 = 0.023

Ltotal = Lo1 + Lo2 = 0.298

3. THE BACKWARD PASS

initial weights

FOR W5 WE WANT:
@Ltotal

@w5

[gradient of loss function]

3. THE BACKWARD PASS
FOR W5 WE WANT:

@Ltotal

@w5

[gradient of loss function]

WE APPLY THE CHAIN RULE:

@Ltotal

@w5
=

@Ltotal

@outo1
⇥ @outo1

@ino1
⇥ @ino1

@w5

3. THE BACKWARD PASS
@Ltotal

@w5
=

@Ltotal

@outo1
⇥ @outo1

@ino1
⇥ @ino1

@w5

Ltotal = 0.5(targeto1 � outo1)
2 + 0.5(targeto2 � outo2)

2

@Ltotal

@outo1
= 2⇥ 0.5(targeto1 � outo1)⇥ (�1) = 0.741

3. THE BACKWARD PASS
@Ltotal

@w5
=

@Ltotal

@outo1
⇥ @outo1

@ino1
⇥ @ino1

@w5

outo1 =
1

1 + e�ino1

@outo1
@ino1

= outo1 ⇥ (1� outo1) = 0.186

3. THE BACKWARD PASS
@Ltotal

@w5
=

@Ltotal

@outo1
⇥ @outo1

@ino1
⇥ @ino1

@w5

ino1 = w5 ⇥ outh1 + w6 ⇥ outh2 + b2

@ino1

@w5
= outh1 ⇥ w1�1

5 = outh1 = 0.593

3. THE BACKWARD PASS

ALL TOGETHER:

@Ltotal

@w5
=

@Ltotal

@outo1
⇥ @outo1

@ino1
⇥ @ino1

@w5

@Ltotal

@w5
= 0.741⇥ 0.186⇥ 0.593 = 0.082

4. UPDATE WEIGHTS WITH GRADIENT  
AND LEARNING RATE

wt+1
5 = w5 � �⇥ @Ltotal

@w5

wt+1
5 = 0.4� 0.5⇥ 0.082 = 0.358

THIS IS REPEATED FOR THE OTHER WEIGHTS
OF THE OUTPUT LAYER

wt+1
6 = 0.408

wt+1
7 = 0.511

wt+1
8 = 0.561

AND BACK-PROPAGATED TO THE HIDDEN
LAYERS

VISUALIZE SIMPLE
NETWORK LEARNING

ONE KEY PROBLEM WITH GRADIENT DESCENT IS THAT IT
EASILY CONVERGES TO LOCAL MINIMA BY FOLLOWING

THE STEEPEST DESCENT

ONE KEY PROBLEM WITH GRADIENT DESCENT IS THAT IT
EASILY CONVERGES TO LOCAL MINIMA BY FOLLOWING

THE STEEPEST DESCENT

THE CHOICES OF THE INITIAL WEIGHTS AND THE
LEARNING RATES ARE IMPORTANT

ONE KEY PROBLEM WITH GRADIENT DESCENT IS THAT IT
EASILY CONVERGES TO LOCAL MINIMA BY FOLLOWING

THE STEEPEST DESCENT

THE CHOICES OF THE INITIAL WEIGHTS AND THE
LEARNING RATES ARE IMPORTANT

WE WILL TALK ABOUT  
THIS LATER

LEARNING RATES

Credit:

LEARNING RATES

Credit:

Wt+1 = Wt � �rf(Wt)

THERE ARE DIFFERENT WAYS  
TO UPDATE THE LEARNING RATE

LEARNING RATES

Credit:

Wt+1 = Wt � �rf(Wt)

THERE ARE DIFFERENT WAYS  
TO UPDATE THE LEARNING RATE

ADAGRAD:

Wt+1 = Wt �
�p

Gt + ✏
rf(Wt)

THE LEARNING RATE IS SCALED DEPENDING ON THE HISTORY OF PREVIOUS GRADIENTS

G IS A MATRIX CONTAINING ALL PREVIOUS GRADIENTS. WHEN THE GRADIENT BECOMES
LARGE THE LEARNING RATE IS DECREASED AND VICE VERSA.

Gt+1 = Gt + (rf)2

LEARNING RATES

Credit:

Wt+1 = Wt � �rf(Wt)

THERE ARE DIFFERENT WAYS  
TO UPDATE THE LEARNING RATE

RMSPROP:

Wt+1 = Wt �
�p

Gt + ✏
rf(Wt)

THE LEARNING RATE IS SCALED DEPENDING ON THE HISTORY OF PREVIOUS GRADIENTS

SAME AS ADAGRAD BUT G IS CALCULATED BY EXPONENTIALLY DECAYING AVERAGE

Gt+1 = �Gt + (1� �)(rf)2

ADAM [Adaptive moment estimator]:

SAME IDEA, USING FIRST AND SECOND ORDER
MOMENTUMS

Gt+1 = �2Gt + (1� �2)(rf)2 Mt+1 = �1Mt + (1� �1)(rf)

Wt+1 = Wt �
�p

Ĝt + ✏
M̂t

with: M̂t+1 =
Mt

1� �1
Ĝt+1 =

Gt

1� �2

ADAM [Adaptive moment estimator]:

SAME IDEA, USING FIRST AND SECOND ORDER
MOMENTUMS

Gt+1 = �2Gt + (1� �2)(rf)2 Mt+1 = �1Mt + (1� �1)(rf)

Wt+1 = Wt �
�p

Ĝt + ✏
M̂t

with: M̂t+1 =
Mt

1� �1
Ĝt+1 =

Gt

1� �2

ONLY FOR YOUR
RECORDS

IN KERAS:

IN KERAS:

Credit

Credit

BATCH GRADIENT DESCENT

LOCAL MINIMA CAN ALSO BE AVOIDED BY COMPUTING THE
GRADIENT IN SMALL BATCHES INSTEAD OF OVER THE FULL

DATASET

BATCH GRADIENT DESCENT

LOCAL MINIMA CAN ALSO BE AVOIDED BY COMPUTING THE
GRADIENT IN SMALL BATCHES INSTEAD OF OVER THE FULL

DATASET

MINI-BATCH GRADIENT DESCENT

Wt+1/num = Wt � �trf(Wt;x
(i,i+b), y(i,i+b))

THE GRADIENT IS COMPUTED OVER A BATCH OF SIZE B

STOCHASTIC GRADIENT
DESCENT

THE EXTREME CASE IS TO COMPUTE THE GRADIENT ON EVERY
TRAINING EXAMPLE.

STOCHASTIC GRADIENT DESCENT

Wt+1/num = Wt � �trf(Wt;x
(i,i+b), y(i,i+b))

b=1

Credit

CAN WE GO DEEP NOW?

CAN WE GO DEEP NOW?

ALMOST THERE…LET’S THINK FOR A
MOMENT ABOUT WHAT WE PUT AS

INPUT…

What do we put as input?

THIS IS WHAT
MACHINES SEE

What do we put as input?

PRE-PROCESS DATA TO EXTRACT MEANINGFUL
INFORMATION

THIS IS GENERALLY CALLED FEATURE EXTRACTION

DATA

Spiral!

Emission line!

Merger!
Clump!

AGN!

DATA

Spiral!

Emission line!

Merger!
Clump!

AGN!

fW (~x) = ~y LABEL
Q(0) , SF(1)

(U-V, V-J) FEATURES
sgn[(u-v)-0.8*(v-j)-0.7]

WEIGHTS

NETWORK FUNCTION

Liu+18

Learning
algorithm

(Neural
Network,
SVM…)

DATA

Pre-Processing:  
Dimension
reduction

PCA or manual (colors,
C, A, n …)

morphs.
photoz’s

….

N
parameters

THE “CLASSICAL” APPROACH

Learning
algorithm

(Neural
Network,
SVM…)

DATA

PCA or manual (colors,
C, A, n …)

morphs.
photoz’s

….

N
parameters

“CLASSICAL” MACHINE LEARNING

Pre-Processing:  
Dimension
reduction

In Astronomy
• Colors, Fluxes

• Shape indicators

• Line ratios, spectral features

• Stellar Masses, Velocity Dispersions

Requires specialized software before
feeding the machine learning algorithm

IT IMPLIES A DIMENSIONALITY REDUCTION!

PHOTOMETRIC REDSHIFTS

Collister+08

g
r
i
z

SDSS

EVERYTHING IS IN THE FEATURES….WHAT IF I
IGNORED SOME IMPORTANT FEATURES?

EVERYTHING IS IN THE FEATURES….WHAT IF I
IGNORED SOME IMPORTANT FEATURES?

NEURAL NETWORK TO PREDICT RESULTS OF MIDTERM
ELECTIONS

SOURCE

Features  
(x)

Labels (y)

2 hidden  
layers

Other general computer
vision features [for images!]

• Pixel Concatenation

• Color histograms

• Texture Features

• Histogram of Gradients

• SIFT

FOR MANY YEARS COMPUTER
VISION  

RESEARCHERS HAVE BEEN
TRYING TO FIND THE MOST  

GENERAL FEATURES

Other general computer
vision features [for images!]

• Pixel Concatenation

• Color histograms

• Texture Features

• Histogram of Gradients

• SIFT

FOR MANY YEARS COMPUTER
VISION  

RESEARCHERS HAVE BEEN
TRYING TO FIND THE MOST  

GENERAL FEATURES

THE BEST CLASSICAL
SOLUTION [BEFORE 2012]
WHERE BASED ON LOCAL

FEATURES

HISTOGRAM OF ORIENTED
GRADIENTS (HoG)

1. DIVIDE IMAGE INTO SMALL  
SPATIAL REGIONS CALLED CELLS

2. COMPUTE INTENSITY GRADIENTS
OVER N DIRECTIONS [TYPICALLY 9

FOR IMAGE]

3. COMPUTE WEIGHTED 1-D
HISTOGRAM OF ALL DIRECTIONS. A
CELL IS REDUCED TO N NUMBERS

HISTOGRAM OF ORIENTED
GRADIENTS (HoG)

HISTOGRAM OF ORIENTED
GRADIENTS (HoG)

KEEP THIS IMAGE IN MIND FOR LATER…

What about using raw data?
ALL INFORMATION IS IN THE INPUT DATA

WHY REDUCING ?

LET THE NETWORK FIND THE INFO

What about using raw data?

LARGE DIMENSION SIGNALS SUCH AS IMAGES OR
SPECTRA WOULD REQUIRE TREMENDOUSLY LARGE

MODELS

A 512x512 image as input of a fully connected layer producing
output of same size:

(512⇥ 512)2 = 7e10

ALL INFORMATION IS IN THE INPUT DATA

WHY REDUCING ?

LET THE NETWORK FIND THE INFO

FEEDING INDIVIDUAL RESOLUTION ELEMENTS IS NOT
VERY EFFICIENT SINCE IT LOOSES ALL INVARIANCE TO

TRANSLATION AND IGNORES CORRELATION IN THE DATA

BUT

FEEDING INDIVIDUAL RESOLUTION ELEMENTS IS NOT
VERY EFFICIENT SINCE IT LOOSES ALL INVARIANCE TO

TRANSLATION

SO?

fW (~x) = ~y LABEL
Q , SF

LET THE MACHINE FIGURE THIS OUT (“unsupervised feature extraction”)

DEEP LEARNING

LET’S GO A STEP FORWARD INTO LOOSING CONTROL….

PART III:CONVOLUTIONAL
NEURAL NETWORKS

Discrete Convolution

f(x) ⇤ g(x) =
k=+1X

k=�1
f(k).g(k � x)1D:

[Spectra]

2D:
[Images]

f(x, y) ⇤ g(x, y) =
k=+1X

k=�1

l=+1X

l=�1
f(k, l).g(x� k, y � l)

DISCRETE CONVOLUTION

f(x) ⇤ g(x) =
k=+1X

k=�1
f(k).g(k � x)1D:

[Spectra]

2D:
[Images]

f(x, y) ⇤ g(x, y) =
k=+1X

k=�1

l=+1X

l=�1
f(k, l).g(x� k, y � l)

CONVOLUTION KERNEL INPUT DATA

1-D CONVOLUTION

credit

x

1-D CONVOLUTION

credit

x

1-D CONVOLUTION

credit

x

1-D CONVOLUTION

credit

x

1-D CONVOLUTION

credit

x

1-D CONVOLUTION

credit

x

1-D CONVOLUTION

credit

x

1-D CONVOLUTION

credit

x

THE CONVOLUTION BUILDING BLOCK OPERATION IS
EQUIVALENT TO A NEURON WITH AS MANY INPUTS AS

KERNEL ELEMENTS AND WEIGHTS EQUAL TO THE
KERNEL

w3x3

x

w3x3

THE CONVOLUTION BUILDING BLOCK OPERATION IS
EQUIVALENT TO A NEURON WITH AS MANY INPUTS AS

KERNEL ELEMENTS AND WEIGHTS EQUAL TO THE
KERNEL

w3x3

THE CONVOLUTION BUILDING BLOCK OPERATION IS
EQUIVALENT TO A NEURON WITH AS MANY INPUTS AS

KERNEL ELEMENTS AND WEIGHTS EQUAL TO THE
KERNEL

w3x3

WITH THE ADVANTAGE THAT THE SAME WEIGHTS ARE
APPLIED TO ALL THE SIGNAL: TRANSLATION INVARIANCE

THE CONVOLUTION BUILDING BLOCK OPERATION IS
EQUIVALENT TO A NEURON WITH AS MANY INPUTS AS

KERNEL ELEMENTS AND WEIGHTS EQUAL TO THE
KERNEL

2-D CONVOLUTION

SAME IDEA, BUT THE KERNEL IS NOW 2D

Credit: animations from https://github.com/vdumoulin/conv_arithmetic

1/9 1/9 1/9

1/9 1/9 1/9

1/9 1/9 1/9

KERNEL INPUT (IMAGE) OUTPUT

2-D CONVOLUTION

SAME IDEA, BUT THE KERNEL IS NOW 2D

IN THE EXAMPLE: EACH 3x3 REGION GENERATES AN OUTPUT

Credit: animations from https://github.com/vdumoulin/conv_arithmetic

Sizeoutput = Sizeinput � Sizekernel + 1

1/9 1/9 1/9

1/9 1/9 1/9

1/9 1/9 1/9

X

EQUIVALENT TO A NEURON  
WITH 9 INPUTS

WEIGHTS ARE CODED  
IN THE KERNEL

1/9 1/9 1/9

1/9 1/9 1/9

1/9 1/9 1/9

X

EQUIVALENT TO A NEURON  
WITH 9 INPUTS

WEIGHTS ARE CODED  
IN THE KERNEL

THIS IS WHAT
THE

NETWORK
LEARNS!

1/9 1/9 1/9

1/9 1/9 1/9

1/9 1/9 1/9

X

THE KEY IS AGAIN THAT  
THE SAME WEIGHTS ARE  
APPLIED TO ALL IMAGE 

REGIONS

1/9 1/9 1/9

1/9 1/9 1/9

1/9 1/9 1/9

X

wi
[weights]

ACTIVATION FUNCTION  
AT EVERY KERNEL POSITION

xi

xi

wi

z(x) = relu(wx+ b)

1/9 1/9 1/9

1/9 1/9 1/9

1/9 1/9 1/9

X

wi
[weights]

ACTIVATION FUNCTION  
AT EVERY KERNEL POSITION

xi

xi

wi

z(x) = relu(wx+ b)

IN DEEP NETWORKS ReLU is the
most commonly used activation

function - see Vanishing Gradient
Problem

1/9 1/9 1/9

1/9 1/9 1/9

1/9 1/9 1/9

CONVOLUTIONS CAN ALSO BE COMPUTED ACROSS
CHANNELS (OR COLORS)

A COLOR IMAGE IS A
TENSOR  

OF SIZE height x width x
channels

CONVOLUTIONS CAN ALSO BE COMPUTED ACROSS
CHANNELS (OR COLORS)

A COLOR IMAGE IS A
TENSOR  

OF SIZE height x width x
channels

THEN THE KERNEL
HAS ALSO 3
CHANNELS

IN ASTRONOMY …

IT OPENS THE DOOR TO ANALYZE MULTIPLE  
FILTERS () SIMULTANEOUSLY

MULTIPLE CONVOLUTIONS WITH DIFFERENT KERNELS
CAN BE PERFORMED  

credit

MULTIPLE CONVOLUTIONS WITH DIFFERENT KERNELS
CAN BE PERFORMED  

credit

MULTIPLE CONVOLUTIONS WITH DIFFERENT KERNELS
CAN BE PERFORMED  

credit

MULTIPLE CONVOLUTIONS WITH DIFFERENT KERNELS
CAN BE PERFORMED  

credit

MULTIPLE CONVOLUTIONS WITH DIFFERENT KERNELS
CAN BE PERFORMED  

credit

MULTIPLE CONVOLUTIONS WITH DIFFERENT KERNELS
CAN BE PERFORMED  

credit

IN KERAS…

model.add(Convolution2D(4,5,5, activation=“relu”))

model = Sequential()

depth
sizeX, sizeY

Credit

SINCE CONVOLUTIONS OUTPUT ONE SCALAR, THEY CAN BE SEEN AS AN
INDIVIDUAL NEURON WITH A RECEPTIVE FIELD LIMITED TO THE KERNEL

DIMENSIONS

Credit

SINCE CONVOLUTIONS OUTPUT ONE SCALAR< THEY CAN BE SEEN AS AN
INDIVIDUAL NEURON WITH A RECEPTIVE FIELD LIMITED TO THE KERNEL

DIMENSIONS

THE SAME NEURON IS FIRED WITH DIFFERENT AREAS FROM THE INPUT

Dieleman+16

EXAMPLE OF 32 FILTERS LEARNED IN  
A CONVOLUTIONAL LAYER

Dieleman+16

EXAMPLE OF 32 FILTERS LEARNED IN  
A CONVOLUTIONAL LAYER

THESE ARE CALLED FEATURE MAPS

ESTIMATING SHAPES AND
NUMBER OF PARAMETERS

KERNEL SHAPE:
(F, F,Ci, Co)

PADDING:
P

STRIDES:
S

OUTPUT SIZE: W0 = (W i � F + 2P)/S + 1

OPTIONS: STRIDES

NO STRIDES STRIDES

OPTIONS: DILATION

NO STRIDES DILATION

OPTIONS: PADDING

NO STRIDES PADDING

ESTIMATING SHAPES AND
NUMBER OF PARAMETERS

KERNEL SHAPE:
(F, F,Ci, Co)

NUMBER OF PARAMETERS: (F ⇥ F ⇥ Ci + 1)⇥ Co

PADDING:
P

STRIDES:
S

OUTPUT SIZE: W0 = (W i � F + 2P)/S + 1

ESTIMATING SHAPES AND
NUMBER OF PARAMETERS

KERNEL SHAPE:
(F, F,Ci, Co)

NUMBER OF PARAMETERS: (F ⇥ F ⇥ Ci + 1)⇥ Co

PADDING:
P

STRIDES:
S

OUTPUT SIZE: W0 = (W i � F + 2P)/S + 1

the number of parameters increases fast!

32 filters of 5*5 on a color image —> 2432 parameters to learn

DOWNSAMPLING
DOWNSAMPLING IS APPLIED TO REDUCE THE OVERALL

SIZE OF TENSORS

POOLING
CONVOLUTIONS ARE OFTEN FOLLOWED BY AN

OPERATION OF DOWNSAMPLING [POOLING]

VERY SIMPLE OPERATION - ONLY ONE OUT OF EVERY  
N PIXELS ARE KEPT

OFTEN MATCHED WITH AN INCREASE OF THE FEATURE
CHANNELS

TYPES OF POOLING

SUM POOLING

SQUARE SUM POOLING

MAX POOLING y = max(xuv)

y =
X

xuv

y =
qX

x2
uv

TYPES OF POOLING

SUM POOLING

SQUARE SUM POOLING

MAX POOLING y = max(xuv)

y =
X

xuv

y =
qX

x2
uv

MAX POOLING 1D

Credit: F. Fleuret

MAX POOLING 1D

Credit: F. Fleuret

MAX POOLING 1D

Credit: F. Fleuret

MAX POOLING 1D

Credit: F. Fleuret

MAX POOLING 1D

Credit: F. Fleuret

CONVNET OR CNN

L1 L2 L3 L4

A CONCATENATION OF MULTIPLE 
CONVOLUTIONAL BLOCKS

CONVNET OR CNN

L1 L2 L3 L4

EACH BLOCK TYPICALLY MADE OF:

CONV ACTIVATION POOLING (+dropout 
for training)

EXAMPLE OF VERY SIMPLE CNN

Dominguez-Sanchez+18

EXAMPLE OF VERY SIMPLE CNN

Dominguez-Sanchez+18

3 convolutional layers

EXAMPLE OF VERY SIMPLE CNN

Dominguez-Sanchez+18

3 convolutional layers

KERNEL SIZE

EXAMPLE OF VERY SIMPLE CNN

Dominguez-Sanchez+18

3 convolutional layers

DEPTH

EXAMPLE OF VERY SIMPLE CNN

3 convolutional layers

Dominguez-Sanchez+18
ReLu activation

EXAMPLE OF VERY SIMPLE CNN

3 convolutional layers

Dominguez-Sanchez+18
Pooling

EXAMPLE OF VERY SIMPLE CNN

Dominguez-Sanchez+18

OVERALL: - decrease of tensor size
- increase of depth

IMPLEMENTATION IN KERAS

MERGERS

BARS

EXAMPLE OF VERY SIMPLE CNN

Dominguez-Sanchez+18

OVERALL:
- decrease of tensor size

- increase of depth

Number of parameters

EXAMPLE OF VERY SIMPLE CNN

Dominguez-Sanchez+18

OVERALL:
- decrease of tensor size

- increase of depth

2 million of parameters for this very simple network!

CHECKING THE NUMBER OF
PARAMETERS / LAYERS WITH KERAS

model.summary()

IN THE REAL LIFE…

RESNET

IN THE REAL LIFE…

RESNET

DO WE NEED TO GO  
THIS DEEP FOR  
ASTRONOMY  

APPLICATIONS?

[34 layers - authors  
explored up to 1202!]

He+15

DEEPER TENDS TO BE BETTER…

THE PROBLEMS OF
GOING “TOO DEEP”

• DEEP NETWORKS ARE MORE DIFFICULT TO
OPTIMIZE

• NEED MORE DATA - MORE SUBJECT TO OVER-
FITTING

• AND ALSO NEED MORE TIME …

OVER-FITTING

THE TRAINING  
LOSS DECREASES

THE TEST STAYS CONSTANT  
OR INCREASES

DROPOUT 
[Hinton+12]

- THE IDEA IS TO REMOVE NEURONS RANDOMLY DURING
THE TRAINING

- ALL NEURONS ARE PUT BACK DURING THE TEST PHASE

DROPOUT
WHY DOES IT WORK?

1. SINCE NEURONS ARE REMOVED RANDOMLY, IT AVOIDS
CO-ADAPTATION AMONG THEMSELVES

2. DIFFERENT SETS OF NEURONS WHICH ARE SWITCHED
OFF, REPRESENT A DIFFERENT ARCHITECTURE AND ALL

THESE DIFFERENT ARCHITECTURES ARE TRAINED IN
PARALLEL. FOR N NEURONS ATTACHED TO DROPOUT, THE
NUMBER OF SUBSET ARCHITECTURES FORMED IS 2^N. SO

IT AMOUNTS TO PREDICTION BEING AVERAGED OVER
THESE ENSEMBLES OF MODELS.

DROPOUT

WITH A LITTLE BIT  
OF DROPOUT

Huertas-Company+15

CAPTURING THE MODEL UNCERTAINTY
NEURAL NETWORKS AS BAYESIAN MODELS

Denker&LEcun91, Neal+95, Graves+11, Kingma+15, Gal+15…

BNNs ADD A PRIOR DISTRIBUTION TO  
EACH WEIGHT - HARD TO TRAIN

GAL+15 SHOW THAT DROPOUT CAN  
BE USED TO ESTIMATE UNCERTAINTY

IMPLEMENTATION IN KERAS / TENSORFLOW

VANISHING / EXPLODING
GRADIENT PROBLEM

REMEMBER THAT:

output layer i+1

activation  
function

weights

yi+1 = �[
X

wiyi]

output layer i

VANISHING / EXPLODING
GRADIENT PROBLEM

WITH MANY LAYERS:

yn = �

...�

...�

X

w0x

!!!

VANISHING/EXPLODING
GRADIENT PROBLEM

yn = �

...�

...�

X

w0x

!!!

L1 L2 L3 Ln

x
. . .

w1 w2 w3

VANISHING/EXPLODING
GRADIENT PROBLEM

yn = �

...�

...�

X

w0x

!!!

L1 L2 L3 Ln

x
. . .

w1 w2 w3

TRAINING BECOMES UNSTABLE  
VERY SLOW OR NO CONVERGENCE

VANISHING/EXPLODING
GRADIENT PROBLEM

IF WE ASSUME AN IDENTITY ACTIVATION FUNCTION:

ŷ = x
Y

n

wi
with:

x =

✓
x1

x2

◆
wi =

✓
w0

i 0
0 w1

i

◆

VANISHING/EXPLODING
GRADIENT PROBLEM

ŷ = x
Y

n

wi

x =

✓
x1

x2

◆

wi =

✓
w0

i 0
0 w1

i

◆

IF WEIGHTS ARE ALL INITIALIZED  
TO VALUES <<1:

wL
i ! 0

VANISHING GRADIENT

VANISHING/EXPLODING
GRADIENT PROBLEM

ŷ = x
Y

n

wi

x =

✓
x1

x2

◆

wi =

✓
w0

i 0
0 w1

i

◆

IF WEIGHTS ARE ALL INITIALIZED  
TO VALUES >1:

EXPLODING GRADIENT

wL
i ! 1

TRAINING BECOMES UNSTABLE  
VERY SLOW OR NO CONVERGENCE

VANISHING/EXPLODING
GRADIENT PROBLEM

WEIGHT INITIALIZATION IS A KEY POINT…

z = x1w1 + x2w2 + ...+ xnwn

WEIGHT INITIALIZATION IS A KEY POINT…

z = x1w1 + x2w2 + ...+ xnwn

THE LARGER n, THE SMALLER  
WEIGHTS SHOULD BE…

WEIGHT INITIALIZATION IS A KEY POINT…

z = x1w1 + x2w2 + ...+ xnwn

THE LARGER n, THE SMALLER  
WEIGHTS SHOULD BE…

ONE SIMPLE SOLUTION: �2(wi) =
1

n
number  

of  
inputs

variance

WEIGHT INITIALIZATION IS A KEY POINT…

z = x1w1 + x2w2 + ...+ xnwn

THE LARGER n, THE SMALLER  
WEIGHTS SHOULD BE…

ONE SIMPLE SOLUTION: �2(wi) =
1

n
number  

of  
inputs

variance

WEIGHT INITIALIZATION IS A KEY POINT…

For ReLU activation functions we typically use:

�2(wi) =
2

n

[He initialization, He+15]

WEIGHT INITIALIZATION IS A KEY POINT…

IMPLEMENTATION IN KERAS:

initialization = 'he_normal'
act = ‘relu'

model = Sequential()
model.add(Convolution2D(depth, conv_size, conv_size, activation=act, border_mode='same',
name = "conv%i"%(layer_n), init=initialization, W_constraint=constraint))

WEIGHT INITIALIZATION IS A KEY POINT…

IMPLEMENTATION IN KERAS:

initialization = 'he_normal'
act = ‘relu'

model = Sequential()
model.add(Convolution2D(depth, conv_size, conv_size, activation=act, border_mode='same',
name = "conv%i"%(layer_n), init=initialization, W_constraint=constraint))

MANY OTHER INITIALIZATIONS AVAILABLE:

keras.initializers https://keras.io/initializers/

BATCH NORMALIZATION  
[SZEGEDY+15]

ANOTHER SOLUTION TO KEEP REASONABLE VALUES OF
THE ACTIVATIONS IN DEEP NETWORKS

BATCH NORMALIZATION PREVENTS LOW OR LARGE
VALUES BY RE-NORMALIZING THE VALUES BEFORE

ACTIVATION FOR EVERY BATCH

ŷi = �
yi � E(yi)

�(yi)
+ �

NORMALIZED INPUT

SCATTER

INPUT

BATCH NORMALIZATION  
[SZEGEDY+15]

BATCH NORMALIZATION SPEEDS UP AND STABILIZES
TRAINING

ŷi = �
yi � E(yi)

�(yi)
+ �

NORMALIZED INPUT

SCATTER

INPUT

AS FOR THE DROPOUT, THERE IS A DIFFERENT BEHAVIOR
BETWEEN TRAINING AND TESTING

BATCH NORMALIZATION  
[SZEGEDY+15]

IN KERAS, IT IS IMPLEMENTED AS AN ADDITIONAL LAYER

THIS IS A CHANGE OF PARADIGM!

Learning
algorithmDATA

Dimension
reduction

PCA or manual
(colors, C, A, n …)

prediction
N

parameters
FEATURE LEARNING

LAYERS

Raw data

ANNDATA

Dimension
reduction

PCA or manual
(colors, C, A, n …)

prediction
N

parameters
FEATURE LEARNING

LAYERS

Raw data

THE LEARNING ALGORITHM  
CAN BE CHANGED

SVM?DATA

Dimension
reduction

PCA or manual
(colors, C, A, n …)

prediction
N

parameters
FEATURE LEARNING

LAYERS

Raw data

THE LEARNING ALGORITHM  
CAN BE CHANGED

SVM?DATA

Dimension
reduction

PCA or manual
(colors, C, A, n …)

prediction
N

parameters
FEATURE LEARNING

LAYERS

Raw data

OR  
ANY  

OTHER  
LEARNING  

ALGORITHM

THE LEARNING ALGORITHM  
CAN BE CHANGED

SVM?DATA

manual (colors, C, A, n
…)

prediction
N

parameters

FEATURE LEARNING
LAYERS

Raw data

OR  
ANY  

OTHER  
LEARNING  

ALGORITHM

THE FEATURES CAN  
BE MANIPULATED OR COMBINED

SVM?DATA

manual (colors, C, A, n
…)

prediction
N

parameters

FEATURE LEARNING
LAYERS

Raw data

OR  
ANY  

OTHER  
LEARNING  

ALGORITHM

THE FEATURES CAN  
BE MANIPULATED OR COMBINED

Features Learned from  
another CNN…

THIS IS A CHANGE OF PARADIGM!

99.8

96.3

88.5

97.1

93.7

11.5 3.0 5.6

 2.9 0.2

 0.5 0.8

 0.8

 0.8

 0.4

 0.4

 0.4

 0.3

 0.3

 0.3

 0.0

 0.0

 0.0

 0.2

 0.2

SPHEROID DISK IRR PS Unc
VISUAL DOMINANT CLASS

SPHEROID

DISK

IRR

PS

Unc

AU
TO

 D
O

M
IN

AN
T

CL
AS

S

[HUERTAS-COMPANY+14]

87

13 75

25

Early-Type Late-Type

Early-Type

Late-Type

SVMs CNNs

97
99

AUTOMATIC

A
U
TO
M
AT
IC

VISUAL
VISUAL

[HUERTAS-COMPANY+15b]

ALSO FOR GALAXY MORPHOLOGY

PHOTOMETRIC REDSHIFTS

Pasquet+18

AUTOMATICALLY COMBINING MORPHOLOGY AND COLOR
FOR PHOTOZ ESTIMATION

DATA QUALITY SELECTION FOR EUCLID

Thanks to H. McCracken

DATA QUALITY SELECTION FOR EUCLID

model = models.Sequential()
model.add(layers.Conv2D(32, (3, 3), activation='relu',
 input_shape=(150, 150, 1)))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Conv2D(64, (3, 3), activation='relu'))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Conv2D(64, (3, 3), activation='relu'))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Flatten())
model.add(layers.Dense(128, activation='relu'))
model.add(layers.Dense(1, activation='sigmoid')) Thanks to H. McCracken

WELL, BUT THIS IS AN
“OLD” IDEA - WHY NOW?

WELL, BUT THIS IS AN
“OLD” IDEA - WHY NOW?

1 - MORE DATA TO TRAIN! DEEP NETWORKS HAVE A
LARGE NUMBER OF PARAMETERS - THX TO SOCIAL

MEDIA …

WELL, BUT THIS IS AN
“OLD” IDEA - WHY NOW?

2 - GPUs - TRAINING OF THESE DEEP NETWORKS
HAS REMAINED PROHIBITIVELY TIME CONSUMING

WITH CPUs - THX TO VIDEO GAMES…

GPUs

NVIDA TITANX GPU

GPUs vs. CPUs
CPUs GPUs

FEWER CORES (~10x)

EACH CORE IS FASTER

USEFUL FOR
SEQUENTIAL TASKS

MORE CORES (100x)

EACH CORE IS SLOWER

USEFUL FOR PARALLEL
TASKS

Slide Credit:

GPUs vs. CPUs
More benchmarks available here.

Figure credit: J. Johnson

GPUs for deep learning

NVIDIA GPUs ARE PROGRAMMED THROUGH CUDA
[Compute Unified Device Architecture]

ANOTHER ALTERNATIVE IS OPENCL, SUPPORTED BY
SEVERAL MANUFACTURES, LESS INVESTMENT [Way less

used]

CuDNN IS A LIBRARY FOR SPECIFIC DEEP LEARNING
COMPUTATIONS ON NVIDIA GPUs

THE PRICE TO PAY?

1. LARGE NUMBER OF PARAMETERS IMPLIES LARGE  
DATASETS TO TRAIN

2. LOOSE EVEN MORE DEGREE OF CONTROL OF WHAT  
THE ALGORITHM IS DOING SINCE THE FEATURE 

EXTRACTION PROCESS BECOMES UNSUPERVISED

IMAGE OF THE BACK OF THE EYE

IMAGE OF THE BACK OF THE EYE

DEEP LEARNING CAN
IDENTIFY  

THE PATIENT’S  
 GENDER WITH 95%

ACCURACY

VISUALIZING CNNs 
[what happens inside a CNN?]

DEEP NETWORKS ARE “BLACK BOXES”?

INTERPRETING THE RESULTS IS  
EXTREMELY DIFFICULT

THIS IS TRUE BUT A LOT OF WORK  
IS DONE TO UNVEIL THEIR BEHAVIOR

THE SIMPLEST APPROACH IS TO VISUALIZE THE LEARNED
WEIGHTS AT INTERMEDIATE LAYERS

THE SIMPLEST APPROACH IS TO VISUALIZE THE LEARNED
WEIGHTS AT INTERMEDIATE LAYERS

NOT VERY INFORMATIVE  
THOUGH…

THE SIMPLEST APPROACH IS TO VISUALIZE THE LEARNED
WEIGHTS AT INTERMEDIATE LAYERS

IN KERAS:
build model
model = Sequential()
model.add(Convolution2D(depth, conv_size0, conv_size0, activation=act,
border_mode='same', name = "conv0",
 input_shape=(img_channels, img_rows, img_cols),
 init=initialization, W_constraint=constraint))
model.add(Dropout(dropout_rate_conv))

get the symbolic outputs of each "key" layer (we gave them unique names).
layer_dict = dict([(layer.name, layer) for layer in model.layers])

layer_dict[layer_name].W.get_value(borrow=True)
W = np.squeeze(W)
print("W shape : ", W.shape)

plot weights
pl.figure(figsize=(15, 15))
pl.title('conv1 weights')
nice_imshow(pl.gca(), make_mosaic(W, 6, 6), cmap=cm.binary)

THE SIMPLEST APPROACH IS TO VISUALIZE THE LEARNED
WEIGHTS AT INTERMEDIATE LAYERS

IN KERAS:
build model
model = Sequential()
model.add(Convolution2D(depth, conv_size0, conv_size0, activation=act,
border_mode='same', name = "conv0",
 input_shape=(img_channels, img_rows, img_cols),
 init=initialization, W_constraint=constraint))
model.add(Dropout(dropout_rate_conv))

get the symbolic outputs of each "key" layer (we gave them unique names).
layer_dict = dict([(layer.name, layer) for layer in model.layers])

layer_dict[layer_name].W.get_value(borrow=True)
W = np.squeeze(W)
print("W shape : ", W.shape)

plot weights
pl.figure(figsize=(15, 15))
pl.title('conv1 weights')
nice_imshow(pl.gca(), make_mosaic(W, 6, 6), cmap=cm.binary)

give names to layers

THE SIMPLEST APPROACH IS TO VISUALIZE THE LEARNED
WEIGHTS AT INTERMEDIATE LAYERS

IN KERAS:
build model
model = Sequential()
model.add(Convolution2D(depth, conv_size0, conv_size0, activation=act,
border_mode='same', name = "conv0",
 input_shape=(img_channels, img_rows, img_cols),
 init=initialization, W_constraint=constraint))
model.add(Dropout(dropout_rate_conv))

get the symbolic outputs of each "key" layer (we gave them unique names).
layer_dict = dict([(layer.name, layer) for layer in model.layers])

layer_dict[layer_name].W.get_value(borrow=True)
W = np.squeeze(W)
print("W shape : ", W.shape)

plot weights
pl.figure(figsize=(15, 15))
pl.title('conv1 weights')
nice_imshow(pl.gca(), make_mosaic(W, 6, 6), cmap=cm.binary)

create dictionary to link layers to names

THE SIMPLEST APPROACH IS TO VISUALIZE THE LEARNED
WEIGHTS AT INTERMEDIATE LAYERS

IN KERAS:
build model
model = Sequential()
model.add(Convolution2D(depth, conv_size0, conv_size0, activation=act,
border_mode='same', name = "conv0",
 input_shape=(img_channels, img_rows, img_cols),
 init=initialization, W_constraint=constraint))
model.add(Dropout(dropout_rate_conv))

get the symbolic outputs of each "key" layer (we gave them unique names).
layer_dict = dict([(layer.name, layer) for layer in model.layers])

layer_dict[layer_name].W.get_value(borrow=True)
W = np.squeeze(W)
print("W shape : ", W.shape)

plot weights
pl.figure(figsize=(15, 15))
pl.title('conv1 weights')
nice_imshow(pl.gca(), make_mosaic(W, 6, 6), cmap=cm.binary)

for a given name, get the weights

USING THE SAME IDEA, ONE CAN ALSO VISUALIZE  
THE FEATURE MAPS AT INTERMEDIATE LAYERS

THIS HELPS TRACING THE FEATURES LEARNED BY THE 
NETWORK

USE “DECONVNETS” TO MAP BACK THE FEATURE MAP
INTO THE PIXEL SPACE

Zeiler+14

IT ALLOWS TO SEE
WHICH  

REGIONS OF THE INPUT
GENERATED  

A MAXIMUM RESPONSE
IN A NEURON

Zeiler+14

Zeiler+14

EVERY BLOCK OF 9 SHOWS  
THE 9 STRONGEST RESPONSES TO A GIVEN FILTER OF LAYER2

Zeiler+14

THE CORRESPONDING REGIONS OF IMAGES THAT  
GENERATED THE MAXIMUM RESPONSE

CAN BE
REPEATED  

FOR DEEPER
LAYERS  

ALTHOUGH IT 
BECOMES LESS  

INTUITIVE

Zeiler+14

CAN BE
REPEATED  

FOR DEEPER
LAYERS  

ALTHOUGH IT 
BECOMES LESS  

INTUITIVE

Zeiler+14

KERAS IMPLEMENTATION OF VISUALIZATIONS 
THROUGH DECONVNETS

https://github.com/jalused/Deconvnet-keras

OCCLUSION SENSITIVITY TRIES ALSO TO FIND  
THE REGION OF THE IMAGE THAT TRIGGERED THE  

NETWORK DECISION BY MASKING DIFFERENT REGIONS  
OF THE INPUT IMAGE AND ANALYZING THE NETWORK

OUPUT

VERY TIME CONSUMING!

IT ALLOWS TO IF THE NETWORK IS TAKING THE  
DECISIONS BASED ON THE EXPECTED FEATURES

Zeiler+14

OCCLUSION SENSITIVITY TRIES ALSO TO FIND  
THE REGION OF THE IMAGE THAT TRIGGERED THE  

NETWORK DECISION BY MASKING DIFFERENT REGIONS  
OF THE INPUT IMAGE AND ANALYZING THE NETWORK

OUPUT

occluded region

for every position  
of the square the maximum response of a given layer  

is averaged
the output probability as a  

function of the occluding square  
position

Zeiler+14

INCEPTIONISM - DEEP DREAM

THE IDEA BEHIND INCEPTIONISM TECHNIQUES  
IS TO INVERT THE NETWORK TO GENERATE AN IMAGE  

THAT MAXIMIZES THE OUTPUT SCORE

arg max Sc(I)� �||I||22

TRY TO FIND AN IMAGE THAT GENERATES A  
HIGH SCORE FOR A GIVEN CLASS

Simonyan+14

Score of class c for image I

I

image I

INCEPTIONISM - DEEP DREAM

Simonyan+14

L1 L2 L3 Ln. . .

w1 w2 w3

I

SC(I)

DURING THE TRAINING PHASE THE WEIGHTS ARE
LEARNED TO MAP I INTO Sc

INCEPTIONISM - DEEP DREAM

Simonyan+14

L1 L2 L3 Ln. . .

w1 w2 w3

I SC(I)

DURING THE RECONSTRUCTION PHASE, I IS LEARNT 
TRHOUG BACKPROPAGATION KEEPING THE WEIGHTS

FIXED

INCEPTIONISM - DEEP DREAM

RESULTS REVEAL INTERESTING INFORMATION ON  
HOW THE NETWORKS BUILD REPRESENTATIONS OF

OBJECTS

INCEPTIONISM - DEEP DREAM

RESULTS REVEAL INTERESTING INFORMATION ON  
HOW THE NETWORKS BUILD REPRESENTATIONS OF

OBJECTS

SOME STRANGE CASES…

DEEP DREAM

https://deepdreamgenerator.com/

IT HAS NOW BECOME A SORT OF ART?

INTEGRATED GRADIENTS

Sundararajan+17

INTEGRATED GRADIENTS

INTEGRATED GRADIENTS

KERAS IMPLEMENTATION: 
https://github.com/hiranumn/IntegratedGradients

PART IV: IMAGE 2 IMAGE NETWORKS +
INTRODUCTION TO GENERATIVE

MODELS

