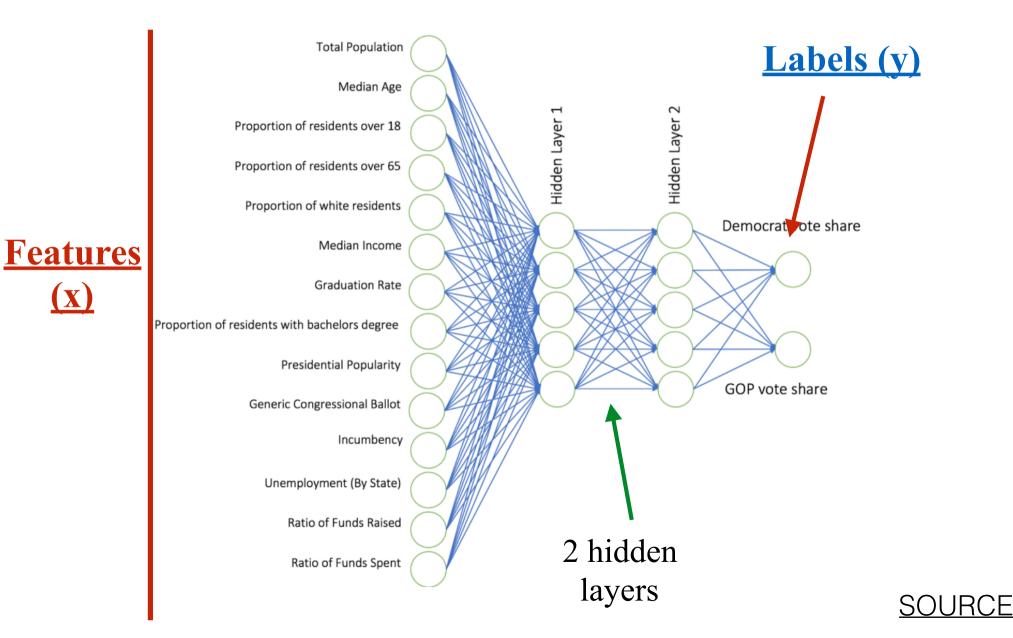
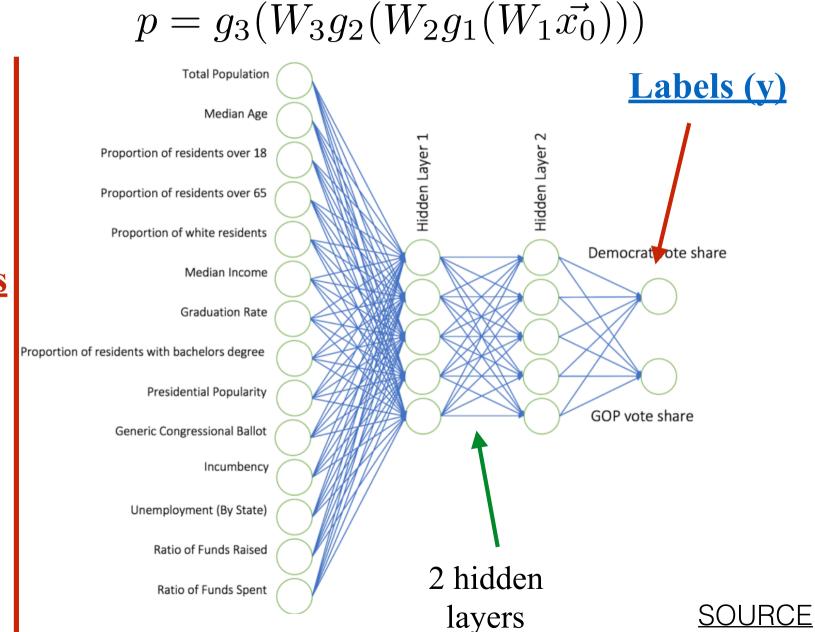


NEURAL NETWORK TO PREDICT RESULTS OF MIDTERM ELECTIONS



NEURAL NETWORK TO PREDICT RESULTS OF MIDTERM ELECTIONS



Features (x)

NEURAL NETWORK TO PREDICT RESULTS OF MIDTERM ELECTIONS

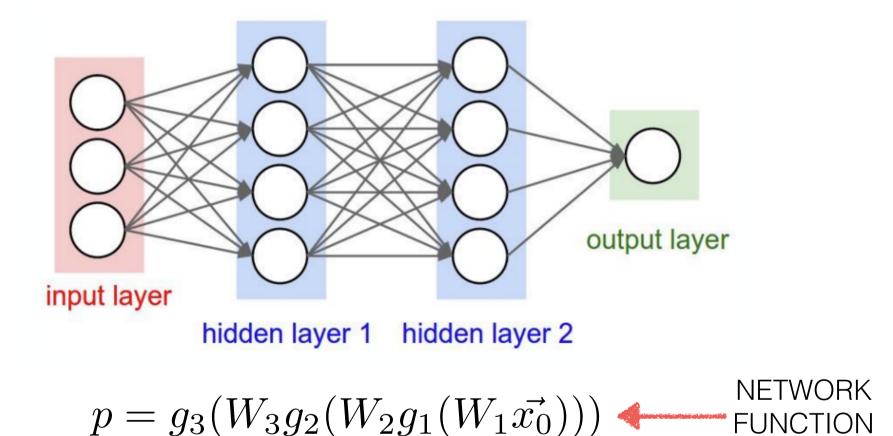
Table 2 – Results of both Models:

Model not including past elections (Model A)	Model including past elections (Model B)
D +3	D +17
Democrat Seats: 219	Democrat Seats: 226
Republican Seats: 216	Republican Seats: 209
33% chance of Republicans keeping house*	0.3% chance of Republicans keeping house*

Generic Congressional Ballot	\bigcirc	
Incumbency		
Unemployment (By State)		
Ratio of Funds Raised		
Ratio of Funds Spent		C

OK, SO NOW LET'S FIND THE WEIGHTS

OPTIMIZATION [OR HOW TO FIND THE WEIGHTS?]



OPTIMIZATION [OR HOW TO FIND THE WEIGHTS?]



WE SIMPLY WANT TO MINIMIZE THE LOSS FUNCTION WITH RESPECT TO THE WEIGHTS, i.e. FIND THE WEIGHTS THAT GENERATE THE MINIMUM LOSS

WE SIMPLY WANT TO MINIMIZE THE LOSS FUNCTION WITH RESPECT TO THE WEIGHTS, i.e. FIND THE WEIGHTS THAT GENERATE THE MINIMUM LOSS

WE THEN USE STANDARD MINIMIZATION ALGORITHMS THAT YOU ALL KNOW...

Gradient Descent

$$W_{t+1} = W_t - \lambda_t \nabla f(W_t)$$

[gradient]

$$W_{t+1} = W_t - \lambda [Hf(W_t)]^{-1} \nabla f(W_t)$$
[hessian]

NEWTON CONVERGES FASTER...

Gradient Descent

$$W_{t+1} = W_t - \lambda_t \nabla f(W_t)$$

[gradient]

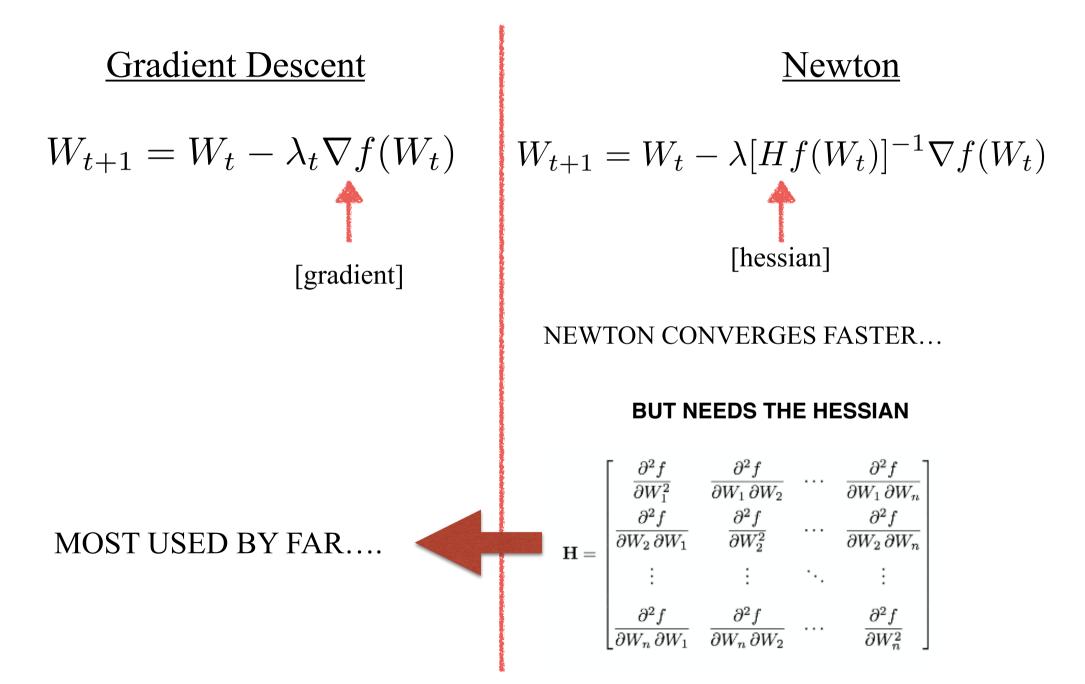
Newton

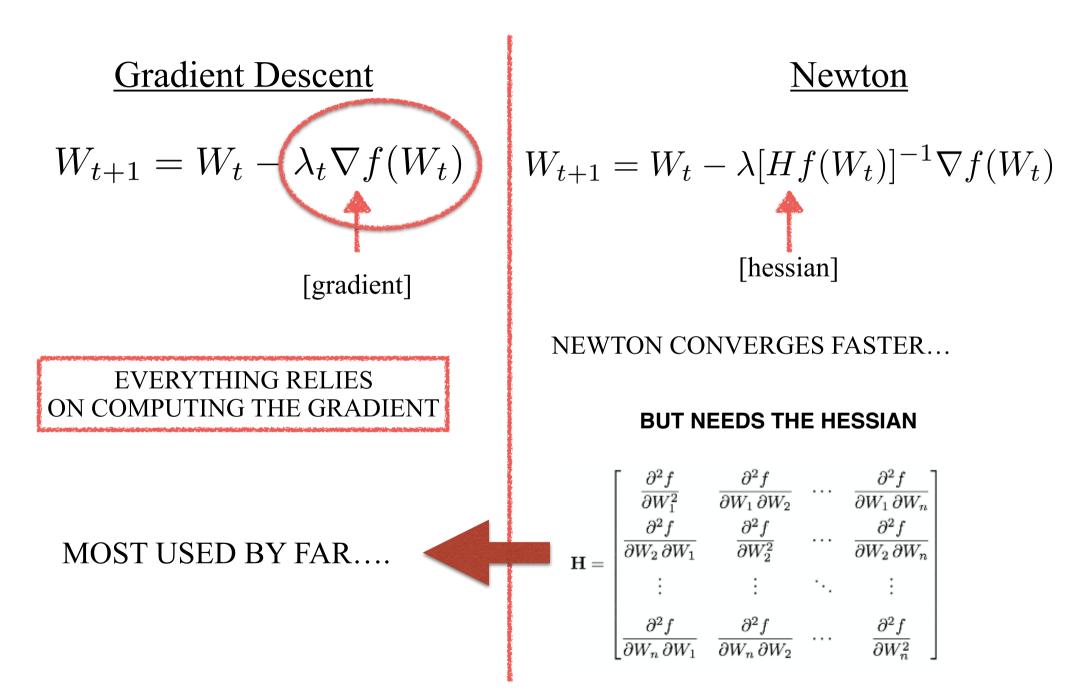
$$W_{t+1} = W_t - \lambda [Hf(W_t)]^{-1} \nabla f(W_t)$$
[hessian]

NEWTON CONVERGES FASTER...

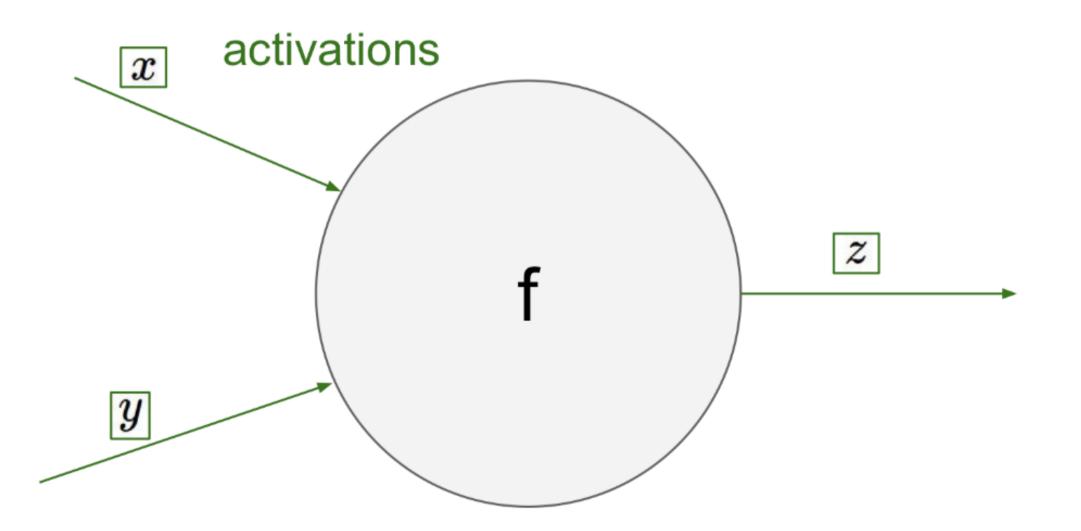
BUT NEEDS THE HESSIAN

	$\left[\begin{array}{c} \frac{\partial^2 f}{\partial W_1^2} \end{array} \right]$	$rac{\partial^2 f}{\partial W_1 \partial W_2}$		$\left. rac{\partial^2 f}{\partial W_1 \partial W_n} \right $
$\mathbf{H} =$	$\frac{\partial^2 f}{\partial W_2 \partial W_1}$	$\frac{\partial^2 f}{\partial W_2^2}$		$\frac{\partial^2 f}{\partial W_2 \partial W_n}$
	÷	÷	۰.	÷
	$rac{\partial^2 f}{\partial W_n\partial W_1}$	$\frac{\partial^2 f}{\partial W_n\partial W_2}$		$\left. rac{\partial^2 f}{\partial W_n^2} \right $

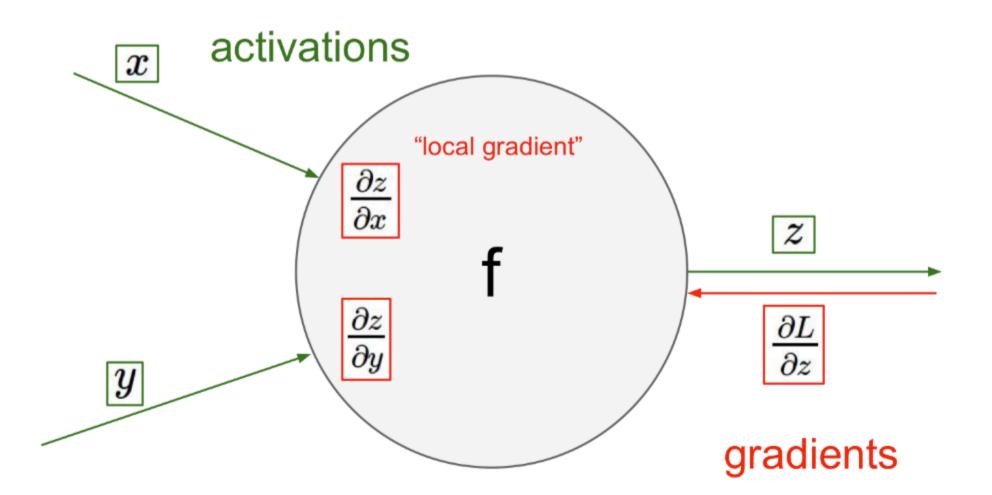


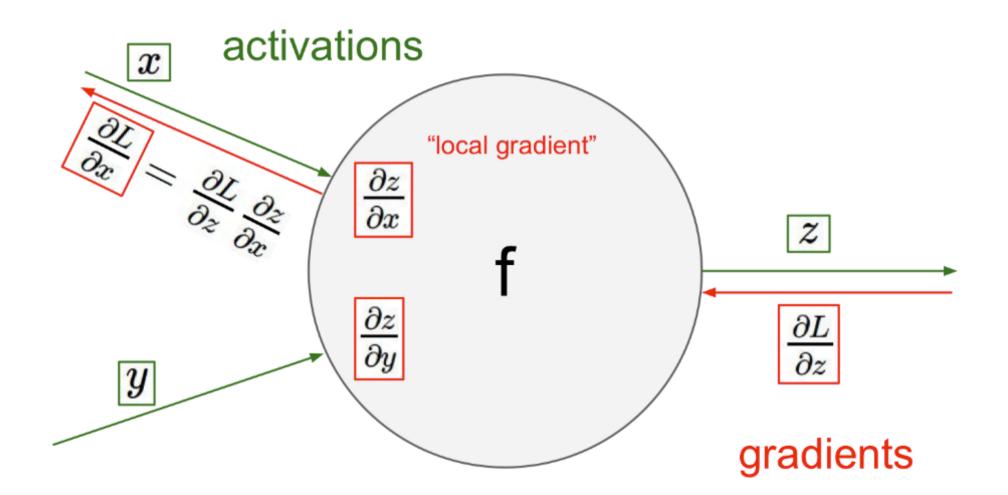


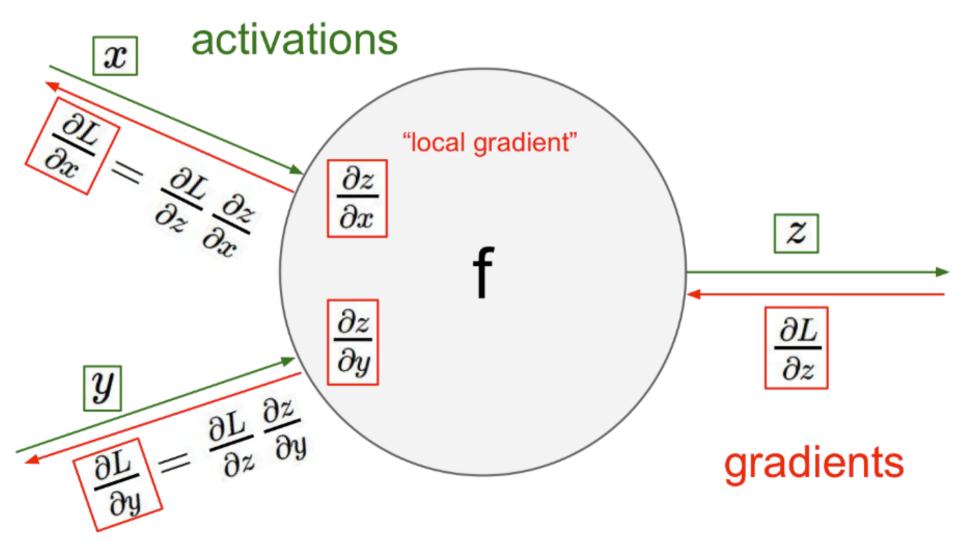
NICE, BUT I NEED TO COMPUTE TE GRADIENT AT EVERY ITERATION OF AN ARBITRARY COMPLEX FUNCTION!

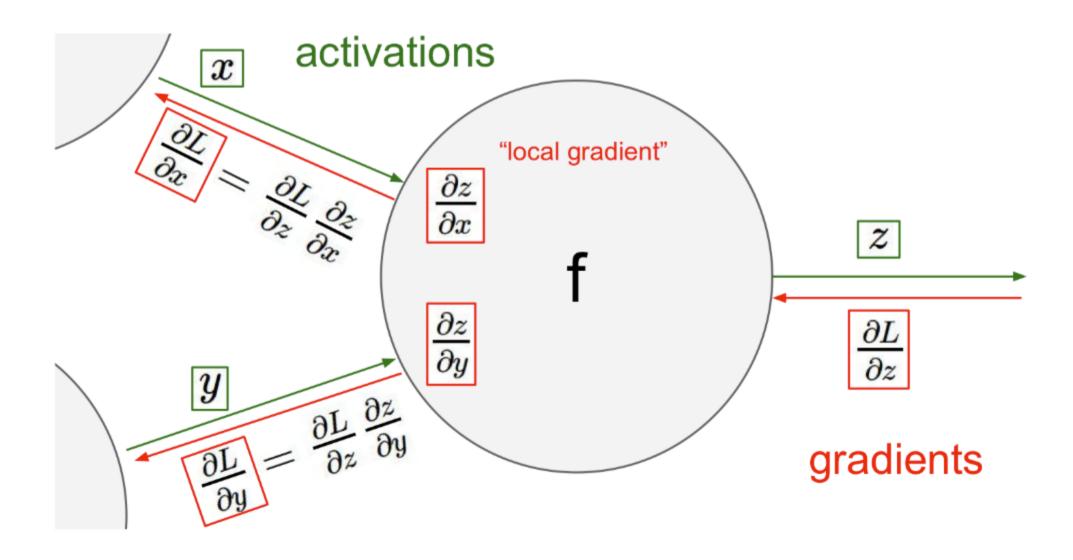


activations \boldsymbol{x} "local gradient" ∂z ∂x Z d2 ∂y \boldsymbol{y}

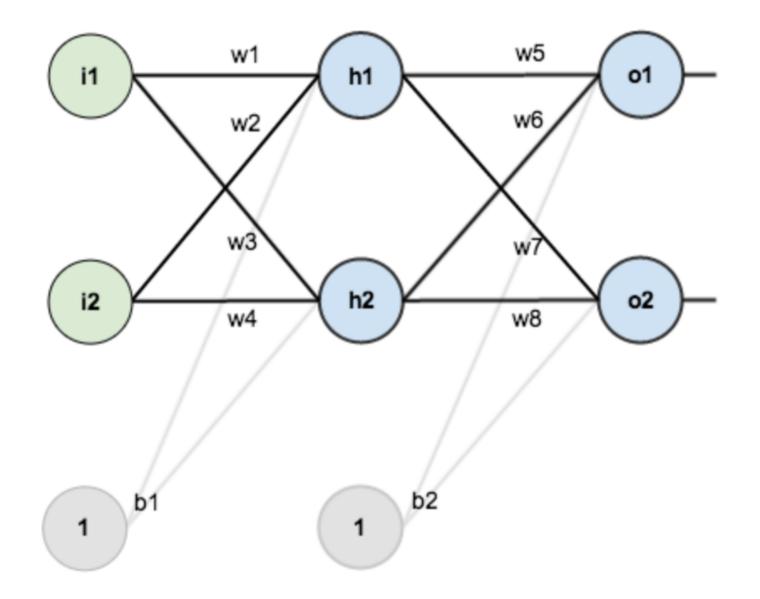








LET'S FOLLOW A NETWORK WHILE IT LEARNS...



EXAMPLE TAKEN FROM HERE

w6 w2 w3 w7 h2 о2 i2 w4 w8 b2 b1 1 1 LET'S ASSUME A VERY SIMPLE TRAINING SET: $X=(0.05, 0.10) \longrightarrow Y=(0.01, 0.99)$

h1

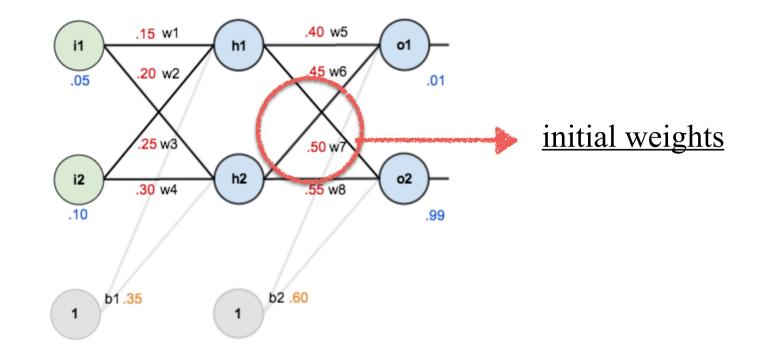
w1

i1

w5

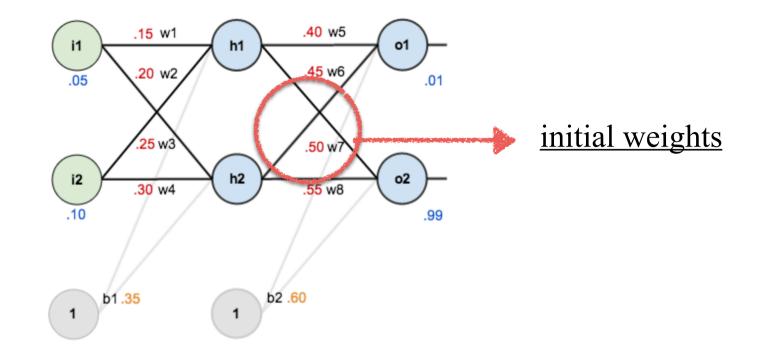
01

EXAMPLE TAKEN FROM HERE



1. THE FORWARD PASS

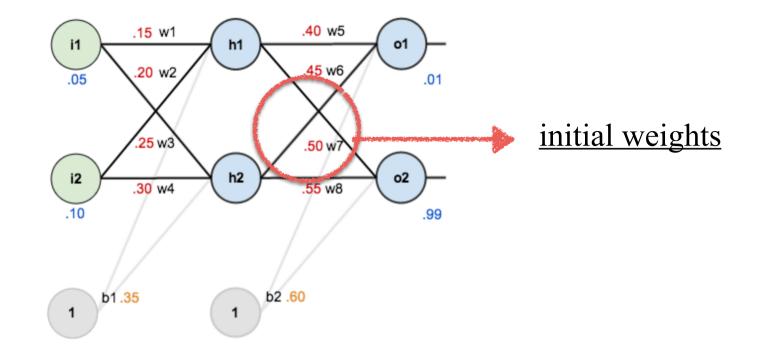
 $in_{h1} = w_1i_1 + w_2i_2 + b_1$ $in_{h1} = 0.15 \times 0.05 + 0.2 \times 0.1 + 0.35 = 0.3775$ [with initial weights]



<u>1. THE FORWARD PASS</u>

 $in_{h1} = w_1 i_1 + w_2 i_2 + b_1$ $in_{h1} = 0.15 \times 0.05 + 0.2 \times 0.1 + 0.35 = 0.3775$ [with initial weights] $out_{h1} = \frac{1}{1 + e^{-in_{h1}}} = 0.5932$

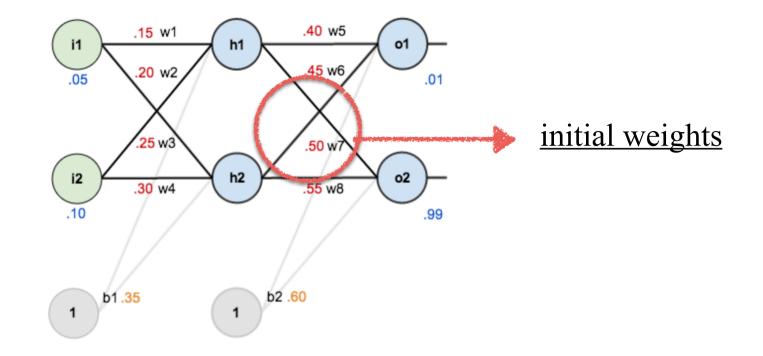
[after the activation function]



1. THE FORWARD PASS

WE CONTINUE TO o1

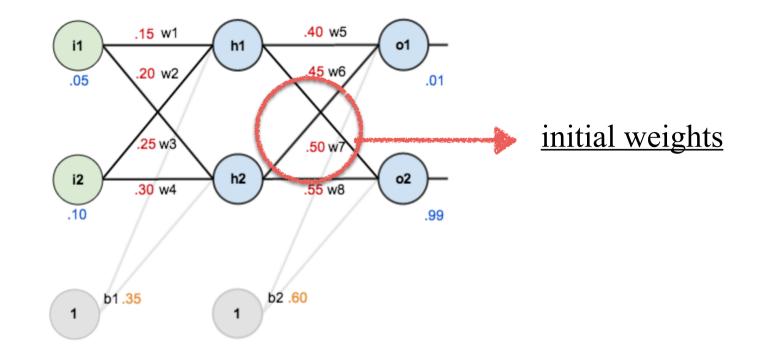
$$in_{o1} = w_5 out_{h1} + w_6 out_{h2} + b_2$$
$$in_{o1} = 0.4 \times 0.593 + 0.45 \times 0.596 + 0.6 = 1.105$$
$$out_{o1} = \frac{1}{1 + e^{-1.105}} = 0.751$$



1. THE FORWARD PASS

AND THE SAME FOR 02

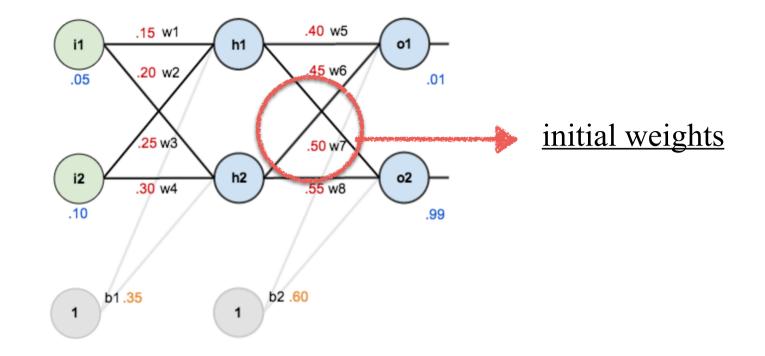
 $out_{o2} = 0.7729$



2. THE LOSS FUNCTION

$$L_{total} = \sum 0.5(target - output)^2$$

 $L_{o1} = 0.5(target_{o1} - output_{01})^2 = 0.5 \times (0.01 - 0.751)^2 = 0.274$ $L_{o2} = 0.023$

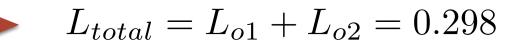


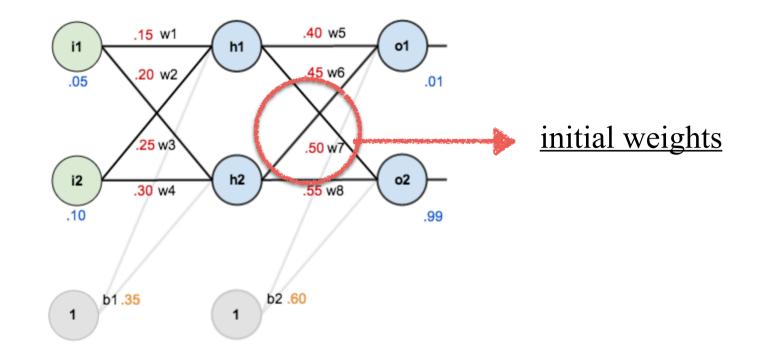
2. THE LOSS FUNCTION

$$L_{total} = \sum 0.5(target - output)^2$$

 $L_{o1} = 0.5(target_{o1} - output_{01})^2 = 0.5 \times (0.01 - 0.751)^2 = 0.274$

 $L_{o2} = 0.023$



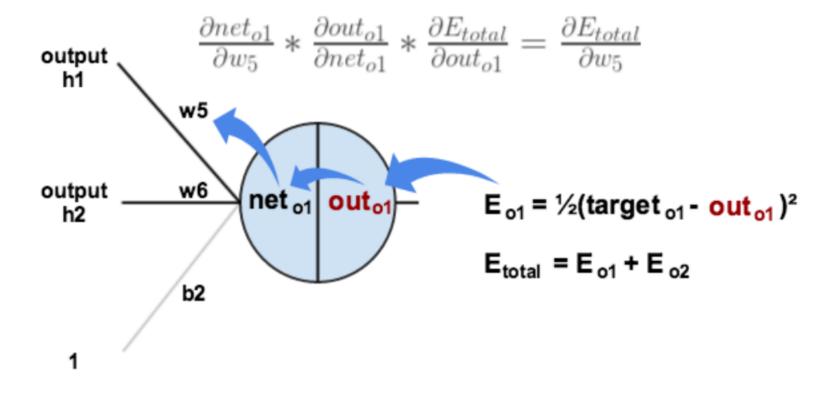


<u>FOR W5</u>

WE WANT:

 $\frac{\partial L_{total}}{\partial w_5}$

[gradient of loss function]



<u>FOR W5</u>

WE WANT:

$$\frac{\partial L_{total}}{\partial w_5}$$

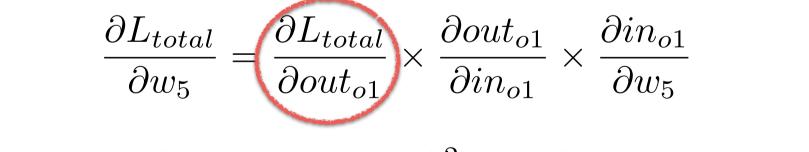
OT

[gradient of loss function]

WE APPLY THE CHAIN RULE:

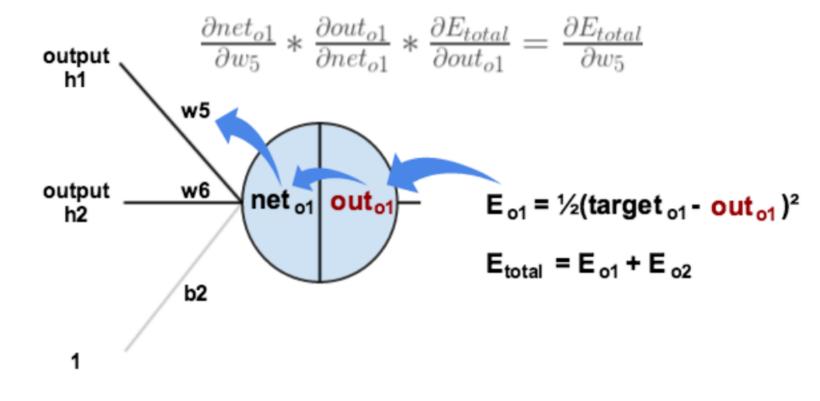
$$\frac{\partial L_{total}}{\partial w_5} = \frac{\partial L_{total}}{\partial out_{o1}} \times \frac{\partial out_{o1}}{\partial in_{o1}} \times \frac{\partial in_{o1}}{\partial w_5}$$





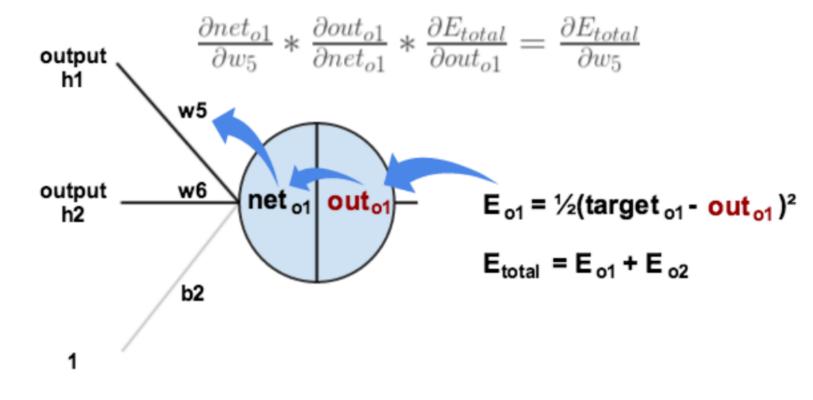
 $L_{total} = 0.5(target_{o1} - out_{o1})^2 + 0.5(target_{o2} - out_{o2})^2$

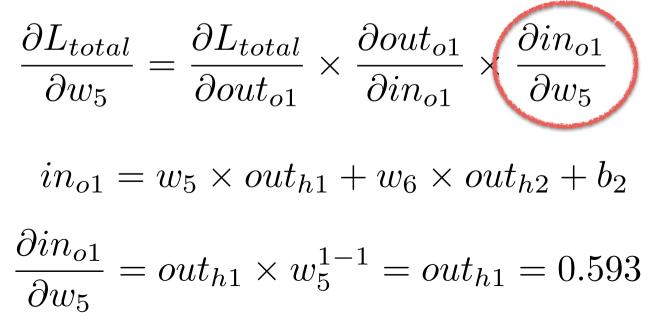
 $\frac{\partial L_{total}}{\partial out_{o1}} = 2 \times 0.5(target_{o1} - out_{o1}) \times (-1) = 0.741$

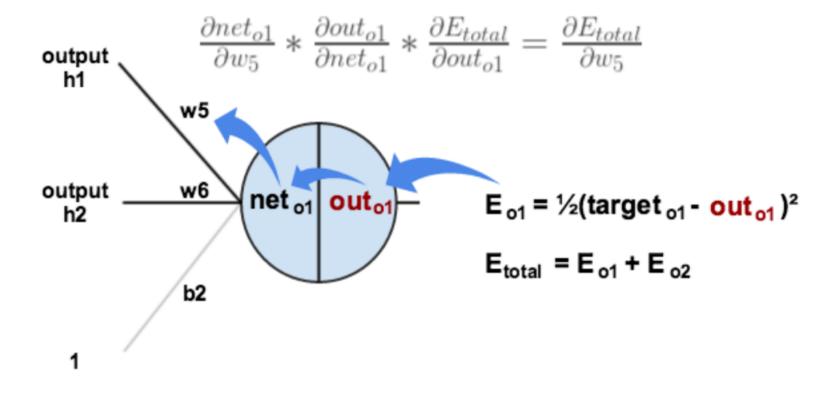


$$\frac{\partial L_{total}}{\partial w_5} = \frac{\partial L_{total}}{\partial out_{o1}} \times \underbrace{\frac{\partial out_{o1}}{\partial in_{o1}}}_{out_5} \times \frac{\partial in_{o1}}{\partial w_5}$$
$$out_{o1} = \frac{1}{1 + e^{-in_{o1}}}$$

$$\frac{\partial out_{o1}}{\partial in_{o1}} = out_{o1} \times (1 - out_{o1}) = 0.186$$

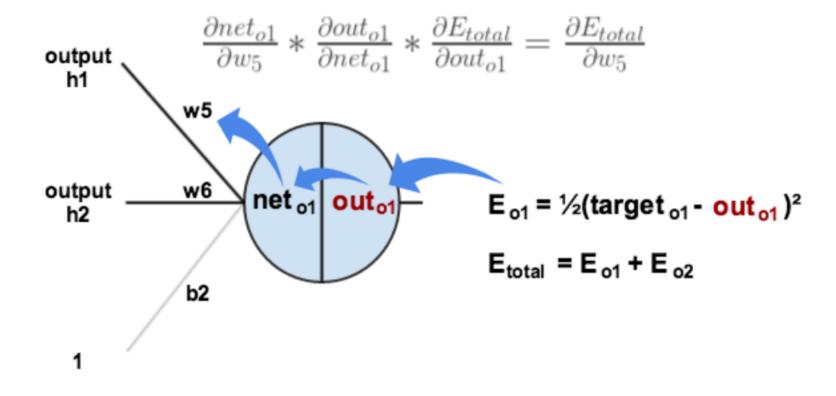






ALL TOGETHER:

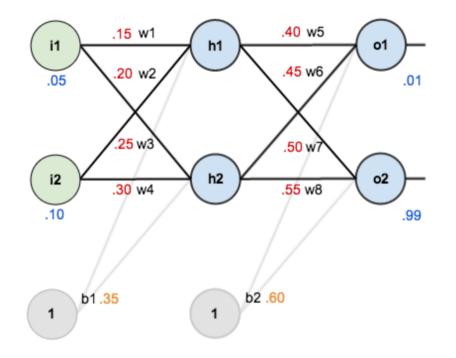
$$\frac{\partial L_{total}}{\partial w_5} = \frac{\partial L_{total}}{\partial out_{o1}} \times \frac{\partial out_{o1}}{\partial in_{o1}} \times \frac{\partial in_{o1}}{\partial w_5}$$
$$\frac{\partial L_{total}}{\partial w_5} = 0.741 \times 0.186 \times 0.593 = 0.082$$



4. UPDATE WEIGHTS WITH GRADIENT AND LEARNING RATE

$$w_5^{t+1} = w_5 - \lambda \times \frac{\partial L_{total}}{\partial w_5}$$

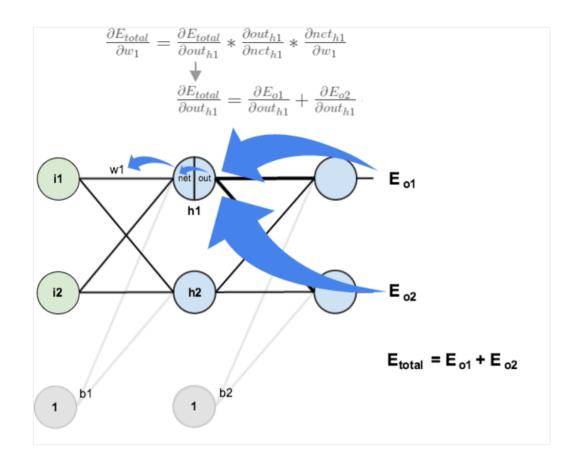
$$w_5^{t+1} = 0.4 - 0.5 \times 0.082 = 0.358$$



THIS IS REPEATED FOR THE OTHER WEIGHTS OF THE OUTPUT LAYER

$$w_6^{t+1} = 0.408$$

 $w_7^{t+1} = 0.511$
 $w_8^{t+1} = 0.561$



AND BACK-PROPAGATED TO THE HIDDEN LAYERS

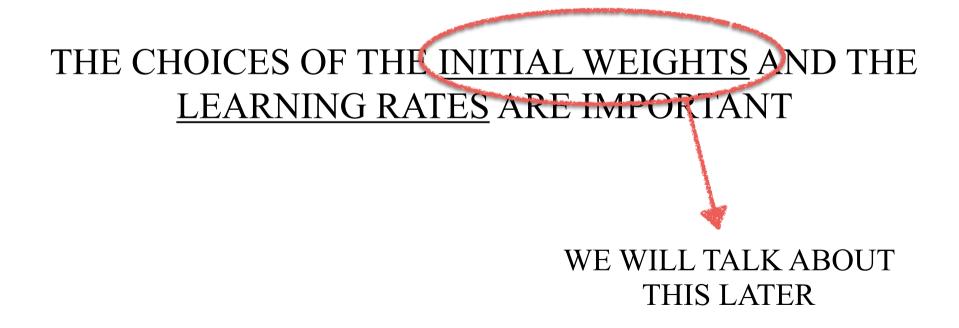
VISUALIZE SIMPLE NETWORK LEARNING

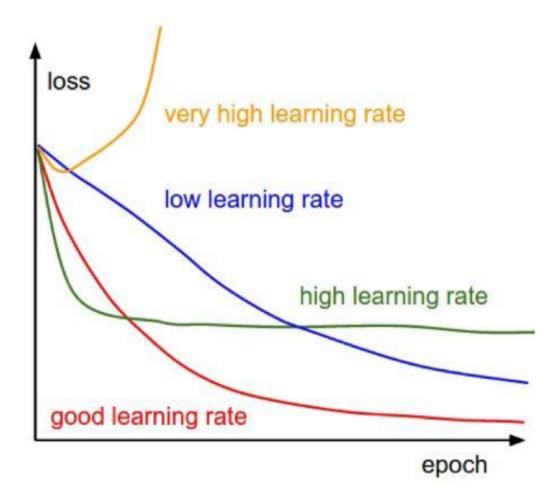
ONE KEY PROBLEM WITH GRADIENT DESCENT IS THAT IT EASILY CONVERGES TO LOCAL MINIMA BY FOLLOWING THE STEEPEST DESCENT

ONE KEY PROBLEM WITH GRADIENT DESCENT IS THAT IT EASILY CONVERGES TO LOCAL MINIMA BY FOLLOWING THE STEEPEST DESCENT

THE CHOICES OF THE <u>INITIAL WEIGHTS</u> AND THE <u>LEARNING RATES</u> ARE IMPORTANT

ONE KEY PROBLEM WITH GRADIENT DESCENT IS THAT IT EASILY CONVERGES TO LOCAL MINIMA BY FOLLOWING THE STEEPEST DESCENT





 $W_{t+1} = W_t - \lambda \nabla f(W_t)$ THERE ARE DIFFERENT WAYS TO UPDATE THE LEARNING RATE

Credit:

$$W_{t+1} = W_t - \lambda \nabla f(W_t)$$
THERE ARE DIFFERENT WAY

THERE ARE DIFFERENT WAYS TO UPDATE THE LEARNING RATE

ADAGRAD:

THE LEARNING RATE IS SCALED DEPENDING ON THE HISTORY OF PREVIOUS GRADIENTS

$$W_{t+1} = W_t - \frac{\lambda}{\sqrt{G_t + \epsilon}} \nabla f(W_t)$$

G IS A MATRIX CONTAINING ALL PREVIOUS GRADIENTS. WHEN THE GRADIENT BECOMES LARGE THE LEARNING RATE IS DECREASED AND VICE VERSA.

$$G_{t+1} = G_t + (\nabla f)^2$$

Credit:

$$W_{t+1} = W_t - \lambda \nabla f(W_t)$$

THERE ARE DIFFERENT WAY

THERE ARE DIFFERENT WAYS TO UPDATE THE LEARNING RATE

RMSPROP:

THE LEARNING RATE IS SCALED DEPENDING ON THE HISTORY OF PREVIOUS GRADIENTS

$$W_{t+1} = W_t - \frac{\lambda}{\sqrt{G_t + \epsilon}} \nabla f(W_t)$$

SAME AS ADAGRAD BUT G IS CALCULATED BY EXPONENTIALLY DECAYING AVERAGE

$$G_{t+1} = \lambda G_t + (1 - \lambda) (\nabla f)^2$$
 Credit:

ADAM [Adaptive moment estimator]:

SAME IDEA, USING FIRST AND SECOND ORDER MOMENTUMS

$$G_{t+1} = \beta_2 G_t + (1 - \beta_2) (\nabla f)^2 \quad M_{t+1} = \beta_1 M_t + (1 - \beta_1) (\nabla f)$$

$$W_{t+1} = W_t - \frac{\lambda}{\sqrt{\hat{G}_t + \epsilon}} \hat{M}_t$$

with:
$$\hat{M}_{t+1} = \frac{M_t}{1 - \beta_1}$$
 $\hat{G}_{t+1} = \frac{G_t}{1 - \beta_2}$

ADAM [Adaptive moment estimator]:

SAME IDEA, USING FIRST AND SECOND ORDER MOMENTUMS

$$G_{t+1} = \beta_2 G_t + (1 - \beta_2) (\nabla f)^2 \quad M_{t+1} = \beta_1 M_t + (1 - \beta_1) (\nabla f)$$

ONLY FOR YOUR
RECORDS
 $\sqrt{G_t + \epsilon}$

with:
$$\hat{M}_{t+1} = \frac{M_t}{1 - \beta_1}$$
 $\hat{G}_{t+1} = \frac{G_t}{1 - \beta_2}$

IN KERAS:

RMSprop

[source]

keras.optimizers.RMSprop(lr=0.001, rho=0.9, epsilon=None, decay=0.0)

RMSProp optimizer.

It is recommended to leave the parameters of this optimizer at their default values (except the learning rate, which can be freely tuned).

This optimizer is usually a good choice for recurrent neural networks.

Arguments

- Ir: float >= 0. Learning rate.
- rho: float >= 0.
- epsilon: float >= 0. Fuzz factor. If None, defaults to K.epsilon().
- decay: float >= 0. Learning rate decay over each update.

References

• rmsprop: Divide the gradient by a running average of its recent magnitude

IN KERAS:

Adam

[source]

keras.optimizers.Adam(lr=0.001, beta_1=0.9, beta_2=0.999, epsilon=None, decay=0.0, amsgrad=False)

Adam optimizer.

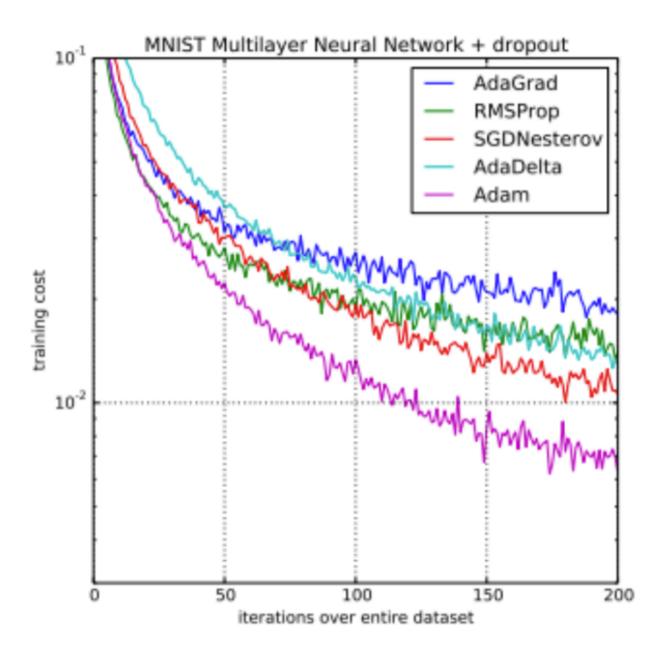
Default parameters follow those provided in the original paper.

Arguments

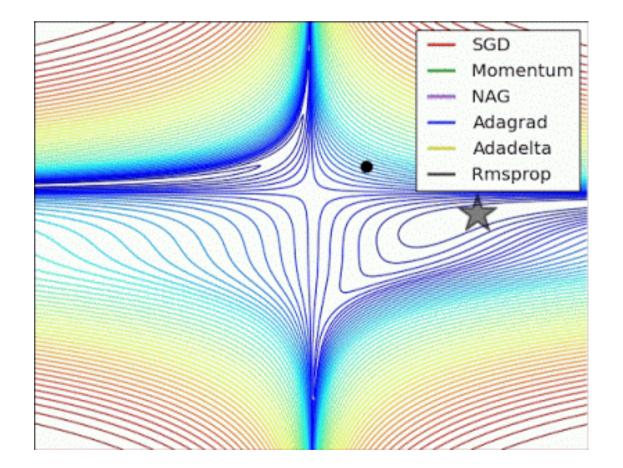
- Ir: float >= 0. Learning rate.
- beta_1: float, 0 < beta < 1. Generally close to 1.
- beta_2: float, 0 < beta < 1. Generally close to 1.
- epsilon: float >= 0. Fuzz factor. If None, defaults to K.epsilon().
- decay: float >= 0. Learning rate decay over each update.
- amsgrad: boolean. Whether to apply the AMSGrad variant of this algorithm from the paper "On the Convergence of Adam and Beyond".

References

- Adam A Method for Stochastic Optimization
- On the Convergence of Adam and Beyond



<u>Credit</u>



BATCH GRADIENT DESCENT

LOCAL MINIMA CAN ALSO BE AVOIDED BY COMPUTING THE GRADIENT IN SMALL BATCHES INSTEAD OF OVER THE FULL DATASET

BATCH GRADIENT DESCENT

LOCAL MINIMA CAN ALSO BE AVOIDED BY COMPUTING THE GRADIENT IN SMALL BATCHES INSTEAD OF OVER THE FULL DATASET

MINI-BATCH GRADIENT DESCENT

$$V_{t+1/num} = W_t - \lambda_t \nabla f(W_t; x^{(i,i+b)}, y^{(i,i+b)})$$

THE GRADIENT IS COMPUTED OVER <u>A BATCH OF SIZE B</u>

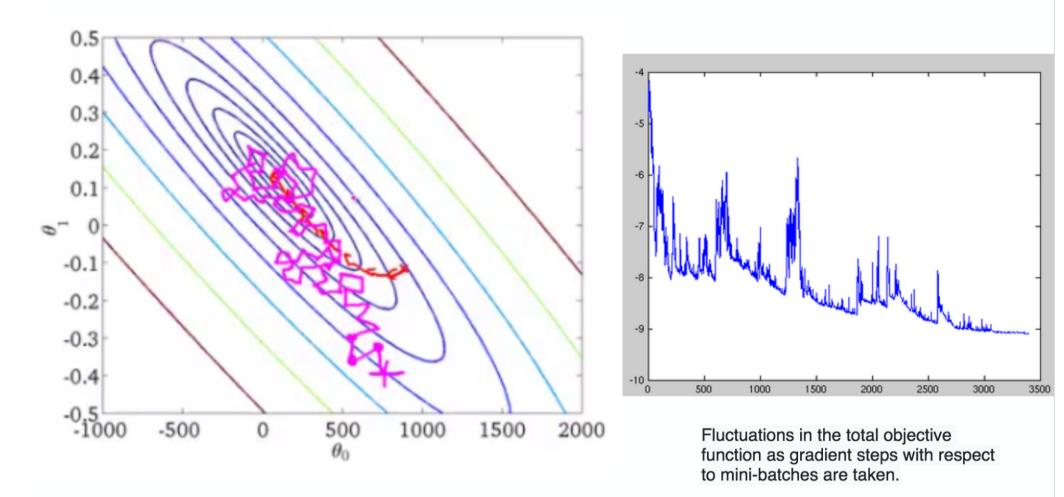
STOCHASTIC GRADIENT DESCENT

THE EXTREME CASE IS TO COMPUTE THE GRADIENT ON EVERY TRAINING EXAMPLE.

STOCHASTIC GRADIENT DESCENT

$$V_{t+1/num} = W_t - \lambda_t \nabla f(W_t; x^{(i,i+b)}, y^{(i,i+b)})$$

$$\mathbf{b=1}$$

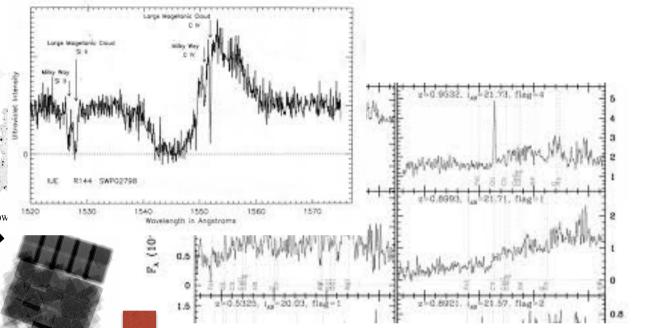


CAN WE GO DEEP NOW?

CAN WE GO DEEP NOW?

ALMOST THERE...LET'S THINK FOR A MOMENT ABOUT WHAT WE PUT AS INPUT...

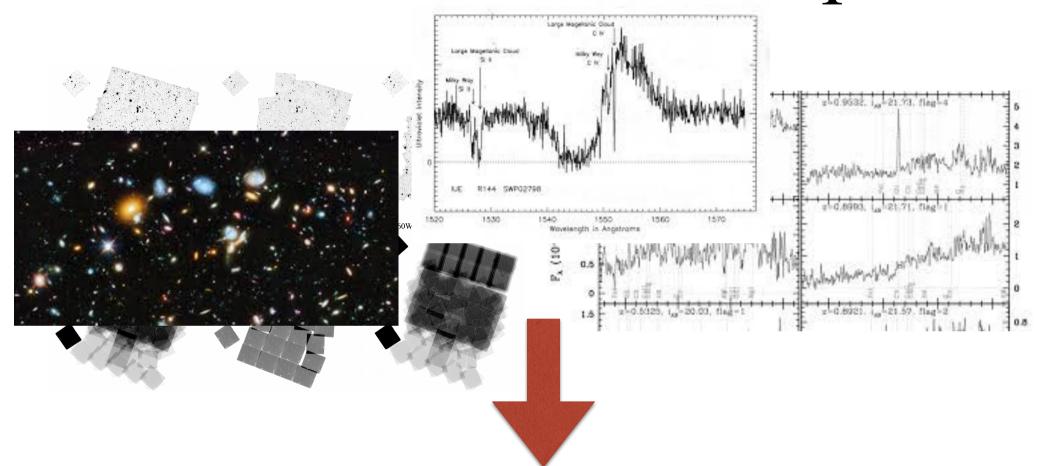
What do we put as input?



THIS IS WHAT MACHINES SEE

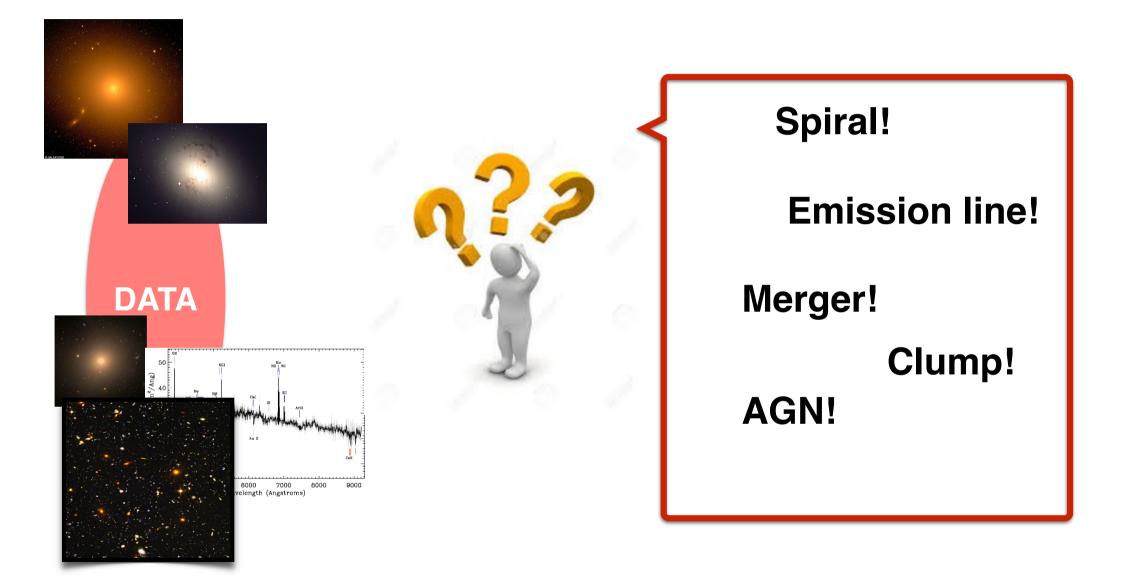
0 a 0 0 dal renerate a 10 di 1 0 b 0 b dan 0 1 0 1 b 0 b 0 b 1 1 d 10 1 b 0 1 b 0 b 0 1 non reneratione reneratione en En reneratione en antine recerción de la constructione de la constructione de la constructione de la construction

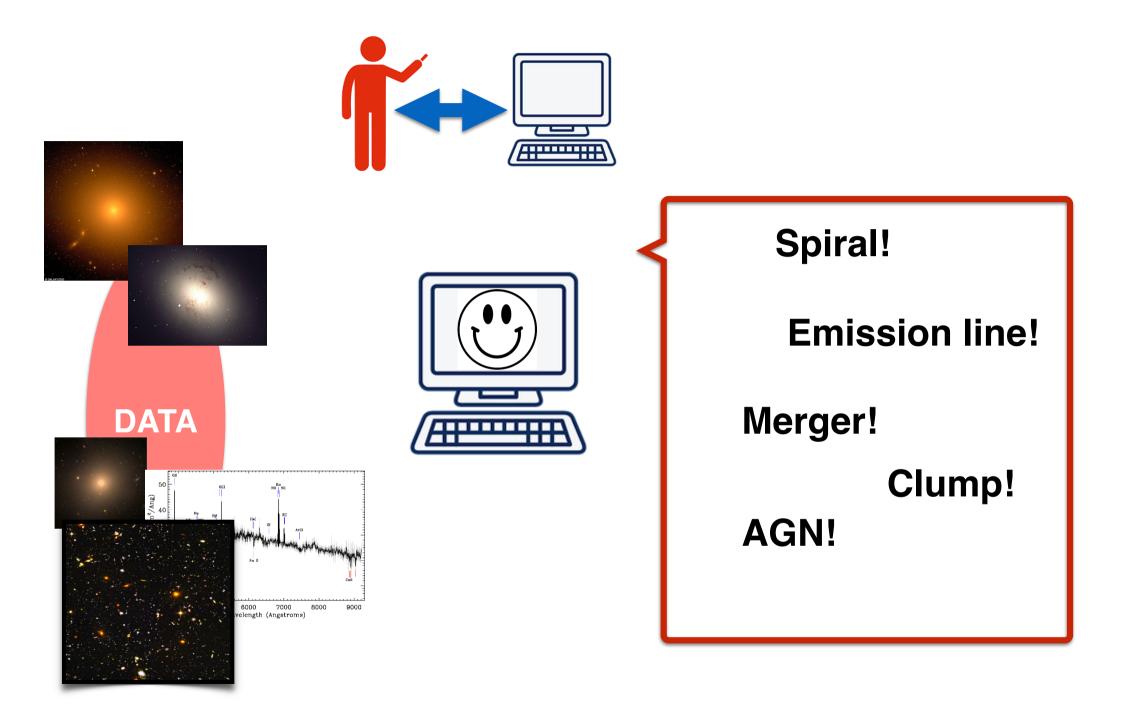
What do we put as input?



PRE-PROCESS DATA TO EXTRACT MEANINGFUL INFORMATION

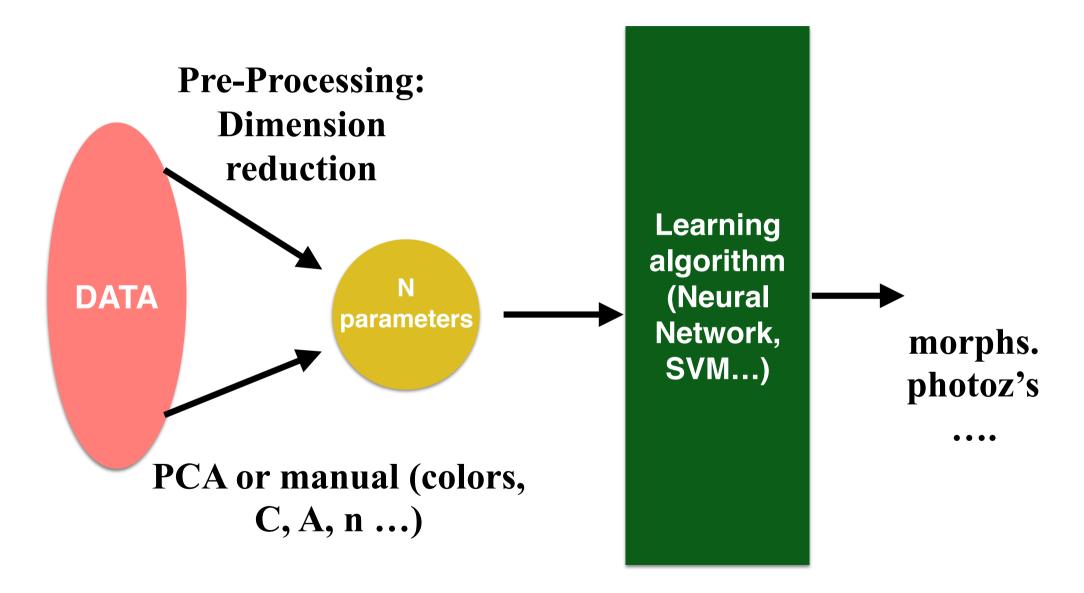
THIS IS GENERALLY CALLED FEATURE EXTRACTION



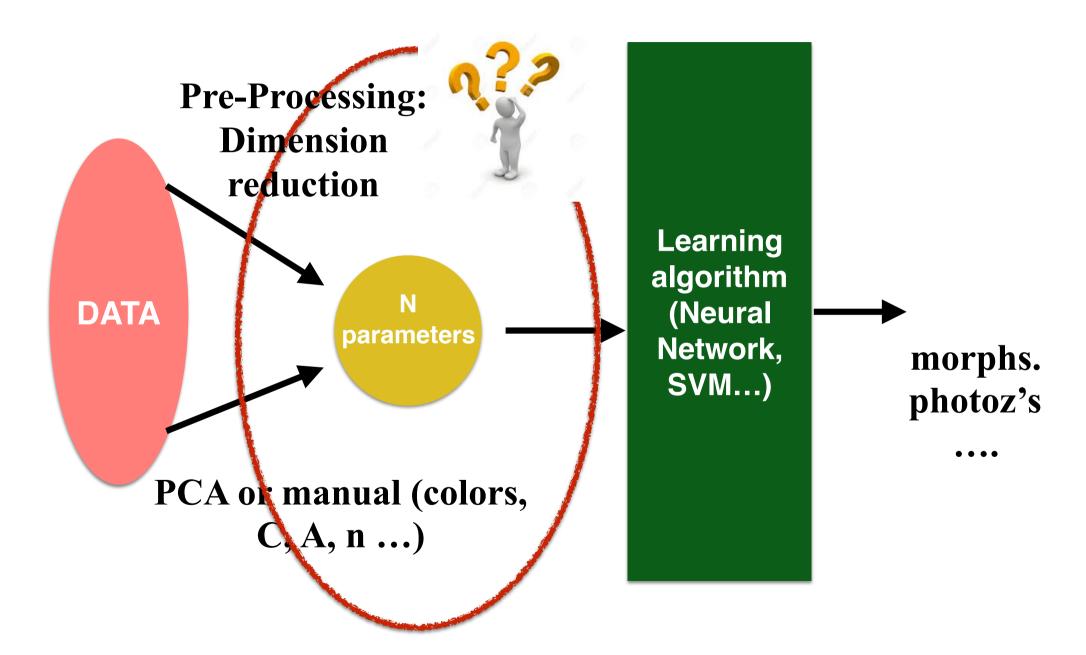




THE "CLASSICAL" APPROACH

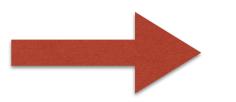


"CLASSICAL" MACHINE LEARNING



In Astronomy

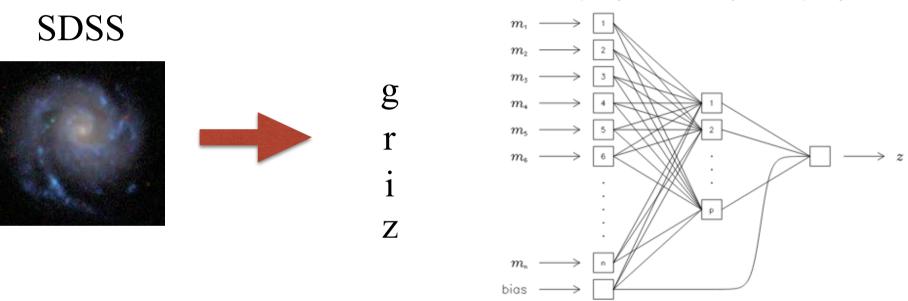
- Colors, Fluxes
- Shape indicators
- Line ratios, spectral features
- Stellar Masses, Velocity Dispersions



Requires specialized software before feeding the machine learning algorithm

IT IMPLIES A DIMENSIONALITY REDUCTION!

PHOTOMETRIC REDSHIFTS



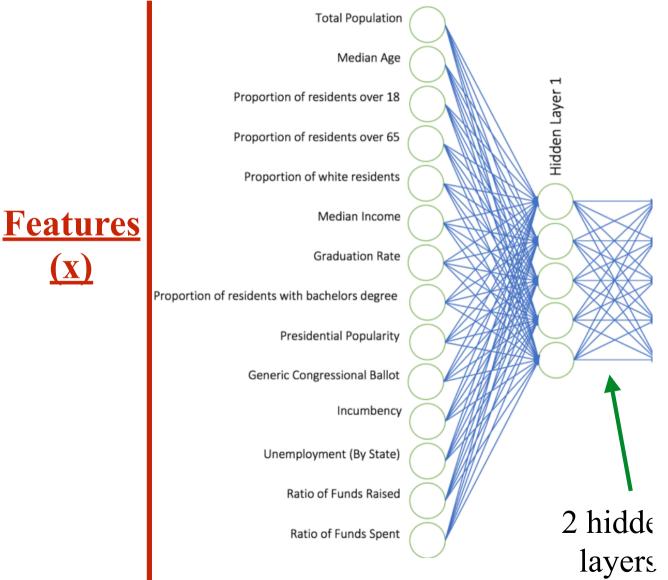
Input layer \longrightarrow Hidden layer \rightarrow Output layer

Collister+08

EVERYTHING IS IN THE FEATURES....WHAT IF I IGNORED SOME IMPORTANT FEATURES?

EVERYTHING IS IN THE FEATURES....WHAT IF I IGNORED SOME IMPORTANT FEATURES?

NEURAL NETWORK TO PREDICT RESULTS OF MIDTERM ELECTIONS



(X)

Bad Weather, Known to Lower Turnout, Will Greet **Many Voters**

Rain can decrease voter numbers, which studies show tends to help Republicans. "I hope it rains hard tomorrow," one Republican candidate said. 10h ago

Other general computer vision features [for images!]

- Pixel Concatenation
- Color histograms
- Texture Features
- Histogram of Gradients
- SIFT

FOR MANY YEARS COMPUTER VISION RESEARCHERS HAVE BEEN TRYING TO FIND THE MOST GENERAL FEATURES

Other general computer vision features [for images!]

- Pixel Concatenation
- Color histograms
- Texture Features
- Histogram of Gradients
- SIFT

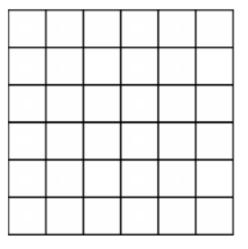
FOR MANY YEARS COMPUTER VISION RESEARCHERS HAVE BEEN TRYING TO FIND THE MOST GENERAL FEATURES

THE BEST CLASSICAL SOLUTION [BEFORE 2012] WHERE BASED <u>ON LOCAL</u> <u>FEATURES</u>

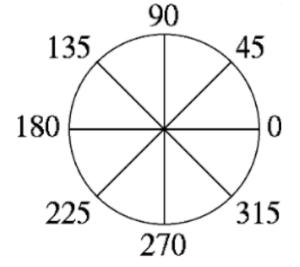
HISTOGRAM OF ORIENTED GRADIENTS (HoG)

1. DIVIDE IMAGE INTO SMALL SPATIAL REGIONS CALLED CELLS

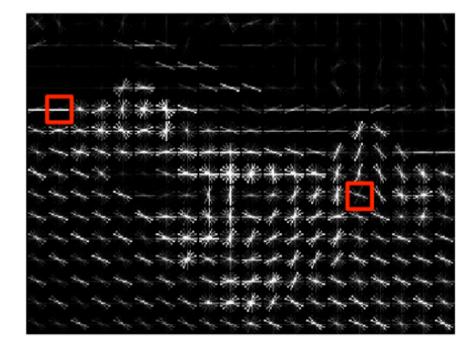
2. COMPUTE INTENSITY GRADIENTS OVER N DIRECTIONS [TYPICALLY 9 FOR IMAGE]



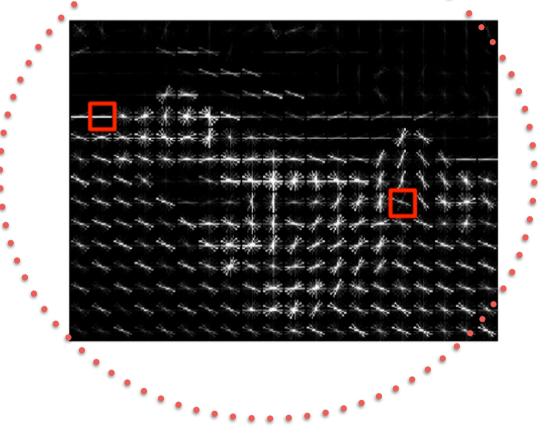
3. COMPUTE WEIGHTED 1-D HISTOGRAM OF ALL DIRECTIONS. A CELL IS REDUCED TO N NUMBERS



HISTOGRAM OF ORIENTED GRADIENTS (HoG)



HISTOGRAM OF ORIENTED GRADIENTS (HoG)



KEEP THIS IMAGE IN MIND FOR LATER...

What about using raw data?

ALL INFORMATION IS IN THE INPUT DATA

WHY REDUCING ?

LET THE NETWORK FIND THE INFO

What about using raw data?

ALL INFORMATION IS IN THE INPUT DATA

WHY REDUCING ?

LET THE NETWORK FIND THE INFO

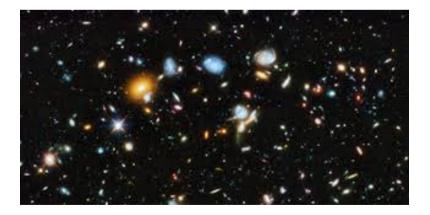
LARGE DIMENSION SIGNALS SUCH AS IMAGES OR SPECTRA WOULD REQUIRE TREMENDOUSLY LARGE MODELS

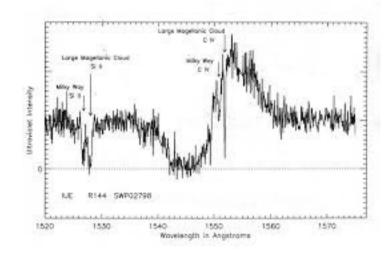
A 512x512 image as input of a fully connected layer producing output of same size:

 $(512 \times 512)^2 = 7e10$

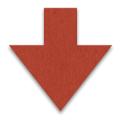
BUT

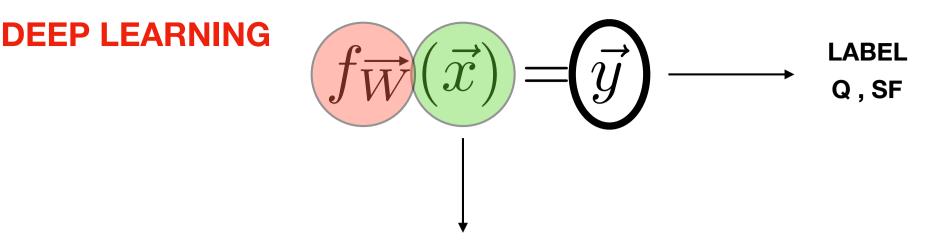
FEEDING INDIVIDUAL RESOLUTION ELEMENTS IS NOT VERY EFFICIENT SINCE IT LOOSES ALL INVARIANCE TO TRANSLATION AND IGNORES CORRELATION IN THE DATA





FEEDING INDIVIDUAL RESOLUTION ELEMENTS IS NOT VERY EFFICIENT SINCE IT LOOSES ALL INVARIANCE TO TRANSLATION





LET THE MACHINE FIGURE THIS OUT ("unsupervised feature extraction")

LET'S GO A STEP FORWARD INTO LOOSING CONTROL....

PART III:CONVOLUTIONAL NEURAL NETWORKS

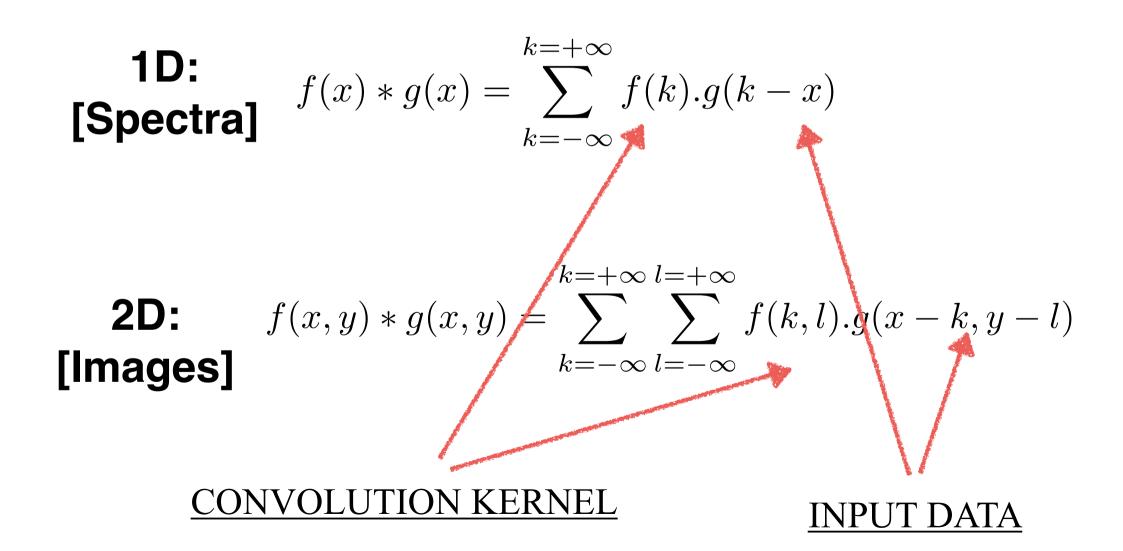
Discrete Convolution

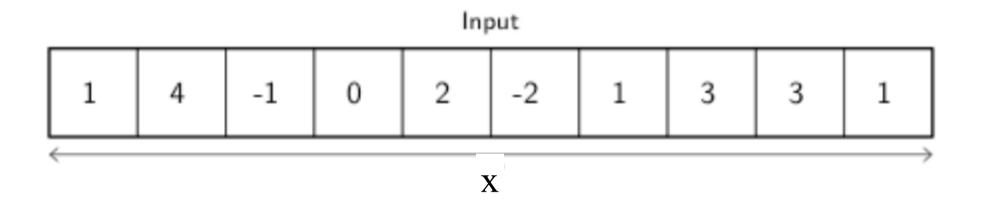
1D:
$$f(x) * g(x) = \sum_{k=-\infty}^{k=+\infty} f(k).g(k-x)$$

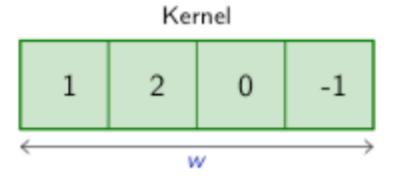
[Spectra]

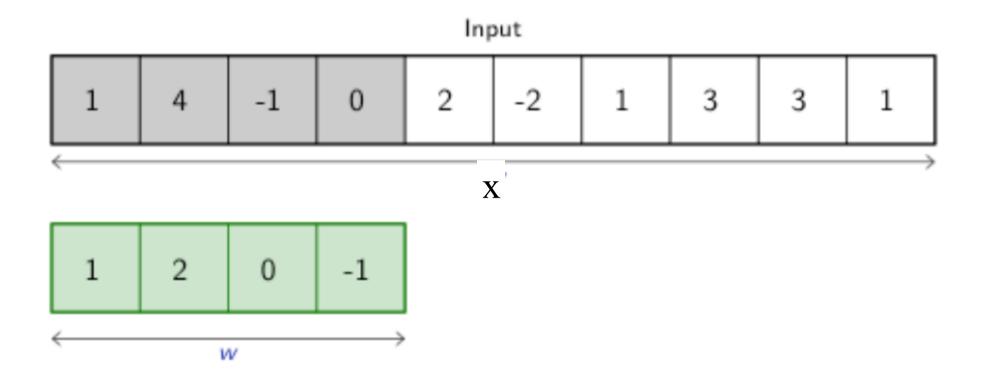
2D: $f(x,y) * g(x,y) = \sum_{k=-\infty}^{k=+\infty} \sum_{l=-\infty}^{l=+\infty} f(k,l) \cdot g(x-k,y-l)$ [Images]

DISCRETE CONVOLUTION

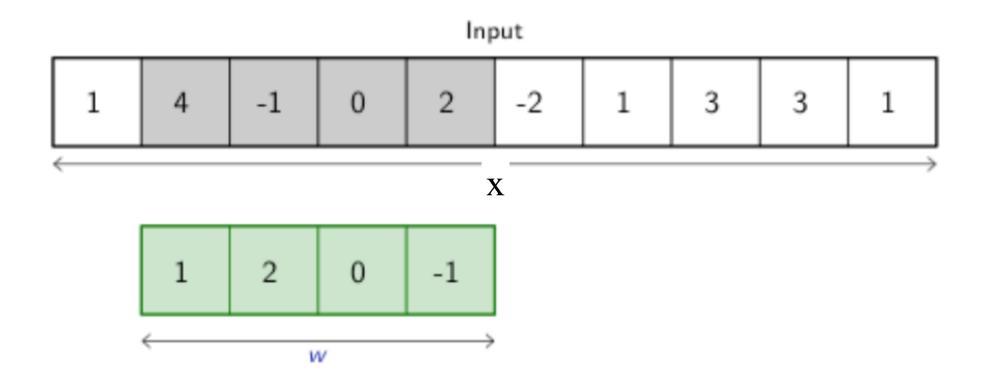




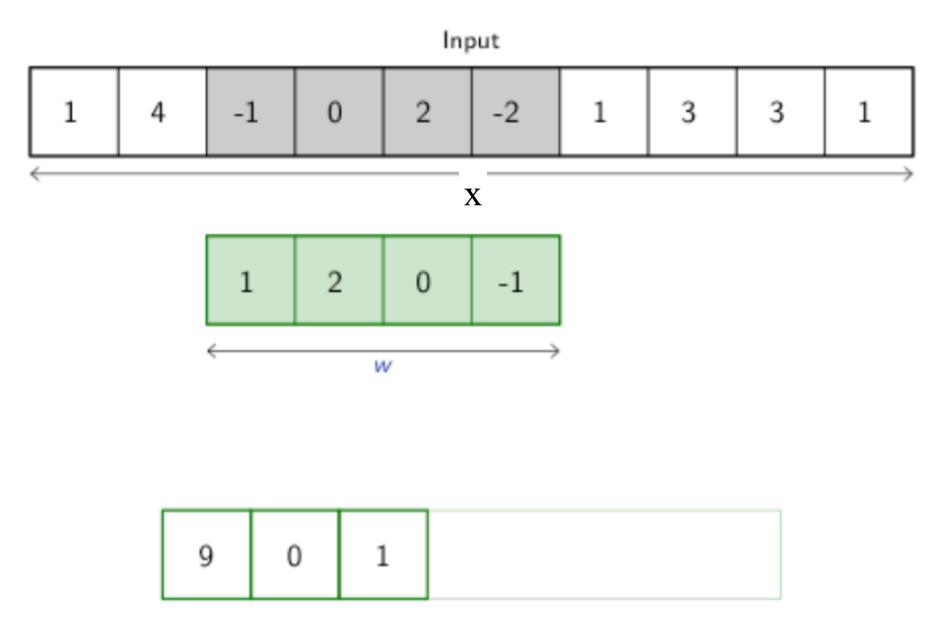


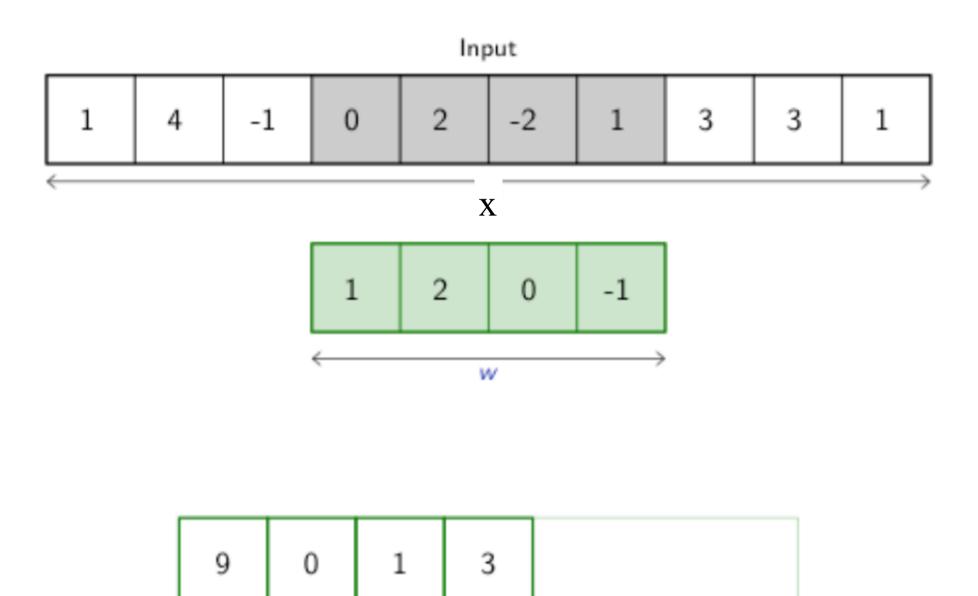


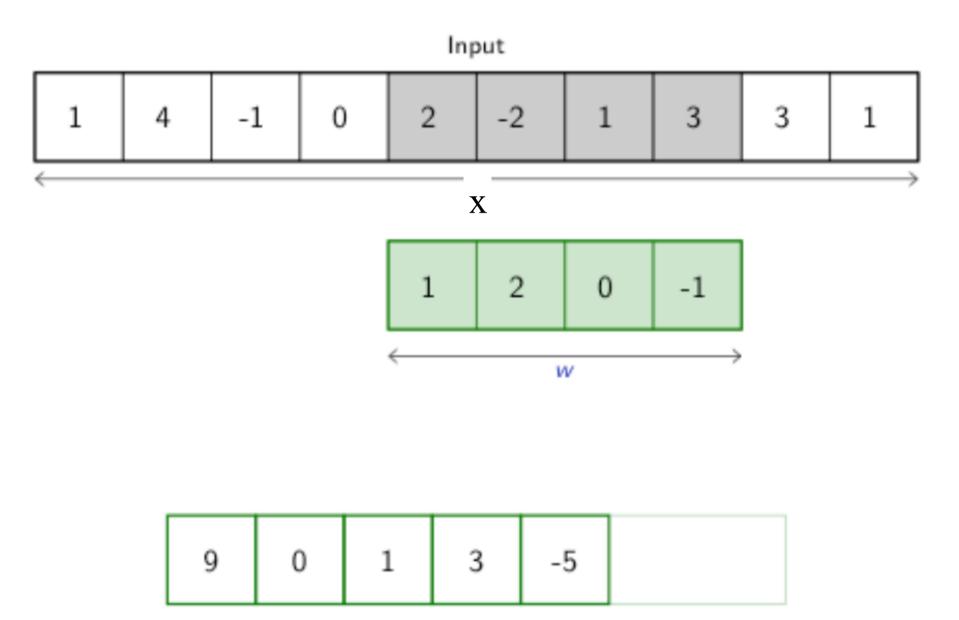
9

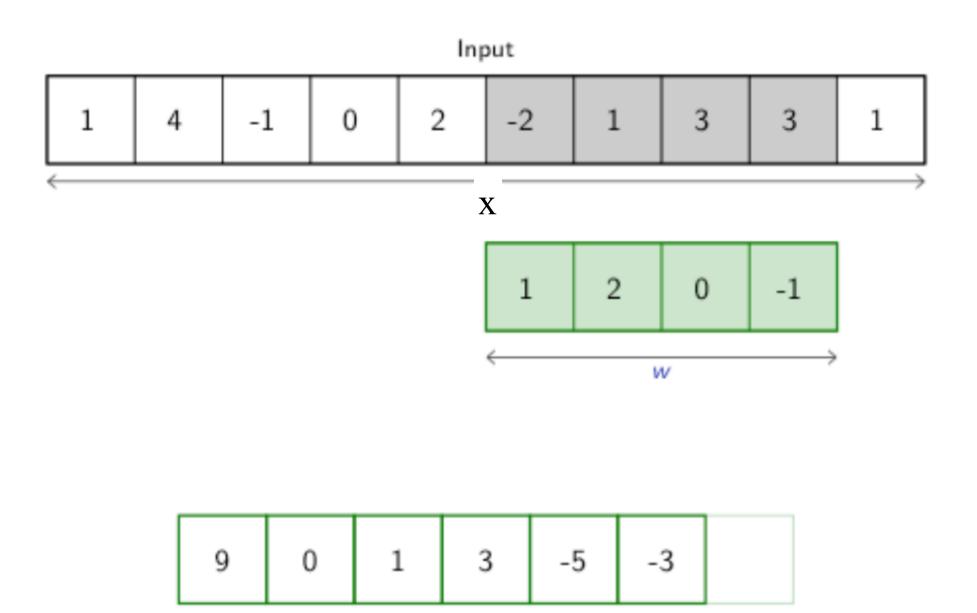


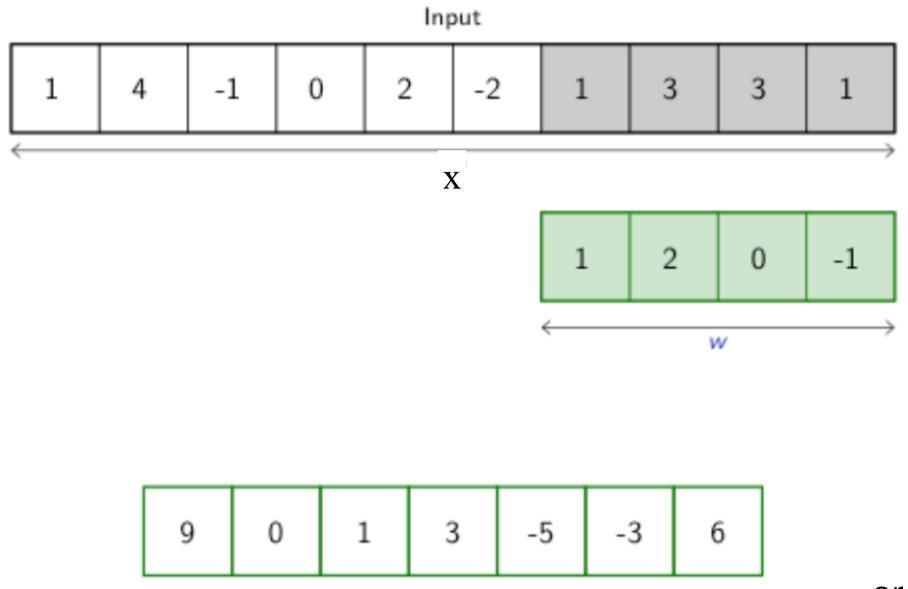
|--|--|

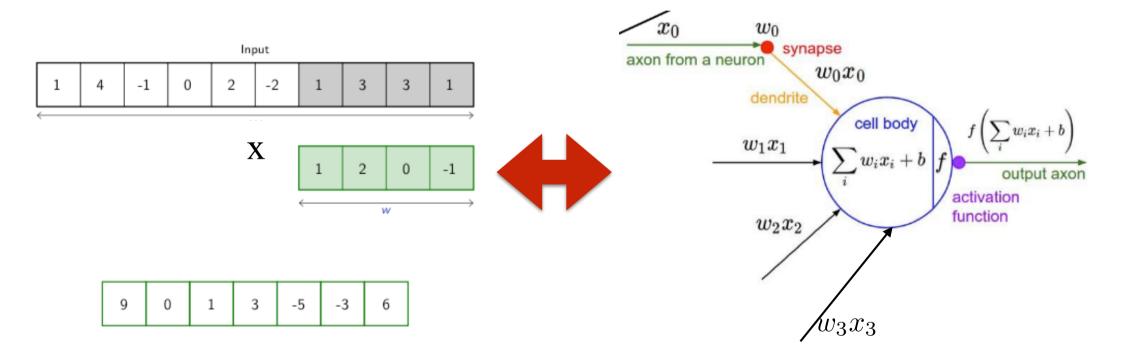


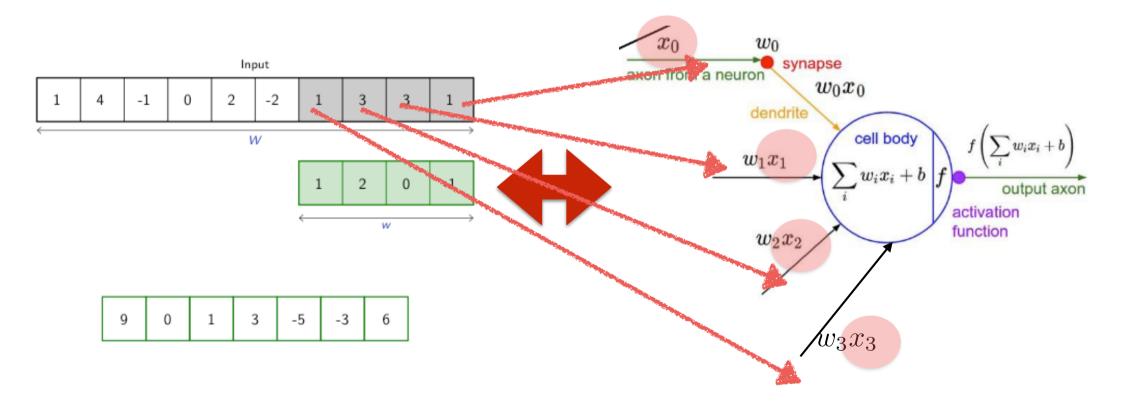


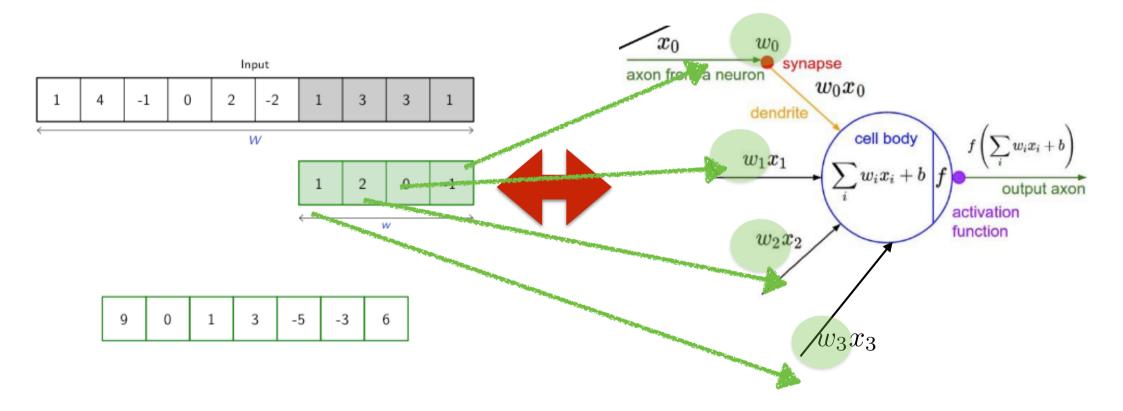


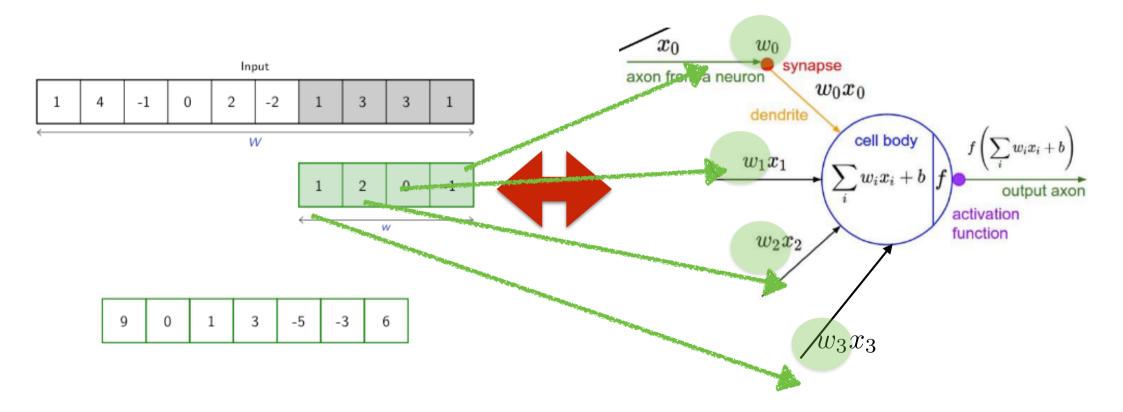












WITH THE ADVANTAGE THAT THE SAME WEIGHTS ARE APPLIED TO ALL THE SIGNAL: <u>TRANSLATION INVARIANCE</u>

SAME IDEA, BUT THE KERNEL IS NOW 2D

1/9	1/9	1/9
1/9	1/9	1/9
1/9	1/9	1/9

3	3	2	1	0
0	0	1	3	1
3	1	2	2	3
2	0	0	2	2
2	0	0	0	1

1.7	1.7	1.7
1.0	1.2	1.8
1.1	0.8	1.3

KERNEL

INPUT (IMAGE)

OUTPUT

<u>Credit</u>: animations from <u>https://github.com/vdumoulin/conv_arithmetic</u>

SAME IDEA, BUT THE KERNEL IS NOW 2D

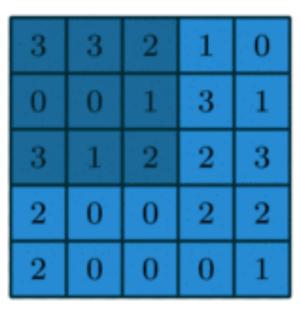
				3	3	2	1	0
1/9	1/9	1/9		0	0	1	3	1
1/9	1/9	1/9		3	1	2	2	3
1/9	1/9	1/9		2	0	0	2	2
			-	2	0	0	0	1

IN THE EXAMPLE: EACH 3x3 REGION GENERATES AN OUTPUT

 $Size_{output} = Size_{input} - Size_{kernel} + 1$

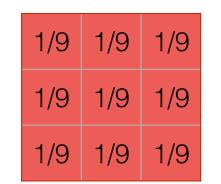
<u>Credit</u>: animations from <u>https://github.com/vdumoulin/conv_arithmetic</u>

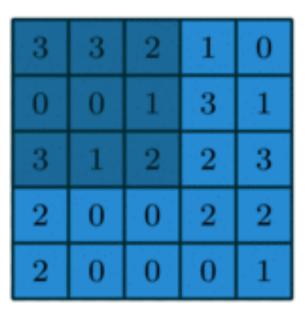
1/9	1/9	1/9
1/9	1/9	1/9
1/9	1/9	1/9



1.7	1.7	1.7
1.0	1.2	1.8
1.1	0.8	1.3

EQUIVALENT TO A NEURON WITH 9 INPUTS





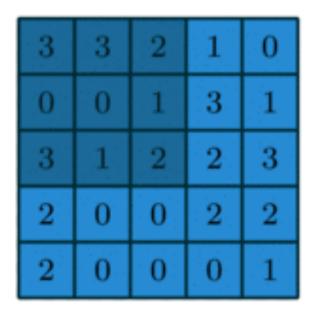
1.7	1.7	1.7
1.0	1.2	1.8
1.1	0.8	1.3

EQUIVALENT TO A NEURON WITH 9 INPUTS

THIS IS WHAT THE NETWORK LEARNS!

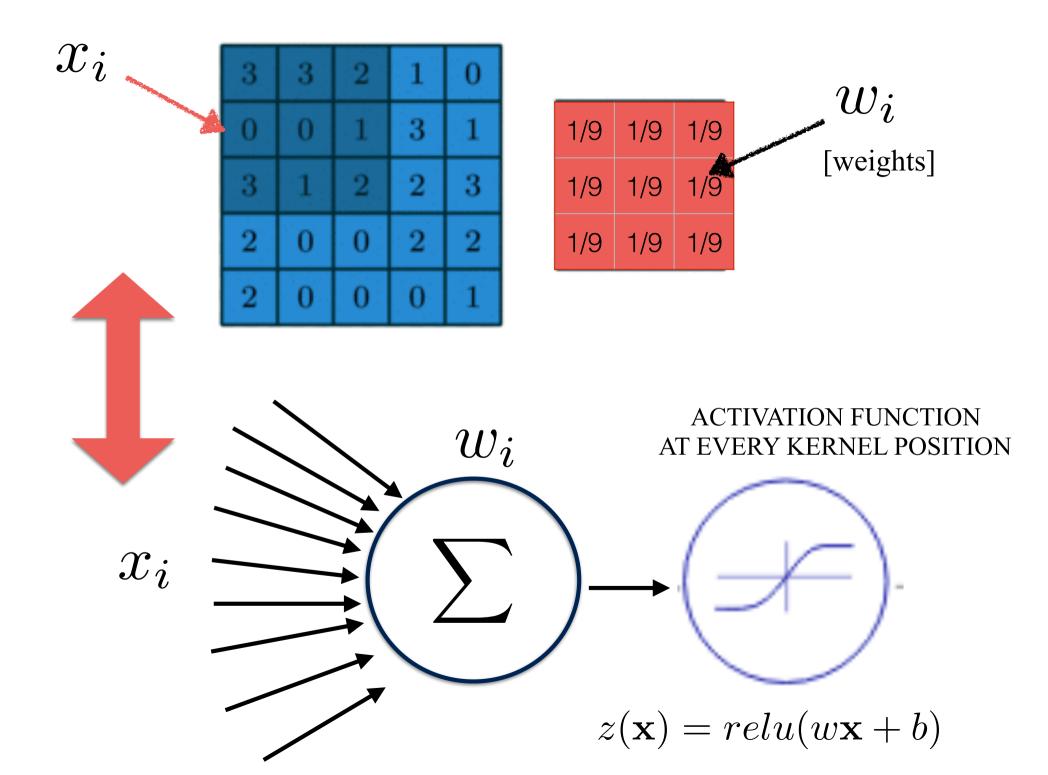
WEIGHTS ARE CODED IN THE KERNEL

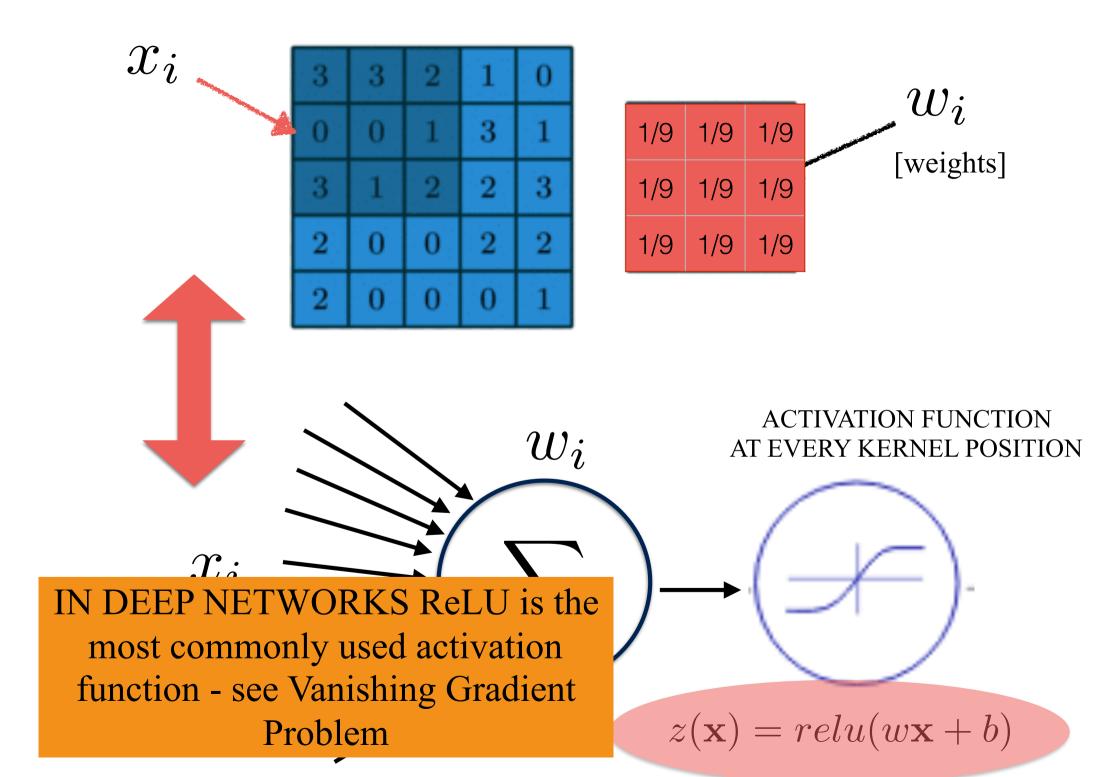
1/9	1/9	1/9
1/9	1/9	1/9
1/9	1/9	1/9





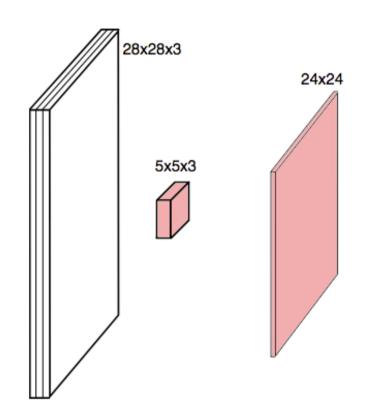
THE KEY IS AGAIN THAT <u>THE SAME</u> WEIGHTS ARE APPLIED TO ALL IMAGE REGIONS

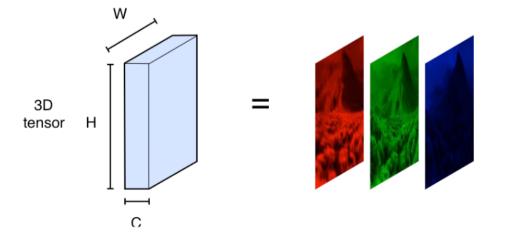




CONVOLUTIONS CAN ALSO BE COMPUTED ACROSS CHANNELS (OR COLORS)

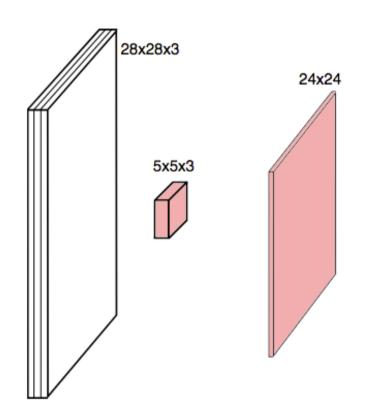
A COLOR IMAGE IS A TENSOR OF SIZE height x width x channels

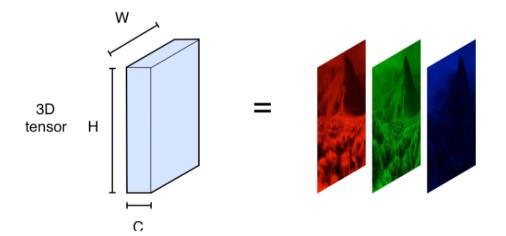




CONVOLUTIONS CAN ALSO BE COMPUTED ACROSS CHANNELS (OR COLORS)

A COLOR IMAGE IS A TENSOR OF SIZE height x width x channels

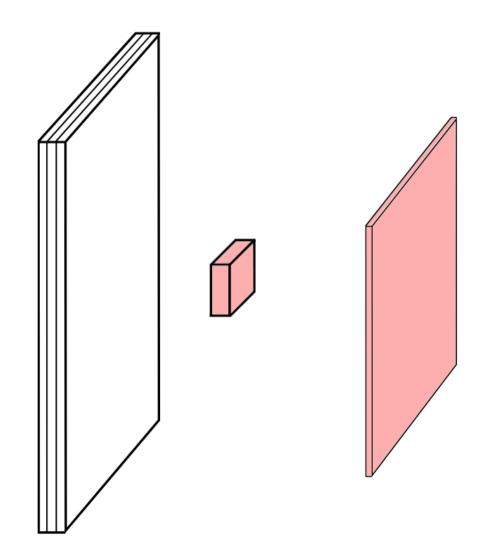




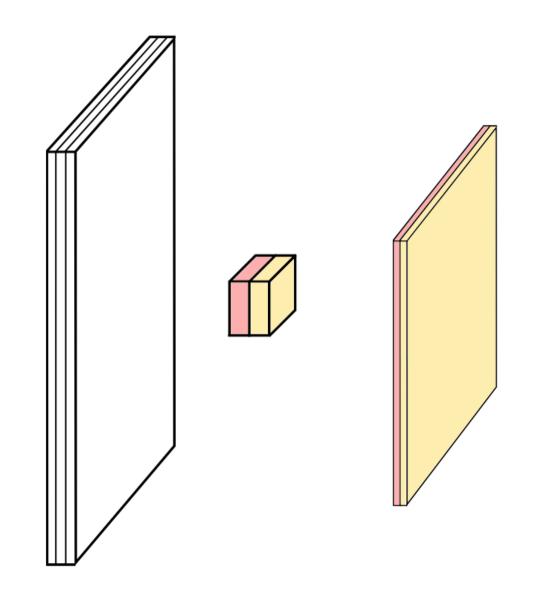
IN ASTRONOMY ...

IT OPENS THE DOOR TO ANALYZE MULTIPLE FILTERS () SIMULTANEOUSLY

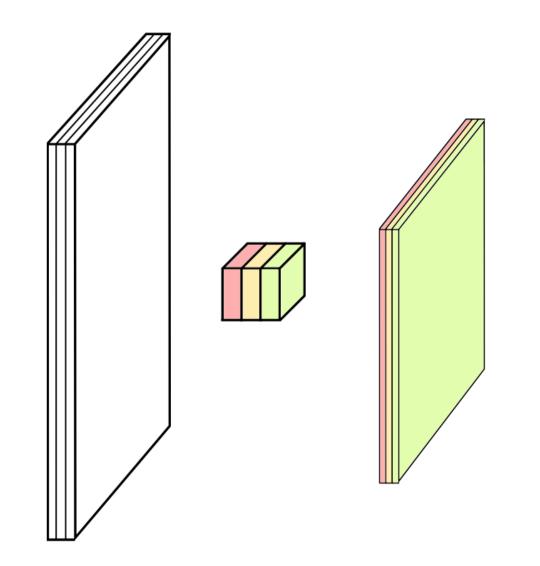
MULTIPLE CONVOLUTIONS WITH DIFFERENT KERNELS CAN BE PERFORMED



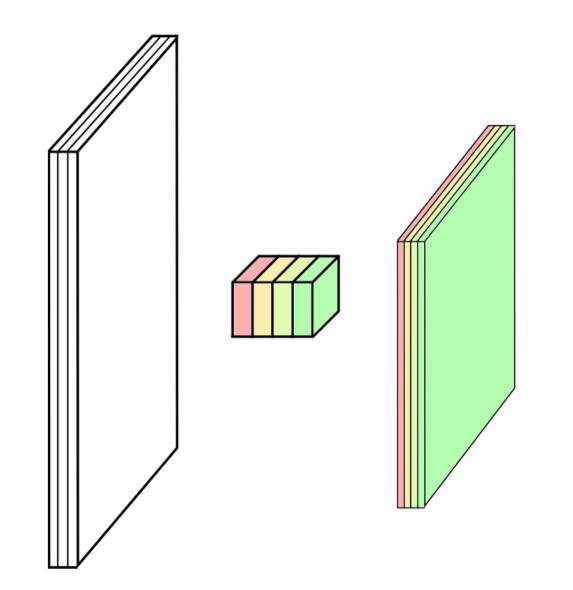
MULTIPLE CONVOLUTIONS WITH DIFFERENT KERNELS CAN BE PERFORMED



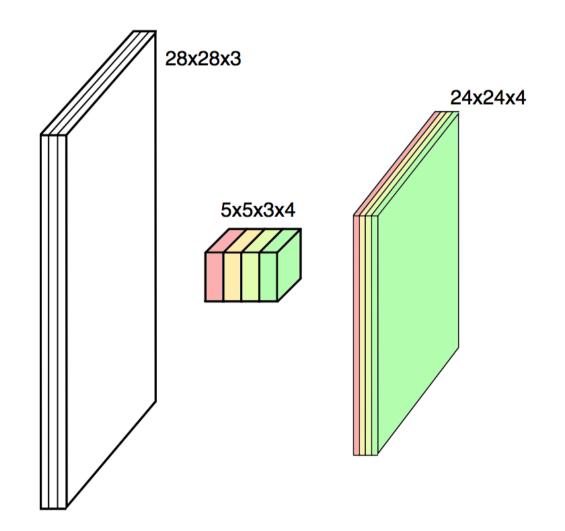
MULTIPLE CONVOLUTIONS WITH DIFFERENT KERNELS CAN BE PERFORMED



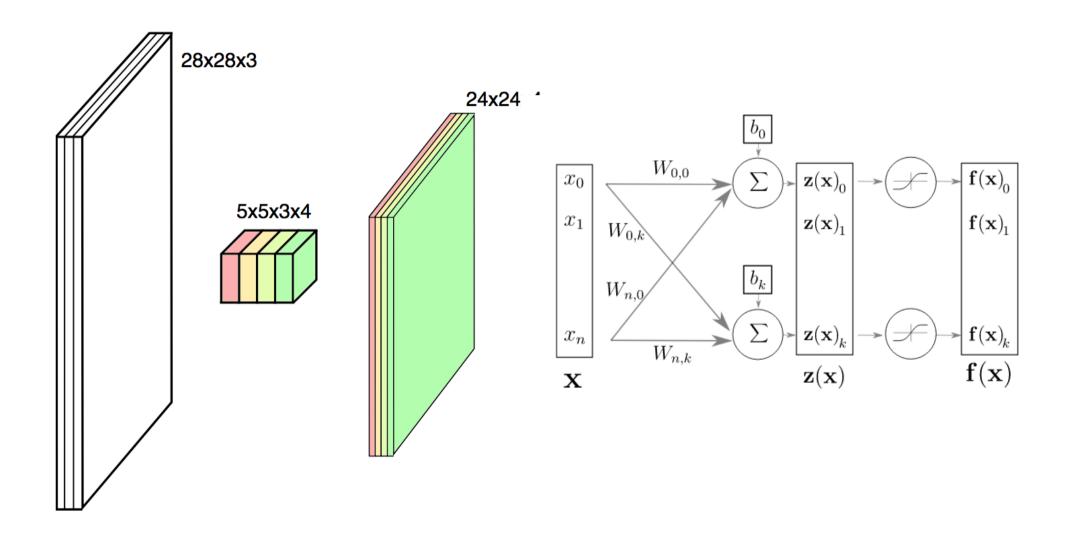
MULTIPLE CONVOLUTIONS WITH DIFFERENT KERNELS CAN BE PERFORMED



MULTIPLE CONVOLUTIONS WITH DIFFERENT KERNELS CAN BE PERFORMED



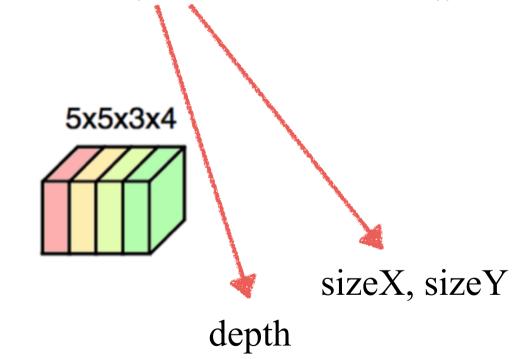
MULTIPLE CONVOLUTIONS WITH DIFFERENT KERNELS CAN BE PERFORMED



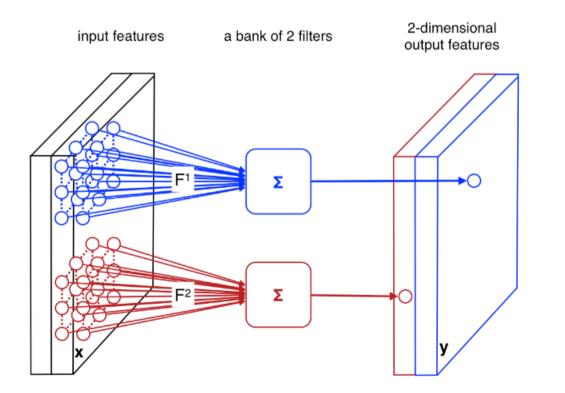
IN KERAS...

model = Sequential()

model.add(Convolution2D(4,5,5, activation="relu"))

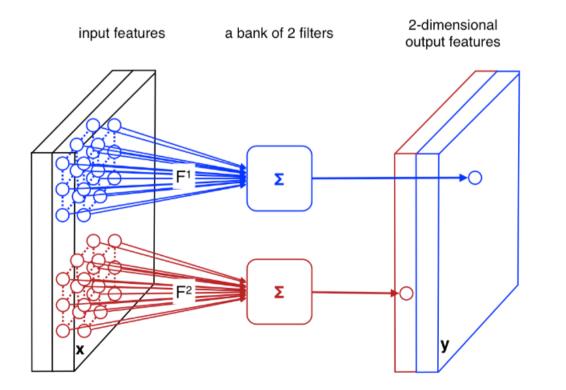


SINCE CONVOLUTIONS OUTPUT ONE SCALAR, THEY CAN BE SEEN AS AN INDIVIDUAL NEURON WITH A <u>RECEPTIVE FIELD LIMITED TO THE KERNEL</u> <u>DIMENSIONS</u>

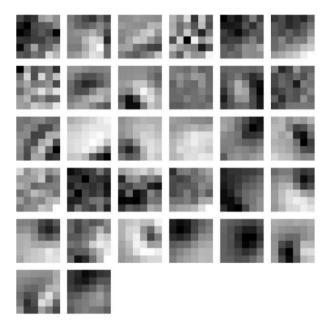


SINCE CONVOLUTIONS OUTPUT ONE SCALAR< THEY CAN BE SEEN AS AN INDIVIDUAL NEURON WITH A <u>RECEPTIVE FIELD LIMITED TO THE KERNEL</u> <u>DIMENSIONS</u>

THE <u>SAME NEURON</u> IS FIRED WITH DIFFERENT AREAS FROM THE INPUT



EXAMPLE OF 32 FILTERS LEARNED IN A CONVOLUTIONAL LAYER



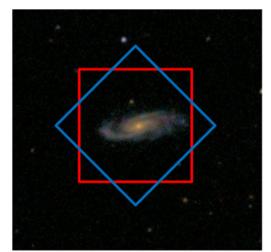
(a) red channel

(b) green channel

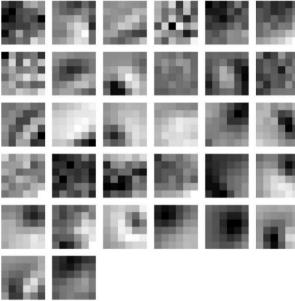


(c) blue channel

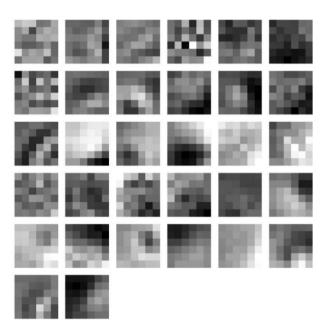
Dieleman+16



EXAMPLE OF 32 FILTERS LEARNED IN A CONVOLUTIONAL LAYER



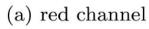
(b) green channel

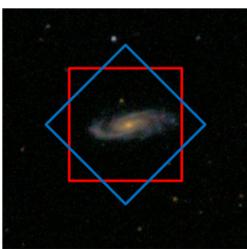


(c) blue channel

Dieleman+16

THESE ARE CALLED FEATURE MAPS



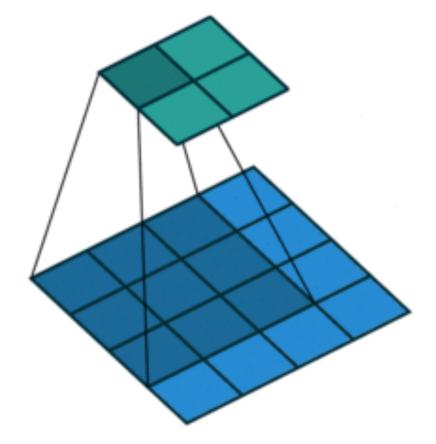


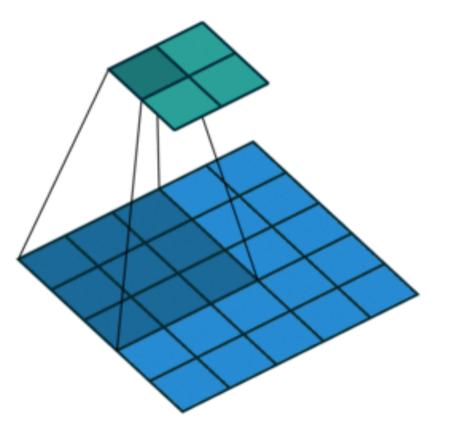
ESTIMATING SHAPES AND NUMBER OF PARAMETERS

KERNEL SHAPE:	<u>PADDING:</u>	<u>STRIDES:</u>
(F, F, C^i, C^o)	P	S

<u>OUTPUT SIZE:</u> $W_0 = (W^i - F + 2P)/S + 1$

OPTIONS: STRIDES

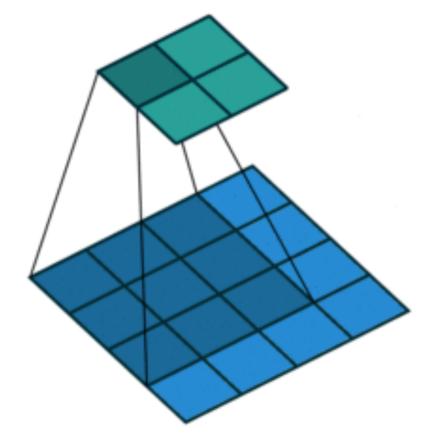


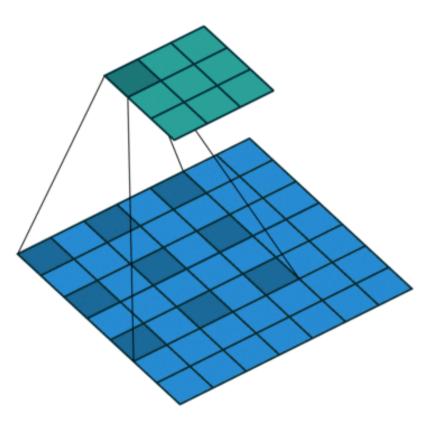


NO STRIDES

STRIDES

OPTIONS: DILATION

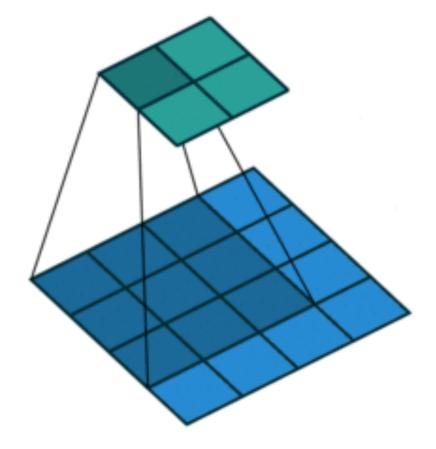


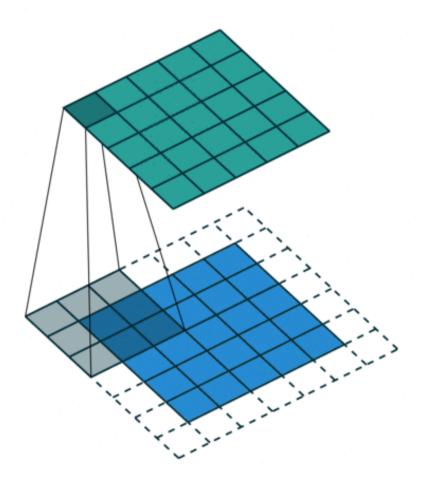


NO STRIDES

DILATION

OPTIONS: PADDING





NO STRIDES

ESTIMATING SHAPES AND NUMBER OF PARAMETERS

KERNEL SHAPE:	<u>PADDING:</u>	<u>STRIDES:</u>
(F, F, C^i, C^o)	P	S

OUTPUT SIZE:
$$W_0 = (W^i - F + 2P)/S + 1$$

<u>NUMBER OF PARAMETERS:</u> $(F \times F \times C^i + 1) \times C^o$

ESTIMATING SHAPES AND NUMBER OF PARAMETERS

KERNEL SHAPE:	<u>PADDING:</u>	<u>STRIDES:</u>
(F, F, C^i, C^o)	P	S

OUTPUT SIZE:
$$W_0 = (W^i - F + 2P)/S + 1$$

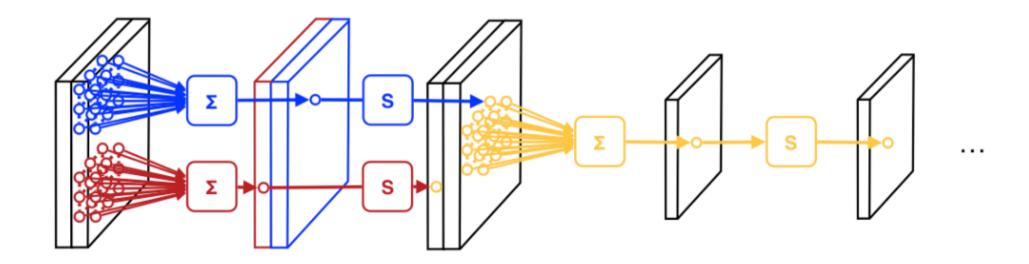
<u>NUMBER OF PARAMETERS:</u> $(F \times F \times C^{i} + 1) \times C^{o}$

the number of parameters increases fast!

32 filters of 5*5 on a color image —> 2432 parameters to learn

DOWNSAMPLING

DOWNSAMPLING IS APPLIED TO REDUCE THE OVERALL SIZE OF TENSORS



POOLING

CONVOLUTIONS ARE OFTEN FOLLOWED BY AN OPERATION OF DOWNSAMPLING [POOLING]

VERY SIMPLE OPERATION - ONLY ONE OUT OF EVERY N PIXELS ARE KEPT

OFTEN MATCHED WITH AN INCREASE OF THE FEATURE CHANNELS

TYPES OF POOLING

$$y = \sum x_{uv}$$

SQUARE SUM POOLING
$$y = \sqrt{\sum x_{uv}^2}$$

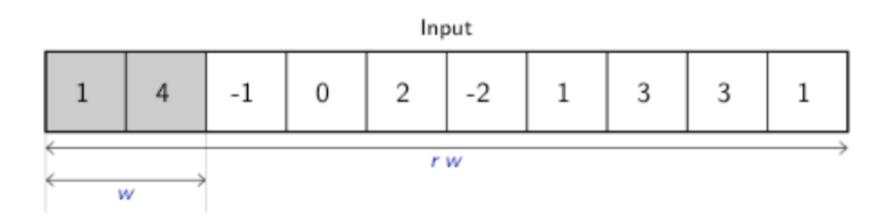
$$\underline{MAX POOLING} \qquad y = max(x_{uv})$$

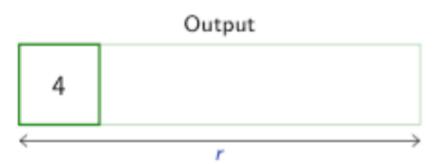
TYPES OF POOLING

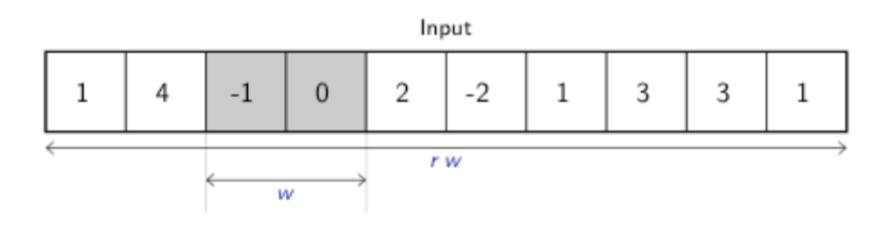
$$y = \sum x_{uv}$$

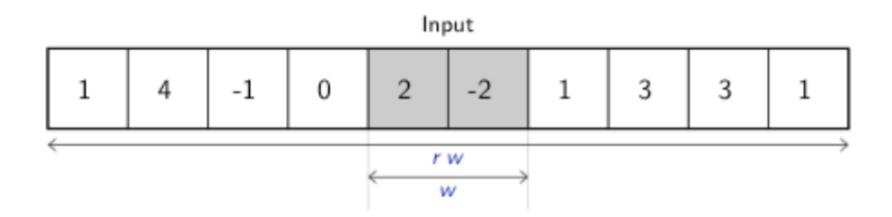
SQUARE SUM POOLING
$$y = \sqrt{\sum x_{uv}^2}$$

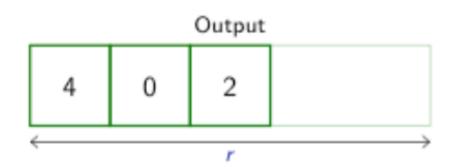
MAX POOLING
$$y = max(x_{uv})$$

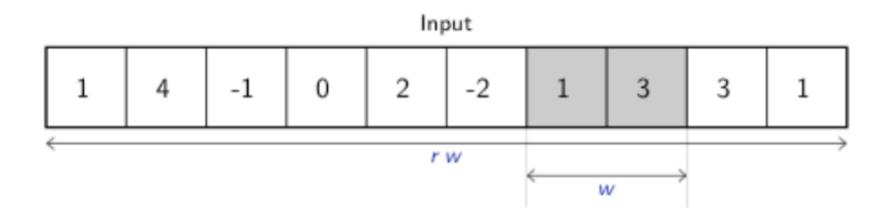


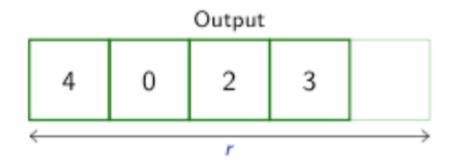


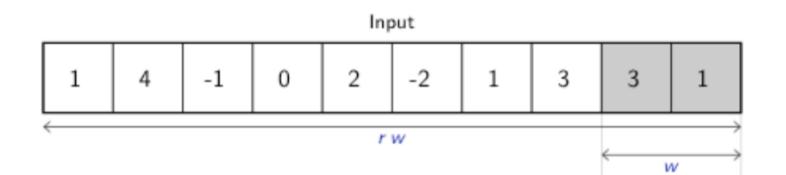


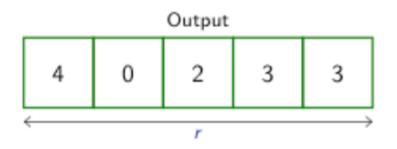




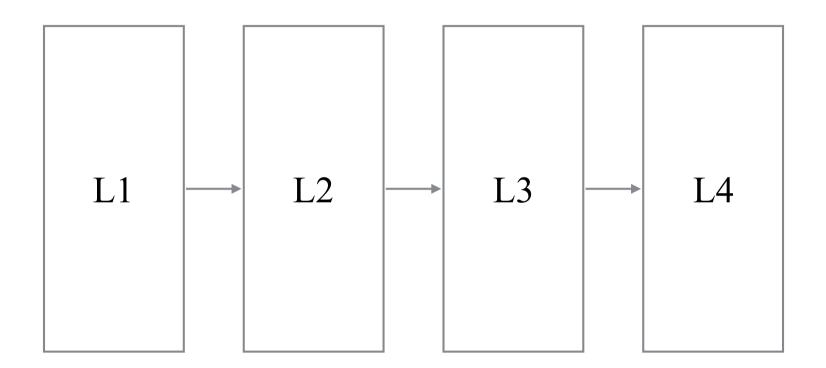






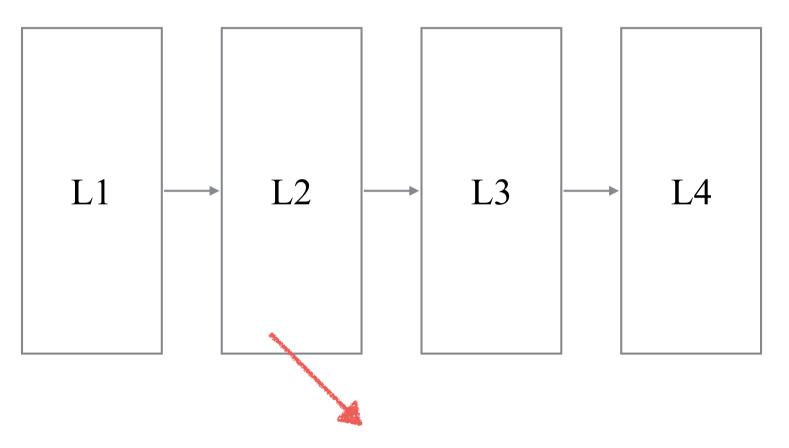


CONVNET OR CNN



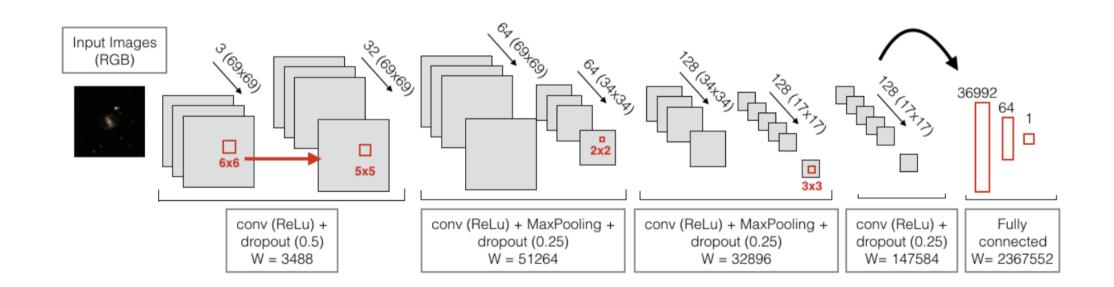
A CONCATENATION OF MULTIPLE CONVOLUTIONAL BLOCKS

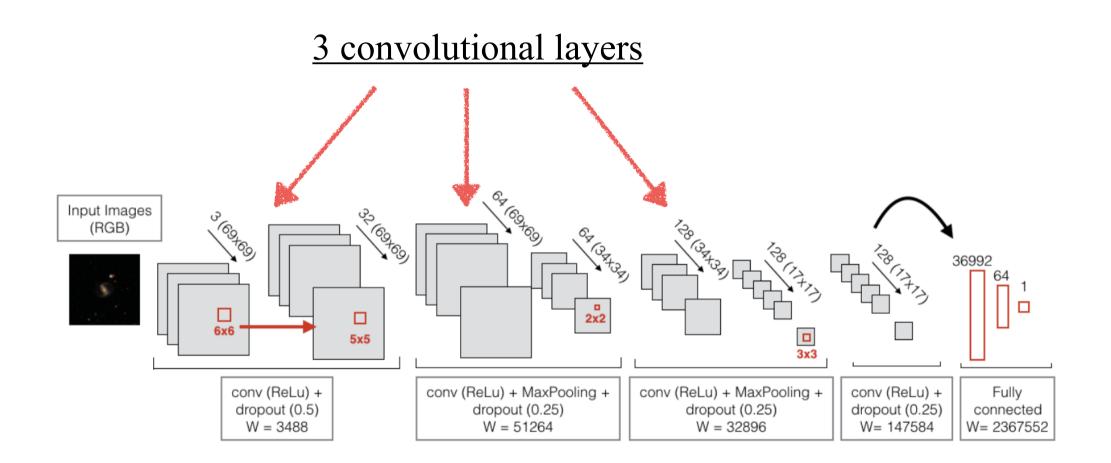
CONVNET OR CNN

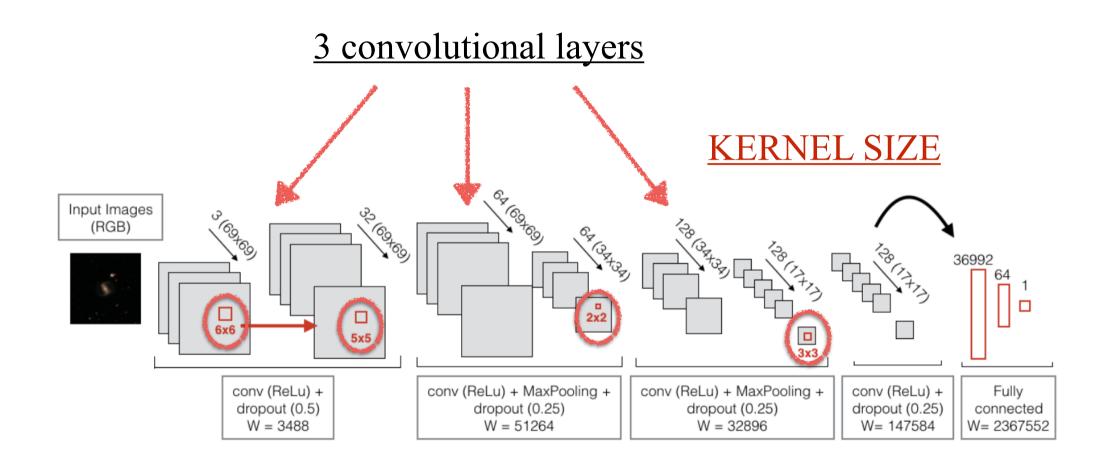


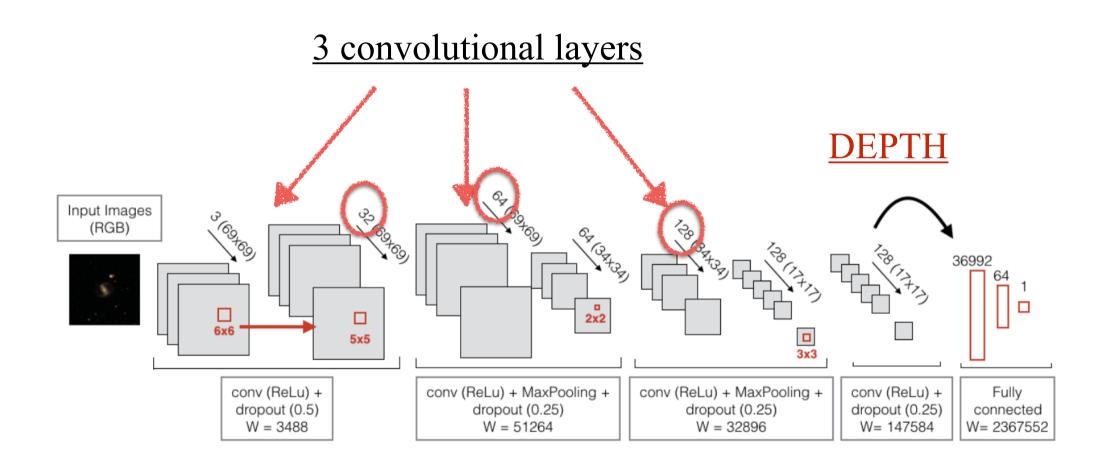
EACH BLOCK TYPICALLY MADE OF:

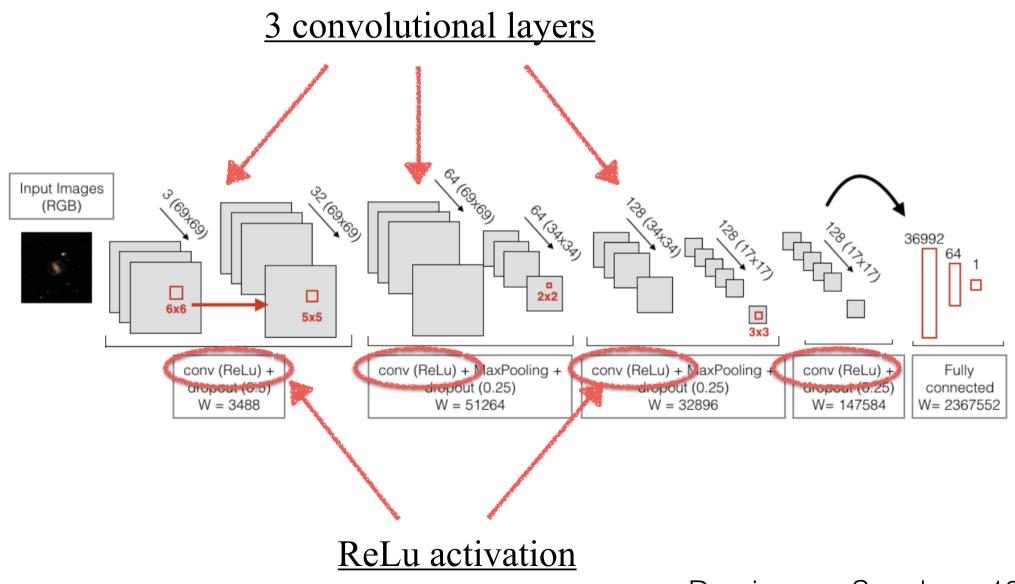
(+dropout for training)

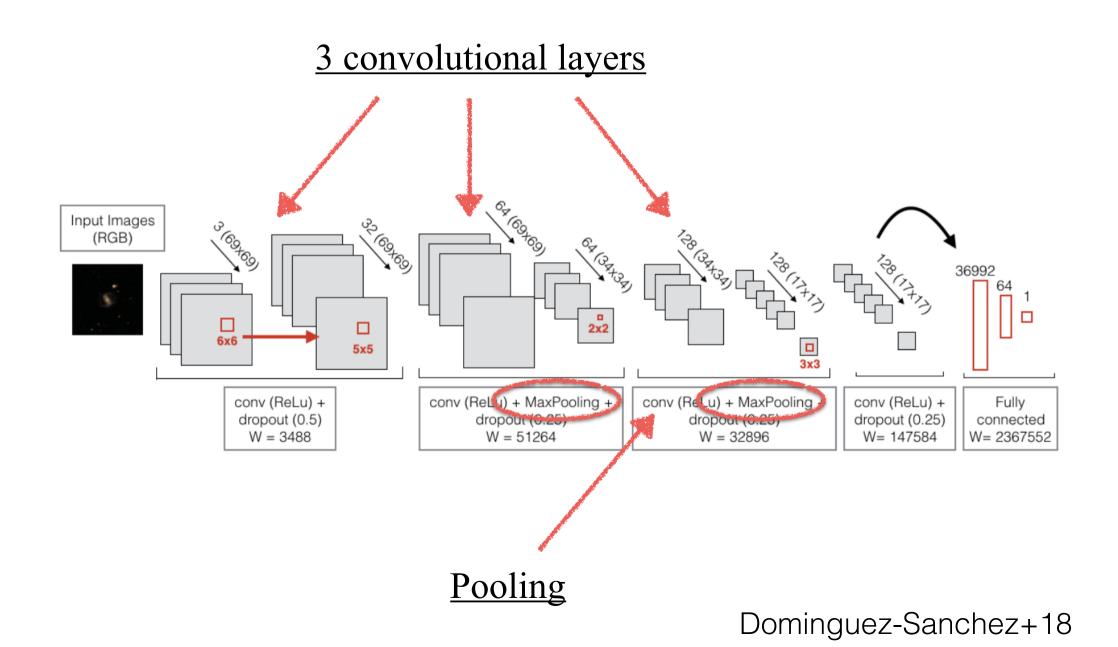






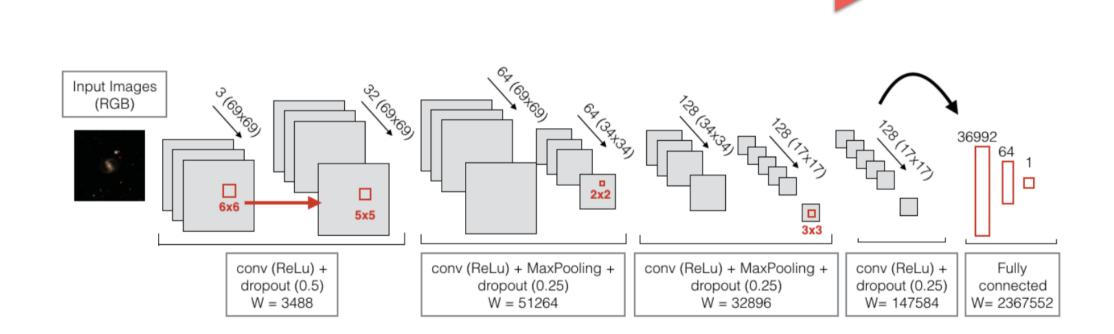






OVERALL:

- decrease of tensor size
 - increase of depth



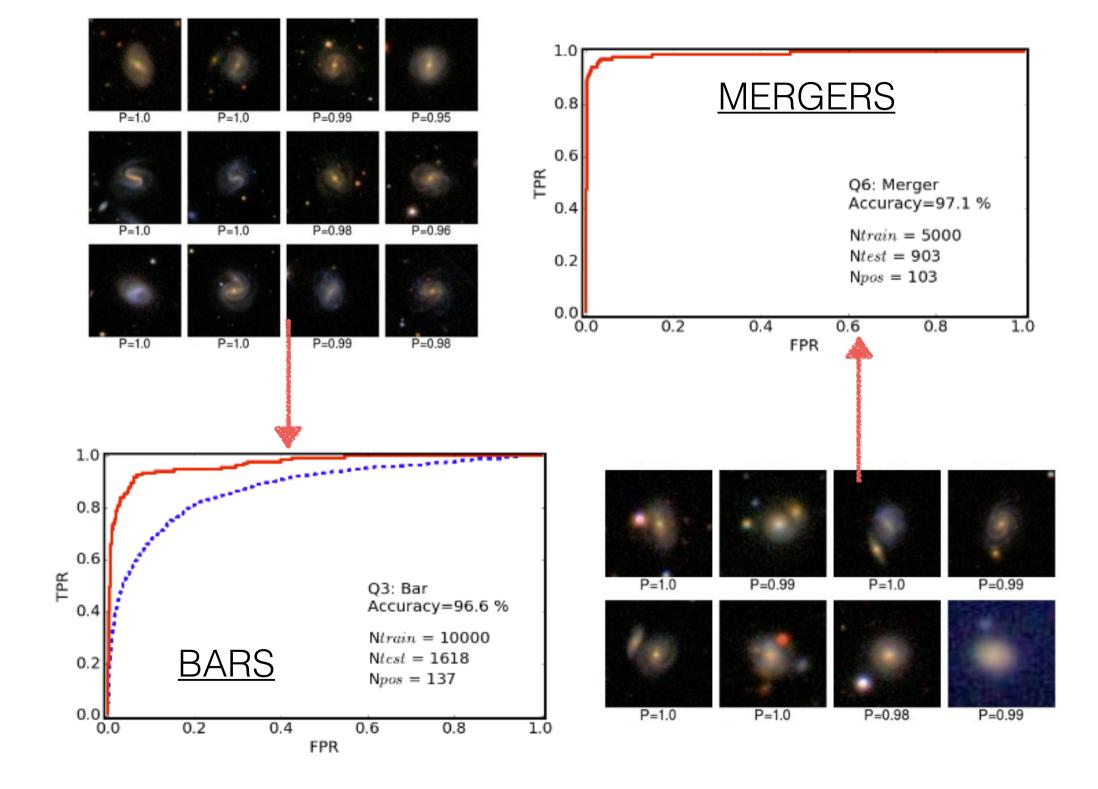
IMPLEMENTATION IN KERAS

```
#======= Model definition=======
```

#Convolutional Layers

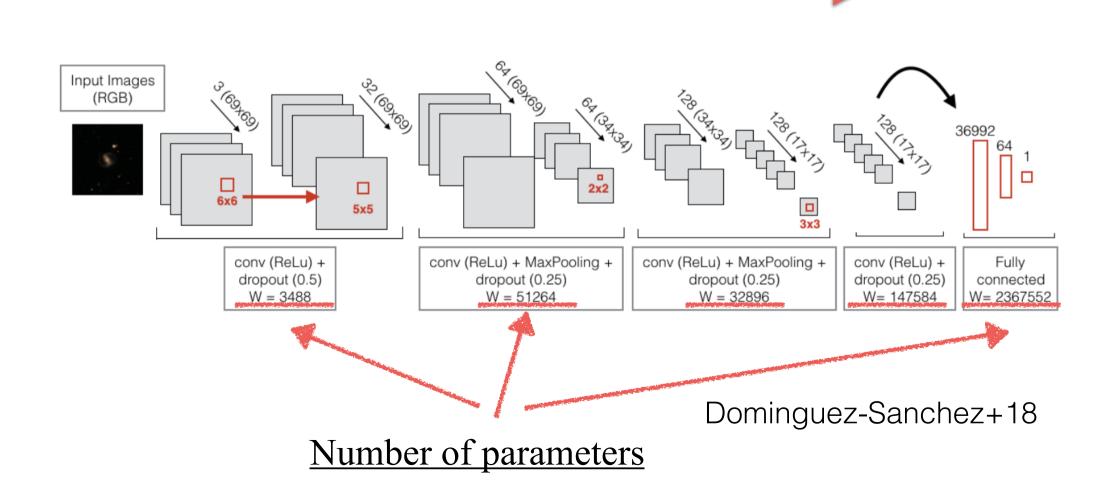
```
model = Sequential()
model.add(Convolution2D(32, 6,6, border_mode='same',
                    input shape=(img channels, img rows, img cols)))
model.add(Activation('relu'))
model.add(Dropout(0.5))
model.add(Convolution2D(64, 5, 5, border_mode='same'))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
model.add(Convolution2D(128, 2, 2, border_mode='same'))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
model.add(Convolution2D(128, 3, 3, border_mode='same'))
model.add(Activation('relu'))
model.add(Dropout(0.25))
#Fully Connected start here
#_____
model.add(Flatten())
model.add(Dense(64, activation='relu'))
model.add(Dropout(.5))
model.add(Dense(1, init='uniform', activation='sigmoid'))
print("Compilation...")
```

model.compile(loss='binary_crossentropy',optimizer='adam',metrics=['accuracy'])



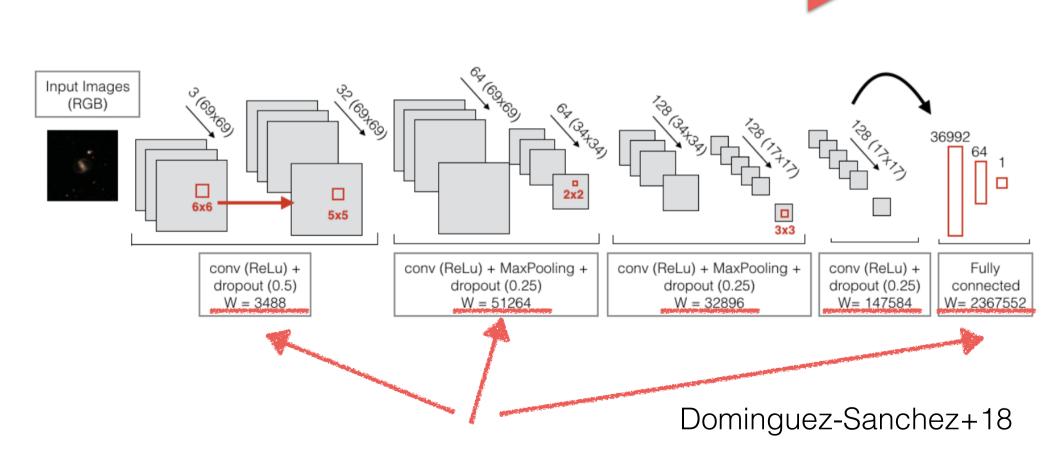
OVERALL:

- decrease of tensor size
 - increase of depth



OVERALL:

- decrease of tensor size
 - increase of depth



2 million of parameters for this very simple network!

CHECKING THE NUMBER OF PARAMETERS / LAYERS WITH KERAS

	activation_1 (Activation)
	<pre>max_pooling3d_1 (MaxPooling3</pre>
	conv3d_2 (Conv3D)
	batch_normalization_2 (Batch
	activation_2 (Activation)
	<pre>max_pooling3d_2 (MaxPooling3</pre>
	conv3d_3 (Conv3D)

Layer (type)

input 1 (InputLayer)

conv3d 1 (Conv3D)

batch normalization 3 (Batch (None, 64, 4, 28, 28) 112

Output Shape

(None, 1, 16, 112, 112)

(None, 16, 16, 112, 112) 448

(None, 16, 16, 112, 112) 0

(None, 16, 8, 56, 56)

(None, 32, 4, 28, 28)

(None, 64, 4, 28, 28)

batch_normalization_1 (Batch (None, 16, 16, 112, 112) 448

Param #

0

0

13856

224

0

0

55360

activation 3 (Activation) (None, 64, 4, 28, 28) 0

max_pooling3d_3 (MaxPooling3 (None, 64, 2, 14, 14) 0

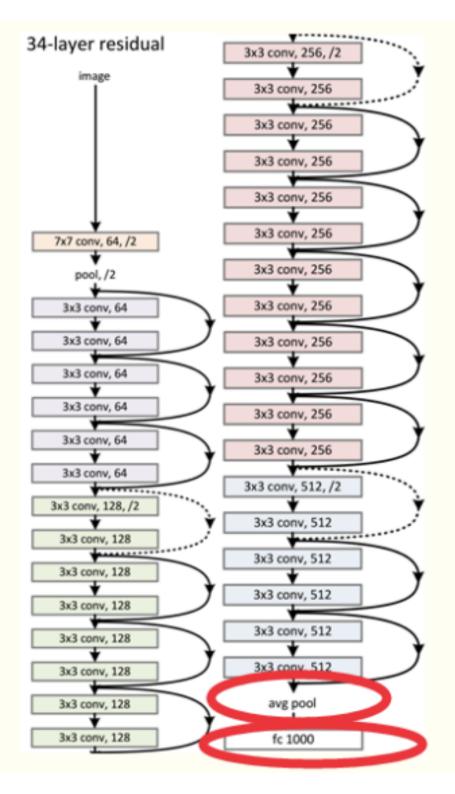
activation 12 (Activation) (None, 64, 2, 14, 14) 0

_____ Total params: 70,448 Trainable params: 70,056 Non-trainable params: 392

model.summary()

IN THE REAL LIFE..

RESNET

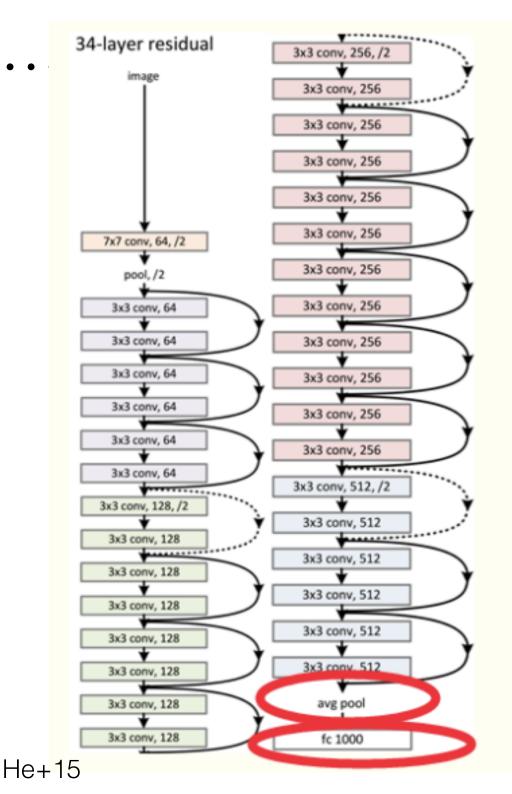


IN THE REAL LIFE..

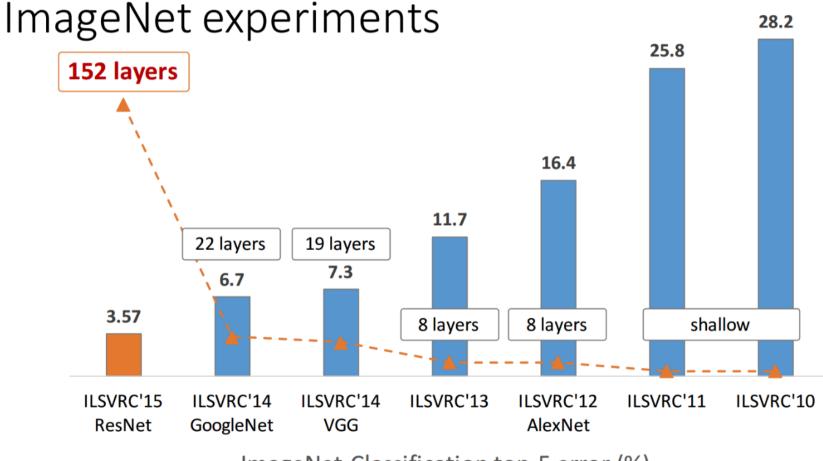
<u>RESNET</u>

DO WE NEED TO GO THIS DEEP FOR ASTRONOMY APPLICATIONS?

[34 layers - authors explored up to 1202!]



DEEPER TENDS TO BE BETTER...



ImageNet Classification top-5 error (%)

THE PROBLEMS OF GOING "TOO DEEP"

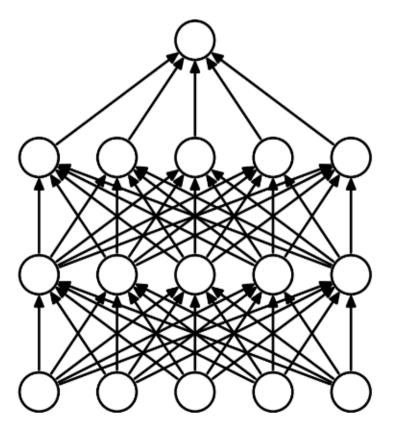
- DEEP NETWORKS ARE MORE DIFFICULT TO OPTIMIZE
- NEED MORE DATA MORE SUBJECT TO OVER-FITTING
- AND ALSO NEED MORE TIME ...

OVER-FITTING

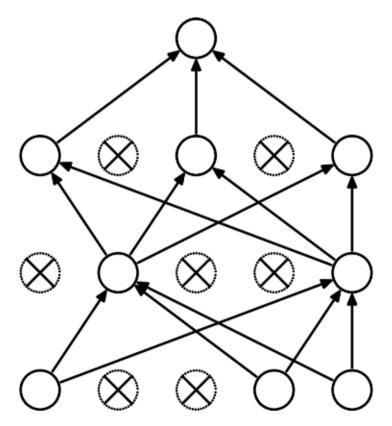
DROPOUT [Hinton+12]

- THE IDEA IS TO REMOVE NEURONS RANDOMLY DURING THE TRAINING

- ALL NEURONS ARE PUT BACK DURING THE TEST PHASE



⁽a) Standard Neural Net



(b) After applying dropout.

DROPOUT

WHY DOES IT WORK?

1. SINCE NEURONS ARE REMOVED RANDOMLY, IT AVOIDS CO-ADAPTATION AMONG THEMSELVES

2. DIFFERENT SETS OF NEURONS WHICH ARE SWITCHED OFF, REPRESENT A DIFFERENT ARCHITECTURE AND ALL THESE DIFFERENT ARCHITECTURES ARE TRAINED IN PARALLEL. FOR N NEURONS ATTACHED TO DROPOUT, THE NUMBER OF SUBSET ARCHITECTURES FORMED IS 2^N. SO IT AMOUNTS TO PREDICTION BEING AVERAGED OVER THESE ENSEMBLES OF MODELS.

DROPOUT

0.30

train validation 0.25 ★train(final+averaging) ★ test(final+averaging) ☆test(final) RMSE 0.20 0.15 2500 500 1500 2000 0 1000 # chunks

WITH A LITTLE BIT OF DROPOUT

Huertas-Company+15

CAPTURING THE MODEL UNCERTAINTY

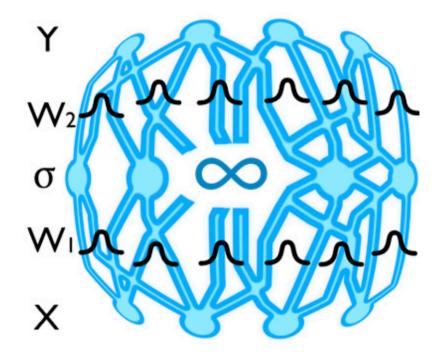
NEURAL NETWORKS AS BAYESIAN MODELS

Denker&LEcun91, Neal+95, Graves+11, Kingma+15, Gal+15...

w

σ

Х



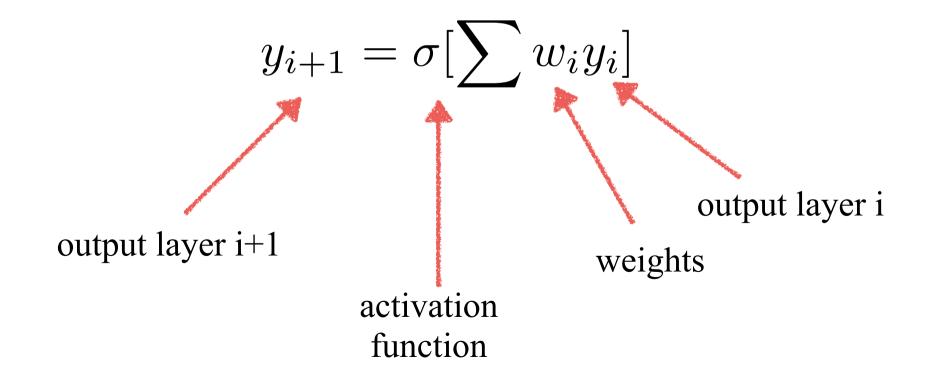
BNNs ADD A PRIOR DISTRIBUTION TO EACH WEIGHT - HARD TO TRAIN GAL+15 SHOW THAT DROPOUT CAN BE USED TO ESTIMATE UNCERTAINTY

IMPLEMENTATION IN KERAS / TENSORFLOW

```
#======= Model definition=======
#Convolutional Layers
model = Sequential()
model.add(Convolution2D(32, 6,6, border_mode='same',
                    input shape=(img channels, img rows, img cols)))
model.add(Accivation('relu'))
model.dd(Dropout(0.5))
model.add(Convolution2D(64, 5, 5, border mode='same'))
model.add(Activation('relu'))
model.add(MaxPooling2D(puel_size=(2, 2)))
model.add(Dropout(0.25))
model.add(Convolution2D(128, 2, 2, border_mode='same'))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
model.add(Convolution2D(128, 3, 3, border_mode='same'))
model.add(Activation('relu'))
model.add(Dropout(0.25))
#Fully Connected start here
model.add(Flatten())
model.add(Dense(64, activation='relu'))
model.add(Dropout(.5))
model.add(Dense(1, init='uniform', activation='sigmoid'))
print("Compilation...")
```

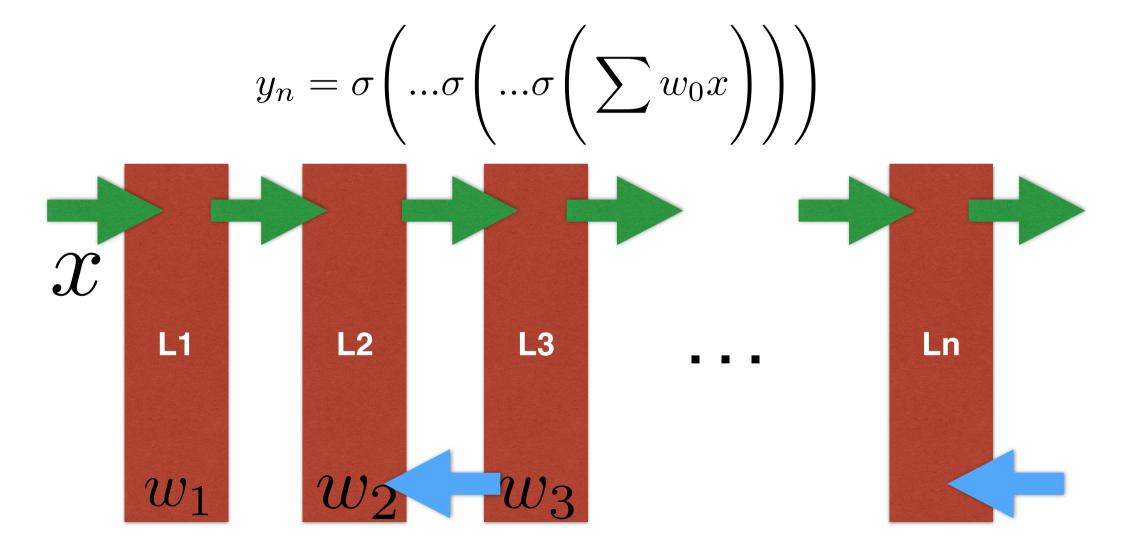
model.compile(loss='binary_crossentropy',optimizer='adam',metrics=['accuracy'])

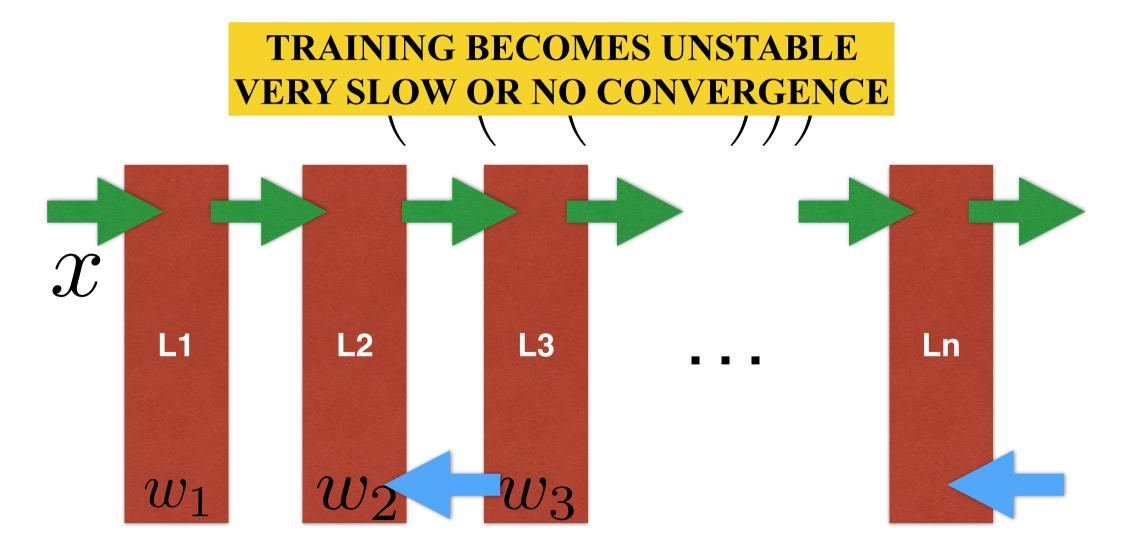
REMEMBER THAT:

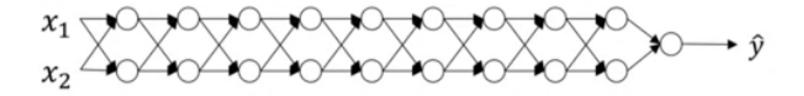


WITH MANY LAYERS:

$$y_n = \sigma \left(\dots \sigma \left(\dots \sigma \left(\sum w_0 x \right) \right) \right)$$







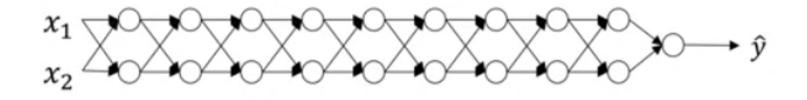
IF WE ASSUME AN IDENTITY ACTIVATION FUNCTION:

$$\hat{y} = x \prod w_i$$

n

with:

$$w_i = \begin{pmatrix} w_i^0 & 0\\ 0 & w_i^1 \end{pmatrix} \qquad \qquad x = \begin{pmatrix} x_1\\ x_2 \end{pmatrix}$$

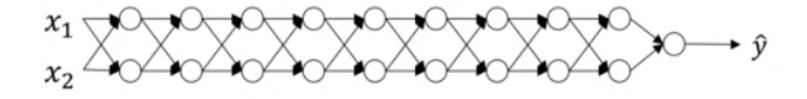


$$w_i = \begin{pmatrix} w_i^0 & 0\\ 0 & w_i^1 \end{pmatrix} \qquad \hat{y} = x \prod_n w_i$$

 $x = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$

IF WEIGHTS ARE ALL INITIALIZED TO VALUES <<1:

$$w_i^L
ightarrow 0$$
VANISHING GRA



$$w_i = \begin{pmatrix} w_i^0 & 0\\ 0 & w_i^1 \end{pmatrix} \qquad \hat{y} = x \prod_n w_i$$

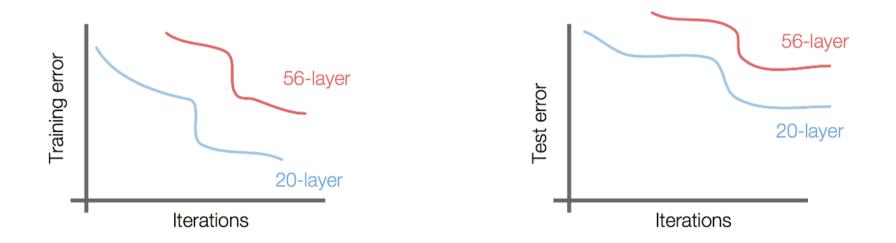
 $x = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$

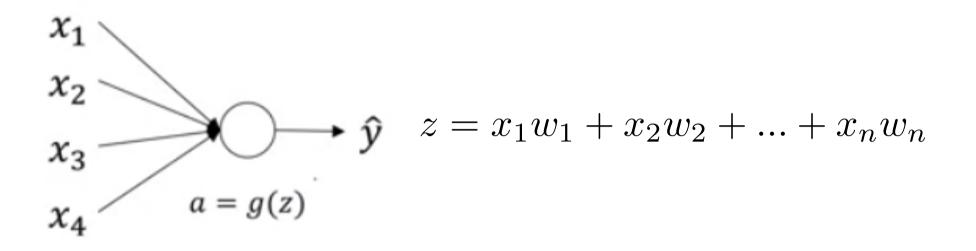
IF WEIGHTS ARE ALL INITIALIZED TO VALUES >1:

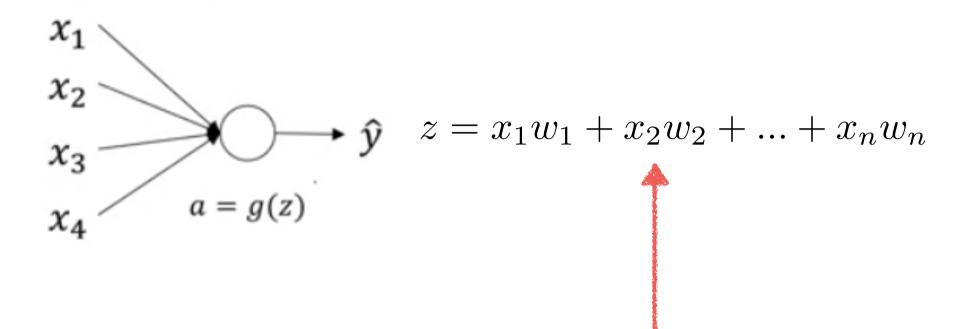
$$w_i^L \to \infty$$

EXPLODING GRADIENT

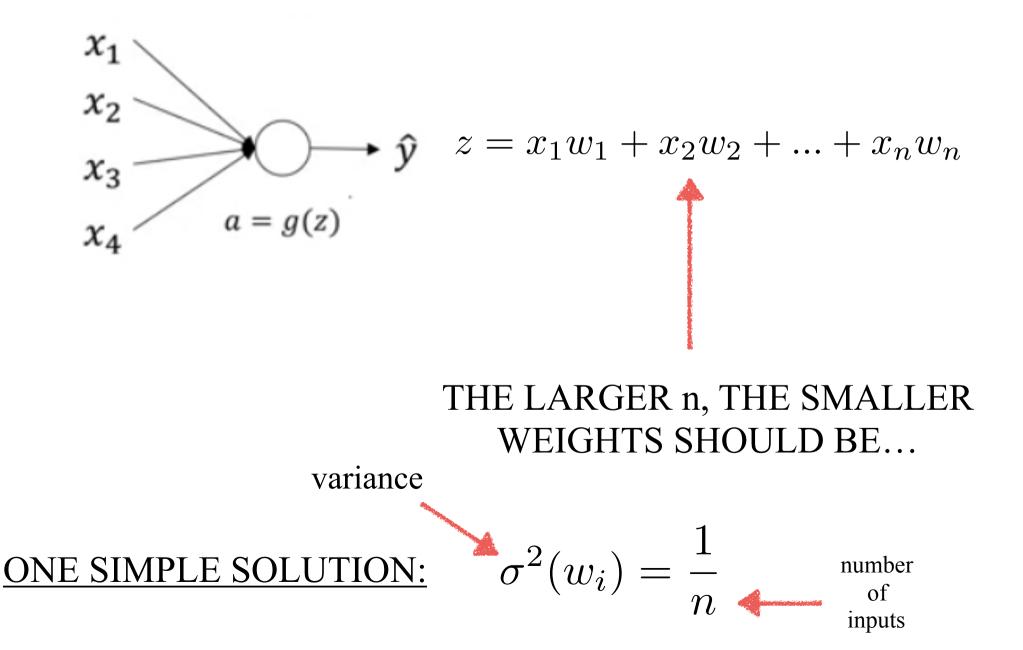
TRAINING BECOMES UNSTABLE VERY SLOW OR NO CONVERGENCE

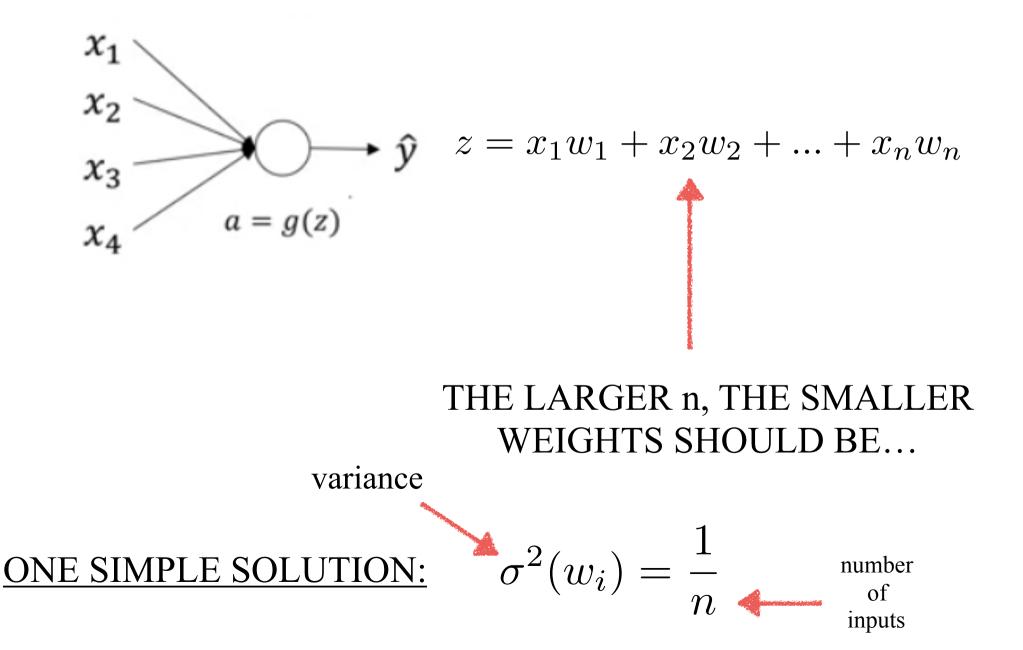






THE LARGER n, THE SMALLER WEIGHTS SHOULD BE...





For ReLU activation functions we typically use:

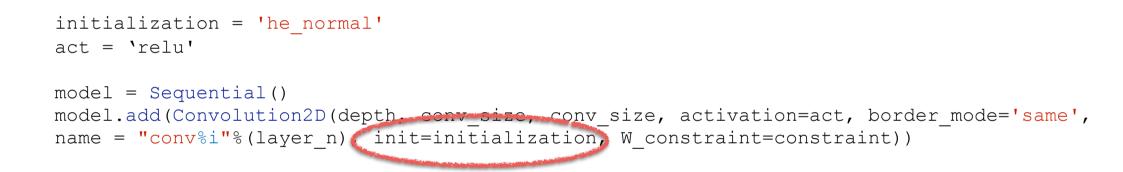
$$\sigma^2(w_i) = \frac{2}{n}$$

[He initialization, He+15]

IMPLEMENTATION IN KERAS:

```
initialization = 'he_normal'
act = 'relu'
model = Sequential()
model.add(Convolution2D(depth.conv_size, conv_size, activation=act, border_mode='same',
name = "conv%i"%(layer_n), init=initialization, W_constraint=constraint))
```

IMPLEMENTATION IN KERAS:



MANY OTHER INITIALIZATIONS AVAILABLE:

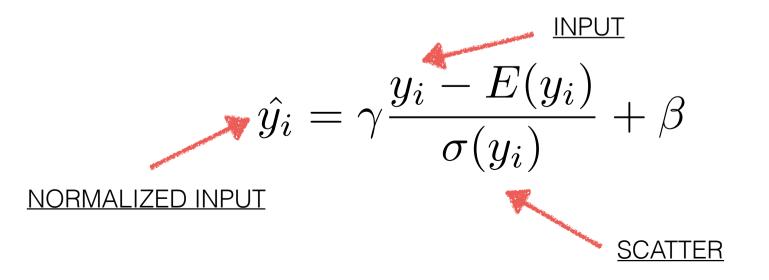
keras.initializers

https://keras.io/initializers/

BATCH NORMALIZATION [SZEGEDY+15]

ANOTHER SOLUTION TO KEEP REASONABLE VALUES OF THE ACTIVATIONS IN DEEP NETWORKS

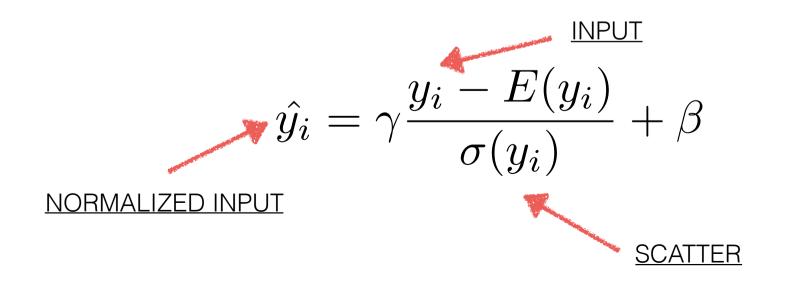
BATCH NORMALIZATION PREVENTS LOW OR LARGE VALUES BY RE-NORMALIZING THE VALUES BEFORE ACTIVATION FOR EVERY BATCH



BATCH NORMALIZATION [SZEGEDY+15]

BATCH NORMALIZATION SPEEDS UP AND STABILIZES TRAINING

AS FOR THE DROPOUT, THERE IS A DIFFERENT BEHAVIOR BETWEEN TRAINING AND TESTING



BATCH NORMALIZATION [SZEGEDY+15]

IN KERAS, IT IS IMPLEMENTED AS AN ADDITIONAL LAYER

BatchNormalization

[source]

keras.layers.BatchNormalization(axis=-1, momentum=0.99, epsilon=0.001, center=True, scale=True, beta_initializer

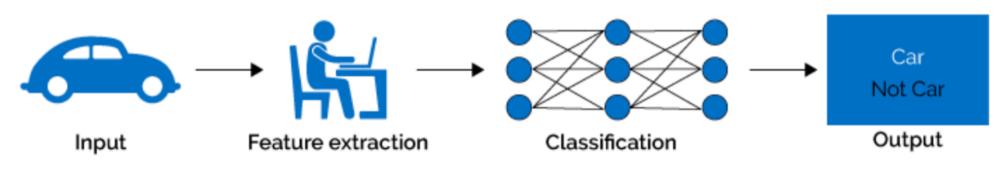
Batch normalization layer (loffe and Szegedy, 2014).

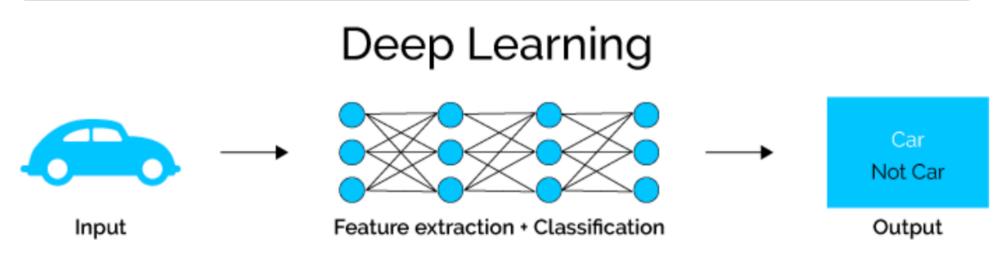
Normalize the activations of the previous layer at each batch, i.e. applies a transformation that maintains the mean activation close to 0 and the activation standard deviation close to 1.

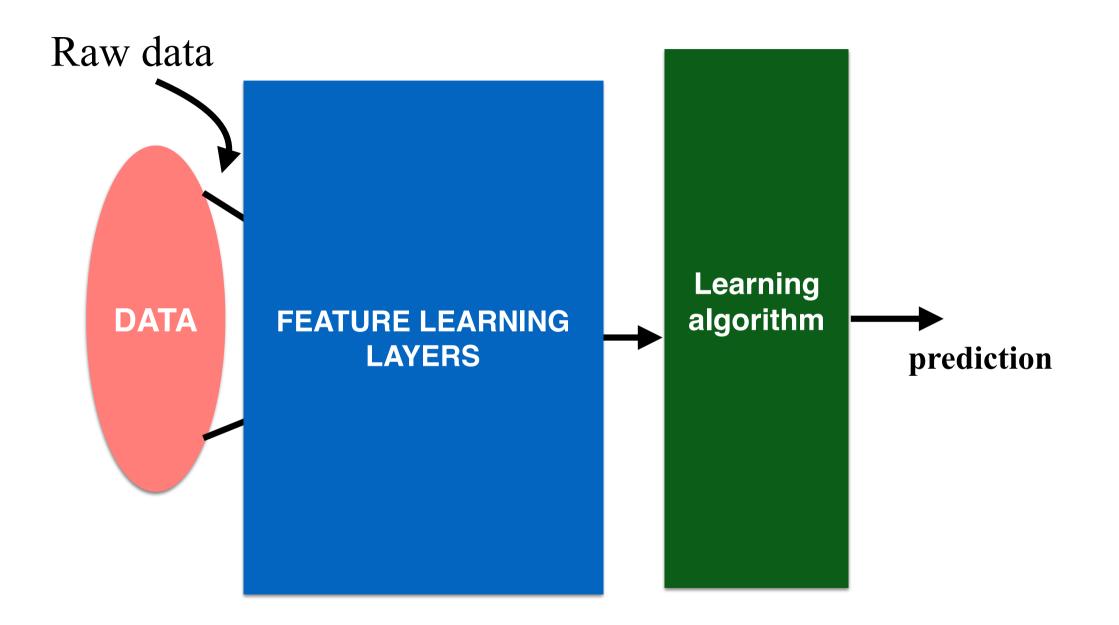
Arguments

THIS IS A CHANGE OF PARADIGM!

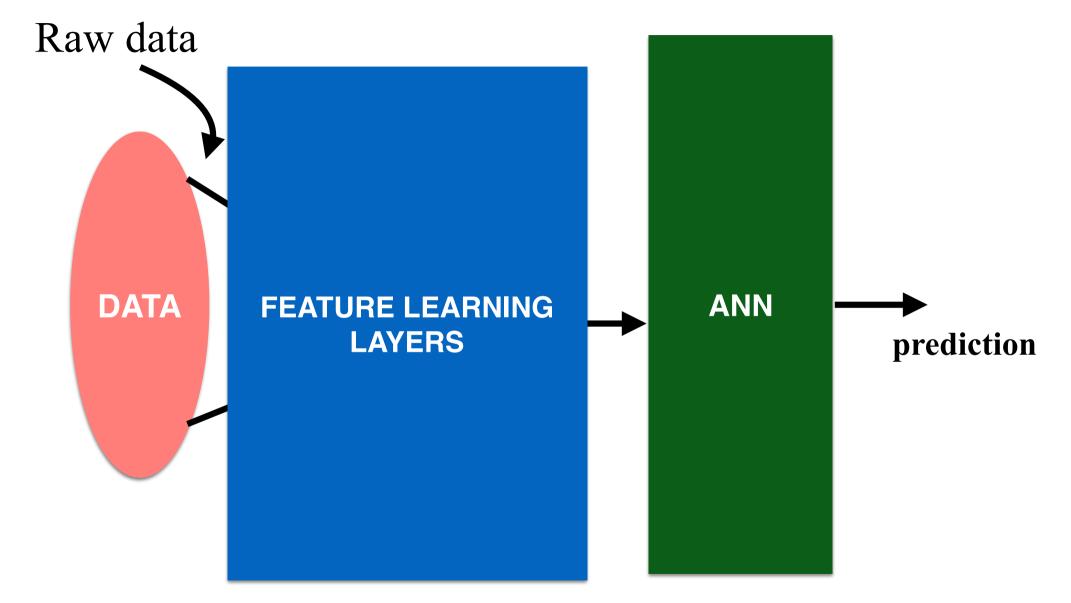
Machine Learning



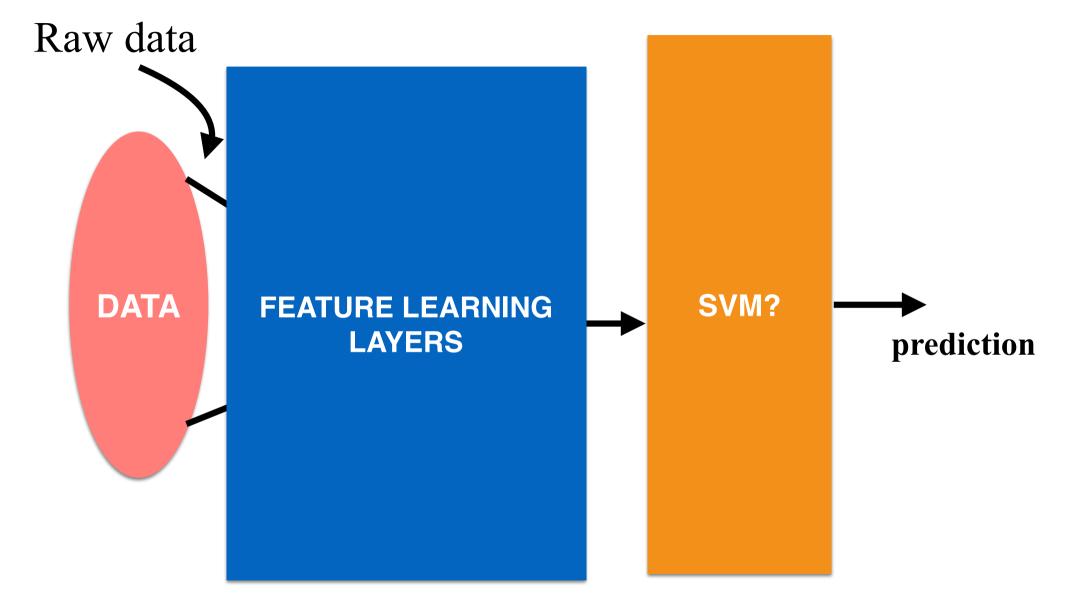




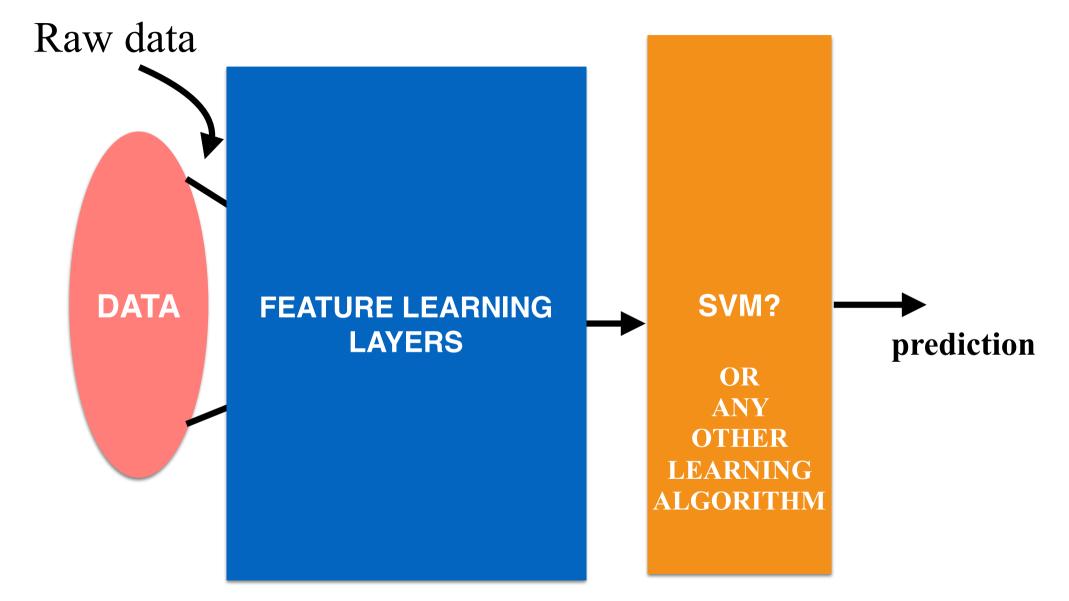
THE LEARNING ALGORITHM CAN BE CHANGED



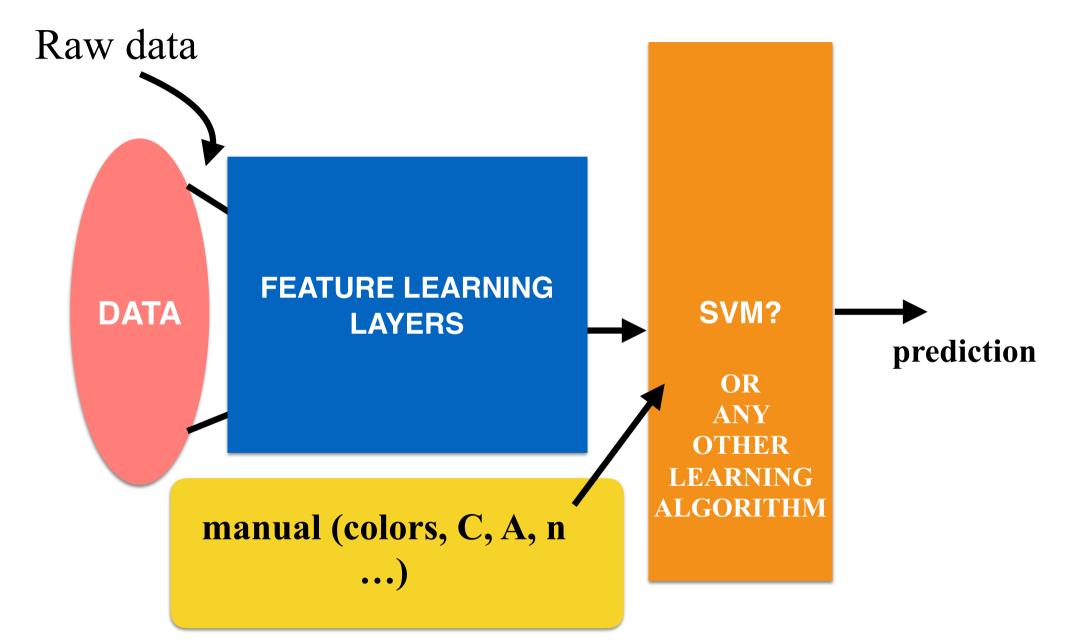
THE LEARNING ALGORITHM CAN BE CHANGED

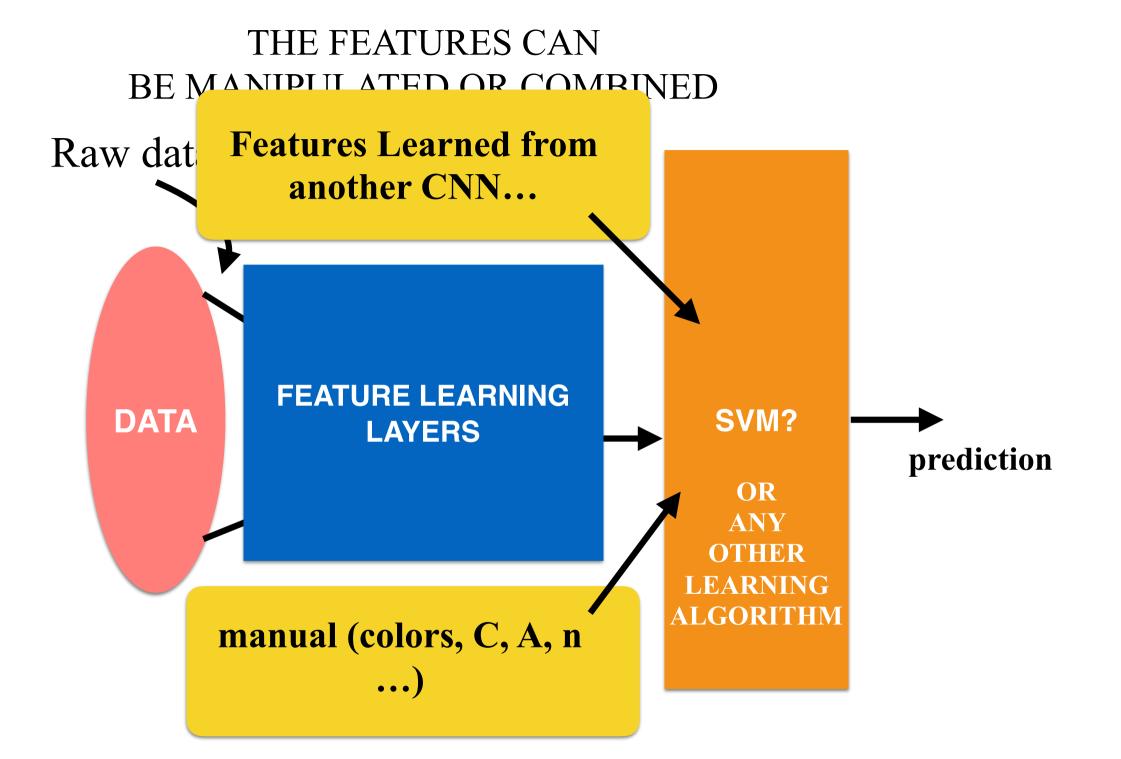


THE LEARNING ALGORITHM CAN BE CHANGED

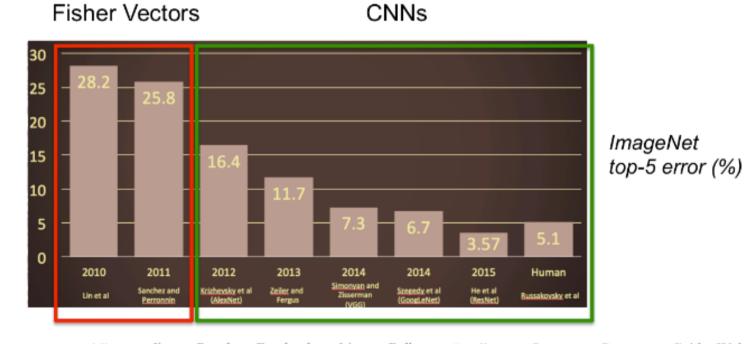


THE FEATURES CAN BE MANIPULATED OR COMBINED

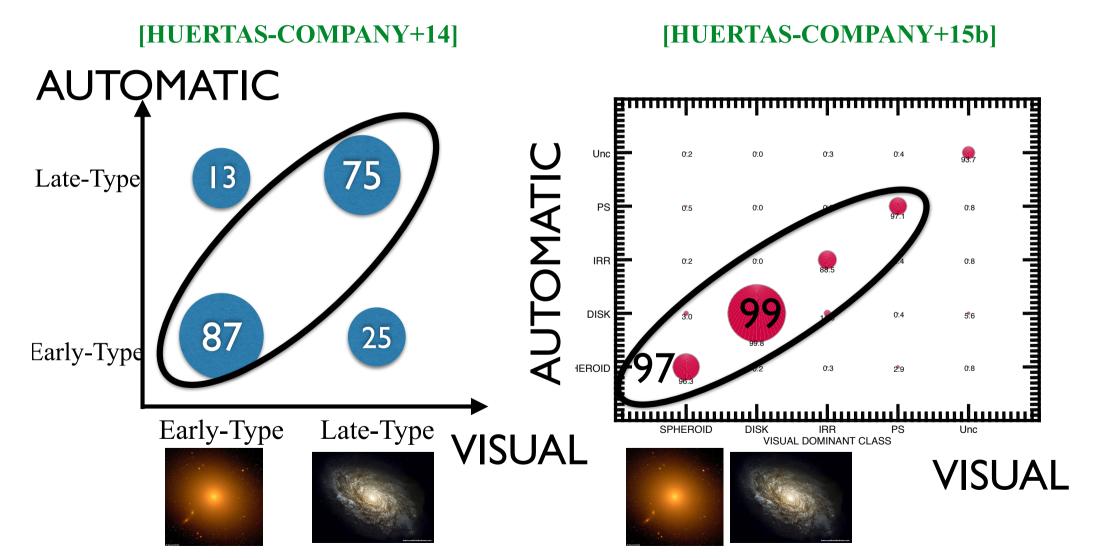




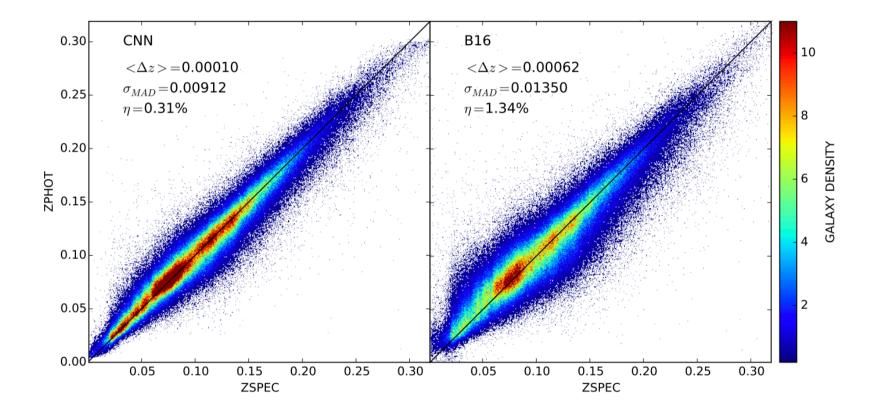
THIS IS A CHANGE OF PARADIGM!



ALSO FOR GALAXY MORPHOLOGY



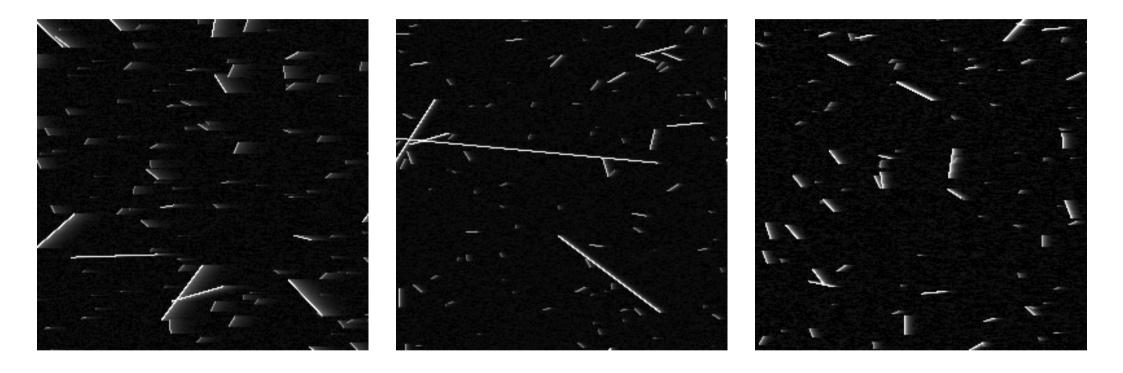
PHOTOMETRIC REDSHIFTS



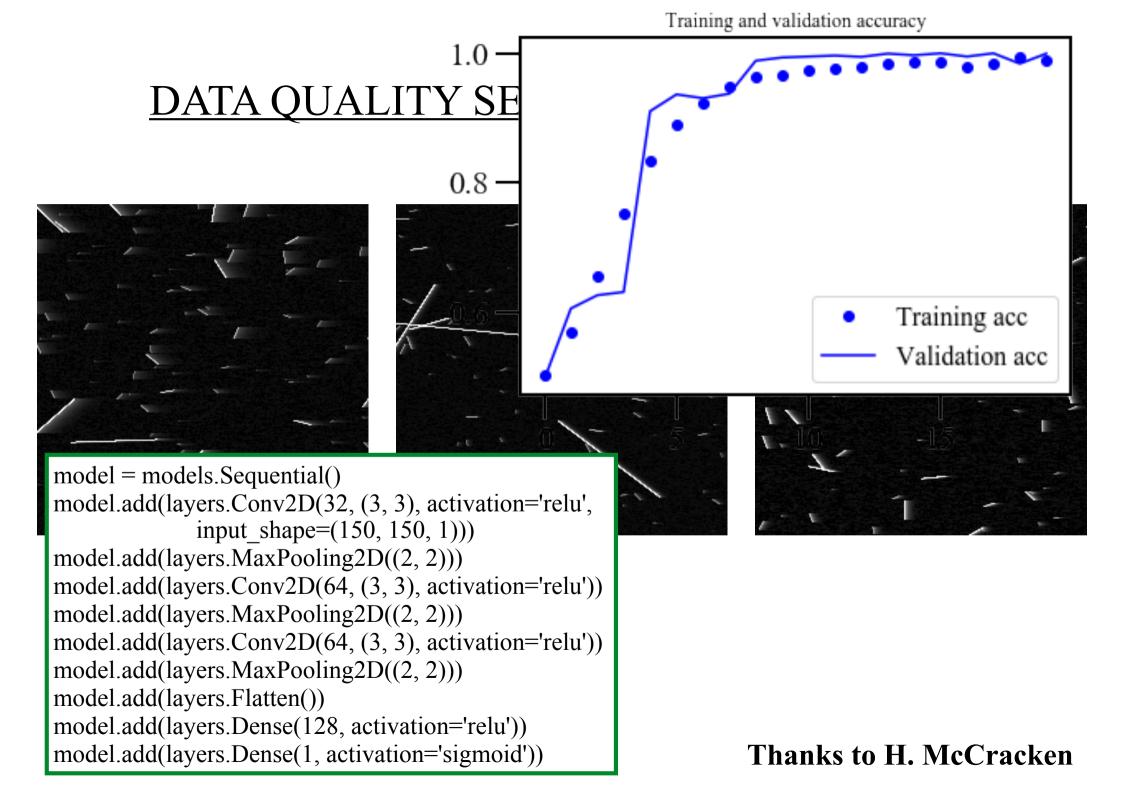
Pasquet+18

AUTOMATICALLY COMBINING MORPHOLOGY AND COLOR FOR PHOTOZ ESTIMATION

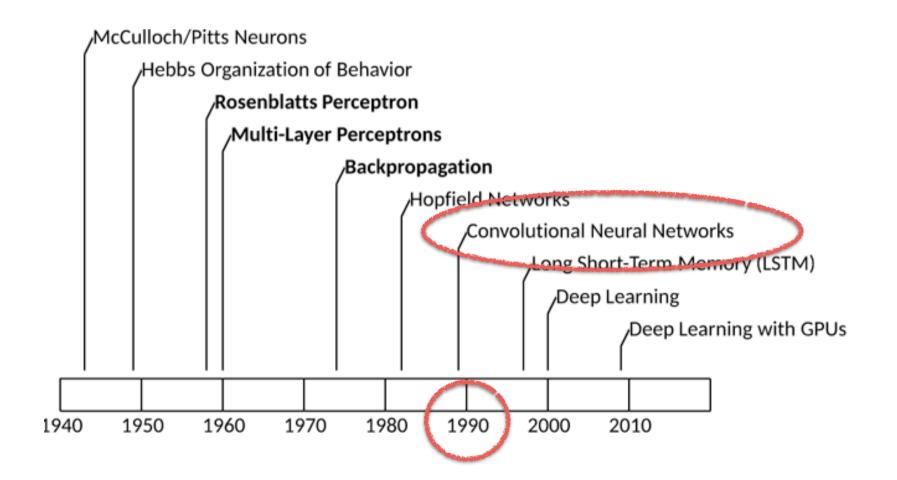
DATA QUALITY SELECTION FOR EUCLID



Thanks to H. McCracken



WELL, BUT THIS IS AN "OLD" IDEA - WHY NOW?



WELL, BUT THIS IS AN "OLD" IDEA - WHY NOW?

1 - MORE DATA TO TRAIN! DEEP NETWORKS HAVE A LARGE NUMBER OF PARAMETERS - THX TO SOCIAL MEDIA ...

WELL, BUT THIS IS AN "OLD" IDEA - WHY NOW?

2 - GPUs - TRAINING OF THESE DEEP NETWORKS HAS REMAINED PROHIBITIVELY TIME CONSUMING WITH CPUs - THX TO VIDEO GAMES...

GPUs

NVIDA TITANX GPU

GPUs vs. CPUs

CPUs FEWER CORES (~10x)

EACH CORE IS FASTER

USEFUL FOR SEQUENTIAL TASKS

GPUs

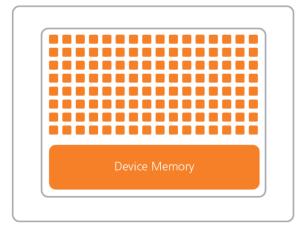
MORE CORES (100x)

EACH CORE IS SLOWER

USEFUL FOR PARALLEL TASKS

CPU (Multiple Cores)

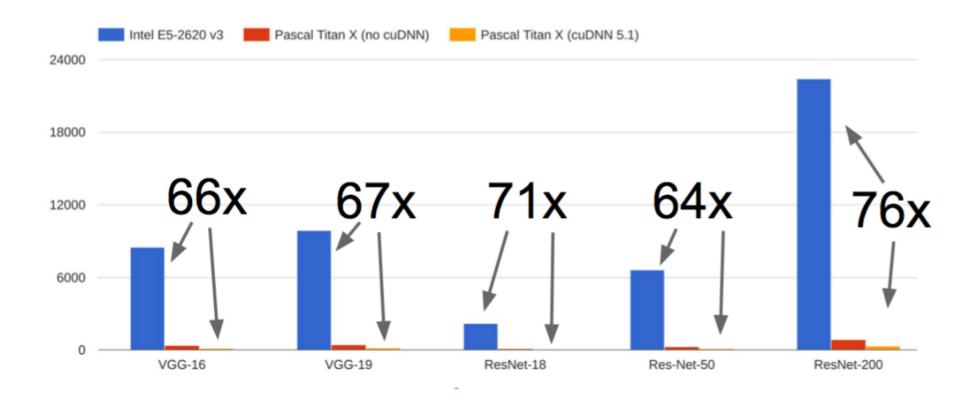
GPU (Hundreds of Cores)



Slide Credit:

GPUs vs. CPUs

More benchmarks available here.



N=16 Forward + Backward time (ms)

Figure credit: J. Johnson

GPUs for deep learning

NVIDIA GPUs ARE PROGRAMMED THROUGH <u>CUDA</u> [Compute Unified Device Architecture]

ANOTHER ALTERNATIVE IS <u>OPENCL</u>, SUPPORTED BY SEVERAL MANUFACTURES, LESS INVESTMENT [Way less used]

<u>CuDNN</u> IS A LIBRARY FOR SPECIFIC DEEP LEARNING COMPUTATIONS ON NVIDIA GPUs

THE PRICE TO PAY?

1. LARGE NUMBER OF PARAMETERS IMPLIES LARGE DATASETS TO TRAIN

2. LOOSE EVEN MORE DEGREE OF CONTROL OF WHAT THE ALGORITHM IS DOING SINCE THE FEATURE EXTRACTION PROCESS BECOMES UNSUPERVISED

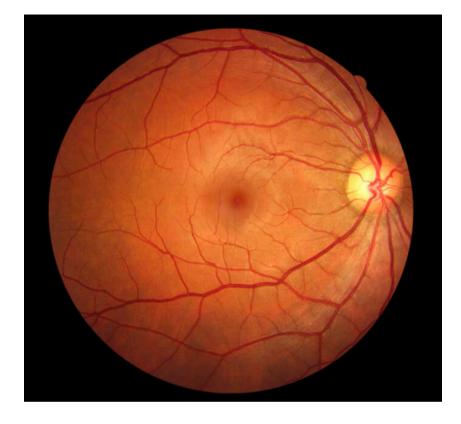
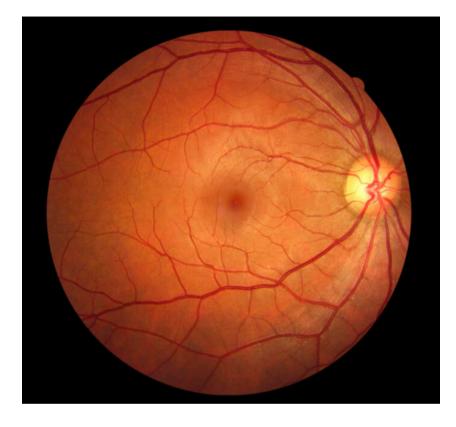
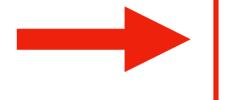


IMAGE OF THE BACK OF THE EYE





DEEP LEARNING CAN IDENTIFY THE PATIENT'S GENDER WITH 95% ACCURACY

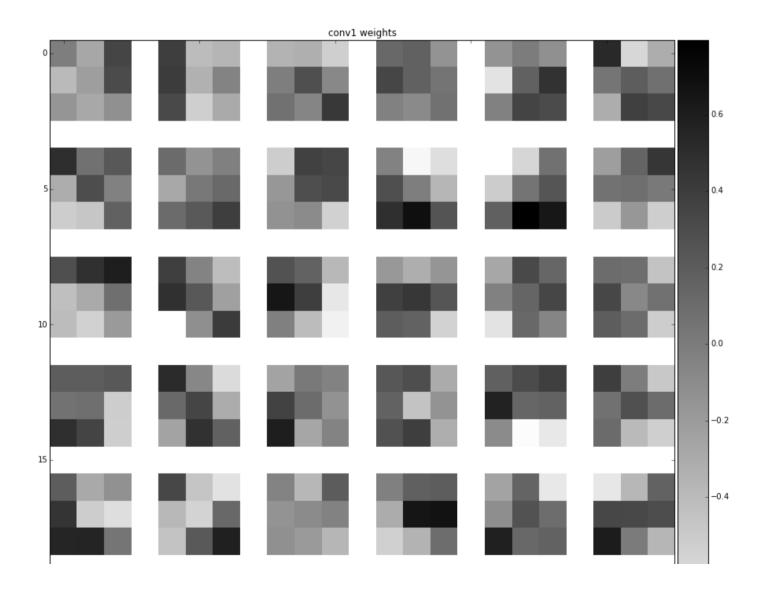
IMAGE OF THE BACK OF THE EYE

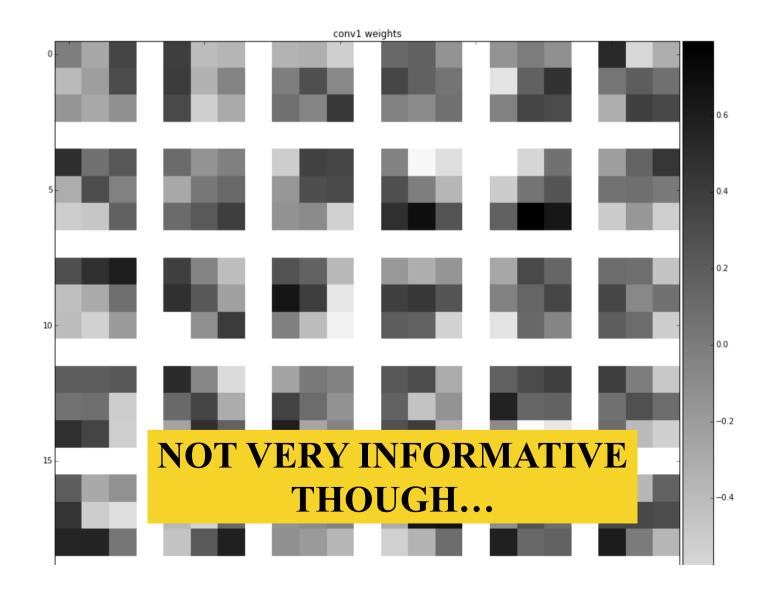
VISUALIZING CNNs [what happens inside a CNN?]

DEEP NETWORKS ARE "BLACK BOXES"?

INTERPRETING THE RESULTS IS EXTREMELY DIFFICULT

THIS IS TRUE BUT A LOT OF WORK IS DONE TO UNVEIL THEIR BEHAVIOR





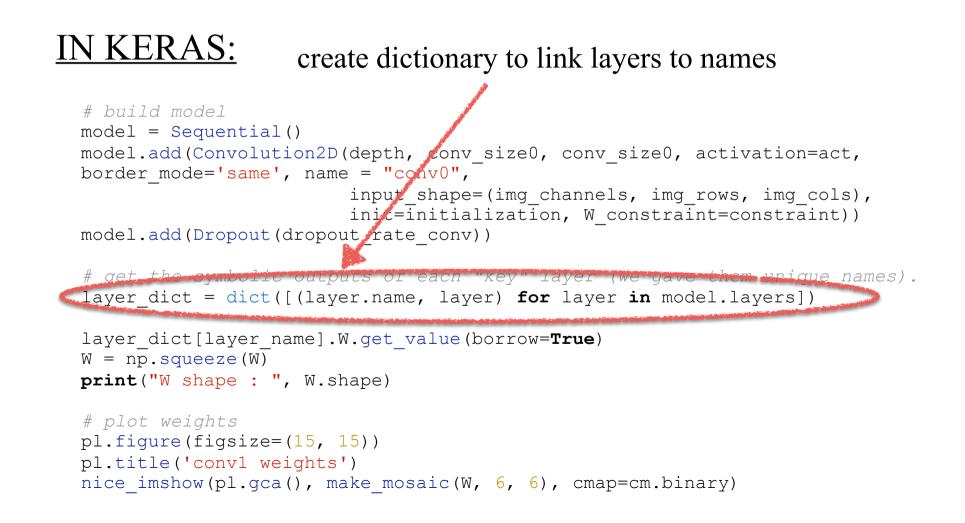
IN KERAS:

```
layer dict = dict([(layer.name, layer) for layer in model.layers])
```

```
layer_dict[layer_name].W.get_value(borrow=True)
W = np.squeeze(W)
print("W shape : ", W.shape)
```

```
# plot weights
pl.figure(figsize=(15, 15))
pl.title('conv1 weights')
nice imshow(pl.gca(), make mosaic(W, 6, 6), cmap=cm.binary)
```

```
IN KERAS:
                                give names to layers
  # build model
  model = Sequential()
  model.add(Convolution2D(depth, conv size0, conv size0, activation=act,
  border mode='same', name = conv0",
                          input shape=(img channels, img rows, img cols),
                          init=initialization, W constraint=constraint))
  model.add(Dropout(dropout rate conv))
  # get the symbolic outputs of each "key" layer (we gave them unique names).
  layer dict = dict([(layer.name, layer) for layer in model.layers])
  layer dict[layer name].W.get value(borrow=True)
  W = np.squeeze(W)
  print("W shape : ", W.shape)
  # plot weights
  pl.figure(figsize=(15, 15))
  pl.title('conv1 weights')
  nice imshow(pl.gca(), make mosaic(W, 6, 6), cmap=cm.binary)
```

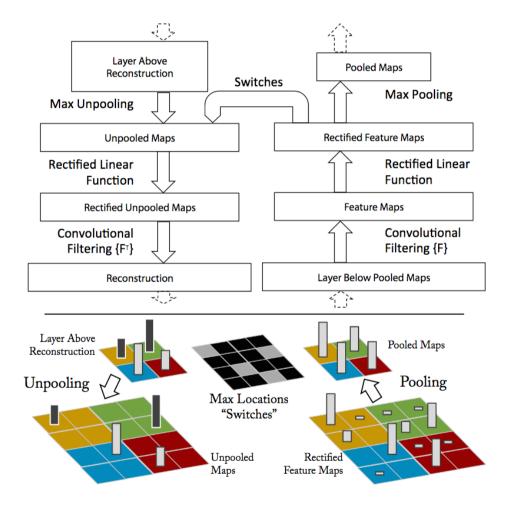


```
IN KERAS:
                         for a given name, get the weights
  # build model
 model = Sequential()
 model.add(Convolution2D(depth, conv size0, conv size0, activation=act,
 border mode='same', name = "conf0",
                          input shape=(img channels, img rows, img cols),
                          init finitialization, W constraint=constraint))
 model.add(Dropout(dropout rate conv))
  # get the symbolic output of each "key" layer (we gave them unique names).
 layer dict = dict([(layer.name, layer) for layer in model.layers])
  layer dict[layer name].W.get value(borrow=True)
  W = np.squeeze(W)
 print("W shape : ", W.shape)
  # plot weights
 pl.figure(figsize=(15, 15))
 pl.title('conv1 weights')
  nice imshow(pl.gca(), make mosaic(W, 6, 6), cmap=cm.binary)
```

USING THE SAME IDEA, ONE CAN ALSO VISUALIZE THE FEATURE MAPS AT INTERMEDIATE LAYERS

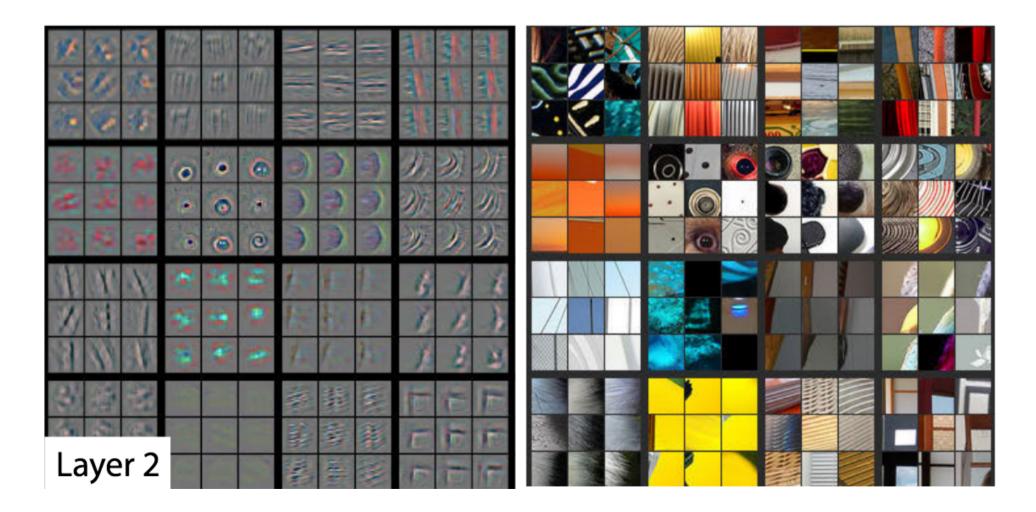
THIS HELPS TRACING THE FEATURES LEARNED BY THE NETWORK

USE "DECONVNETS" TO MAP BACK THE FEATURE MAP INTO THE PIXEL SPACE

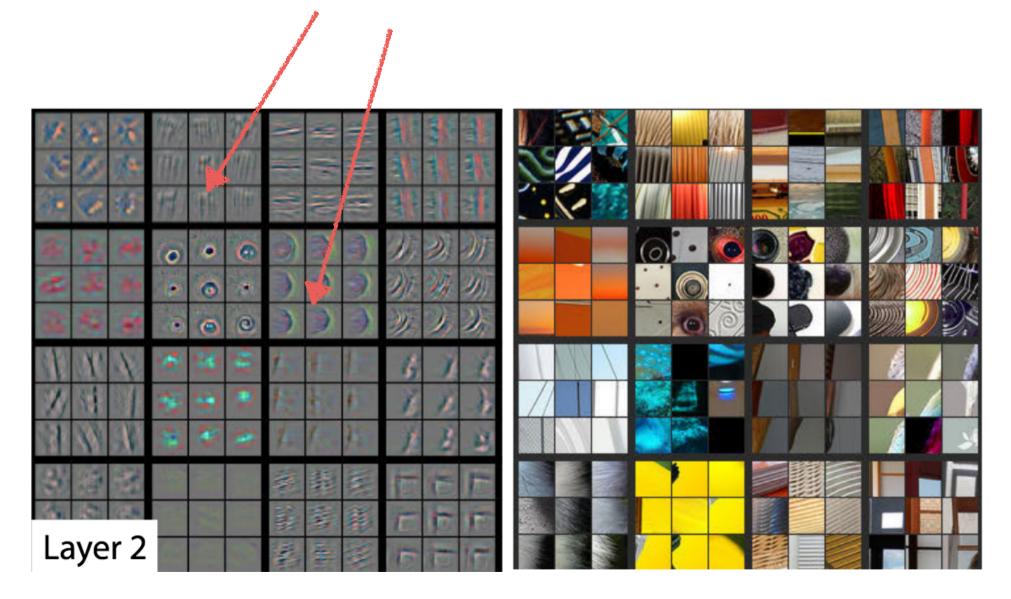


IT ALLOWS TO SEE WHICH REGIONS OF THE INPUT GENERATED A MAXIMUM RESPONSE IN A NEURON

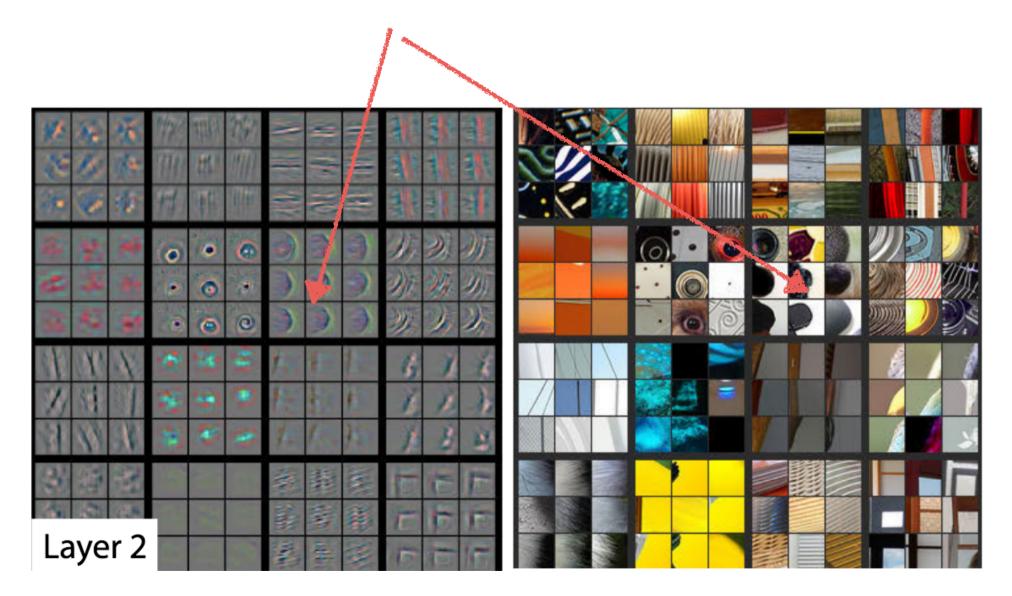
Zeiler+14



EVERY BLOCK OF 9 SHOWS THE 9 STRONGEST RESPONSES TO A GIVEN FILTER OF LAYER2

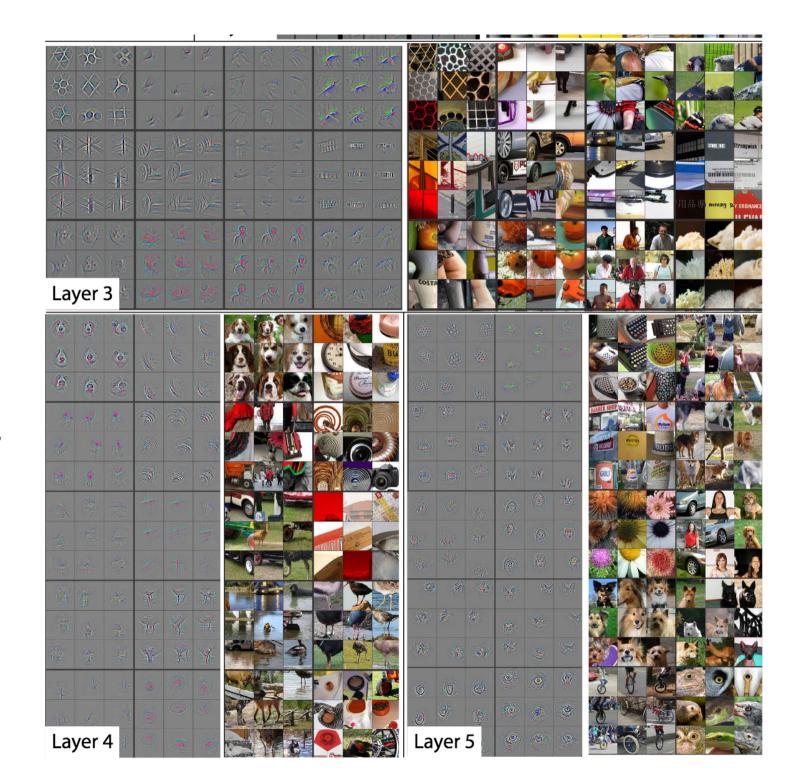


THE CORRESPONDING REGIONS OF IMAGES THAT GENERATED THE MAXIMUM RESPONSE

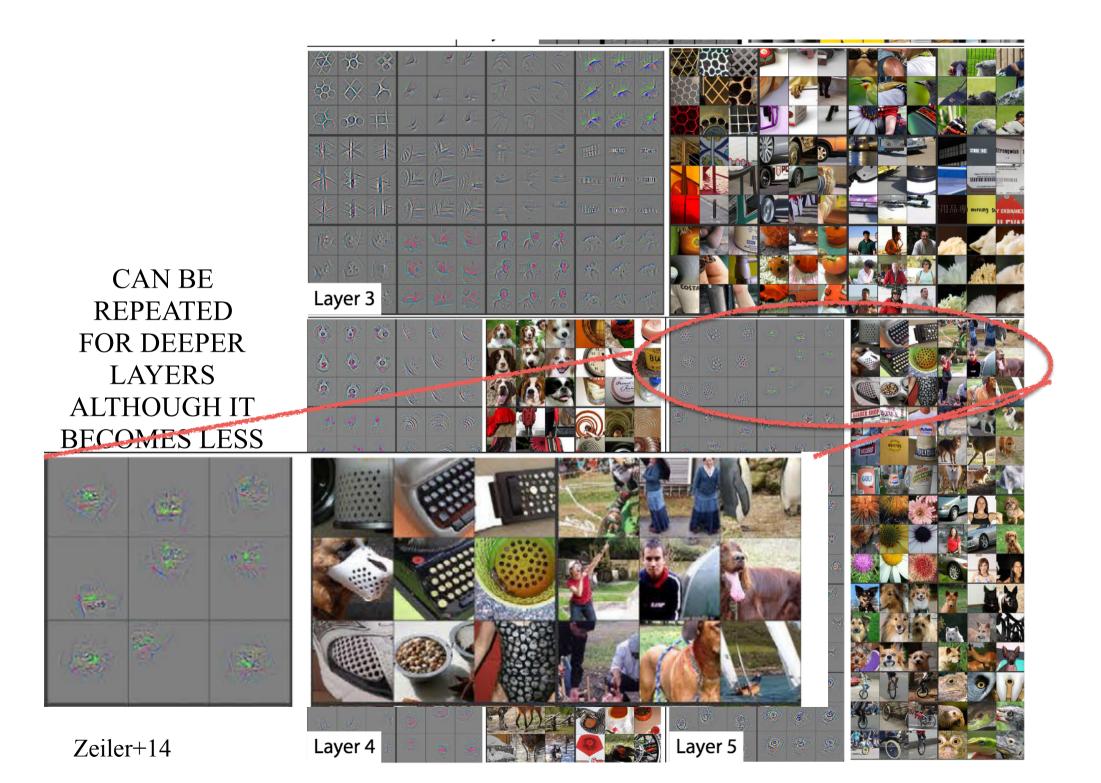


Zeiler+14

CAN BE REPEATED FOR DEEPER LAYERS ALTHOUGH IT BECOMES LESS INTUITIVE



Zeiler+14



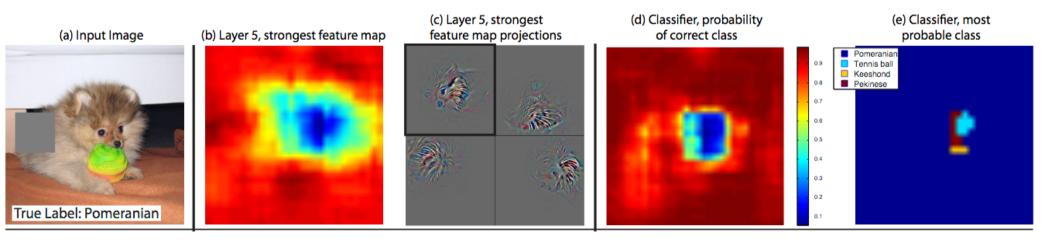
KERAS IMPLEMENTATION OF VISUALIZATIONS THROUGH DECONVNETS

https://github.com/jalused/Deconvnet-keras

OCCLUSION SENSITIVITY TRIES ALSO TO FIND THE REGION OF THE IMAGE THAT TRIGGERED THE NETWORK DECISION BY MASKING DIFFERENT REGIONS OF THE INPUT IMAGE AND ANALYZING THE NETWORK OUPUT

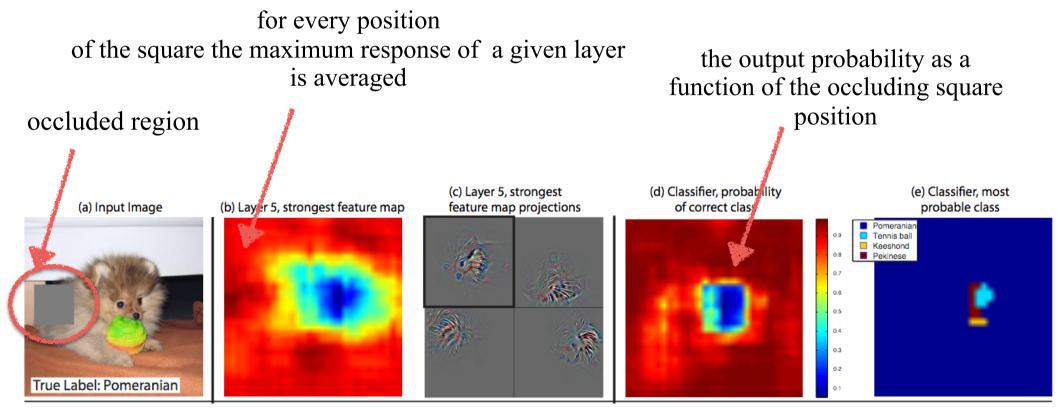
IT ALLOWS TO IF THE NETWORK IS TAKING THE DECISIONS BASED ON THE EXPECTED FEATURES

VERY TIME CONSUMING!



Zeiler+14

OCCLUSION SENSITIVITY TRIES ALSO TO FIND THE REGION OF THE IMAGE THAT TRIGGERED THE NETWORK DECISION BY MASKING DIFFERENT REGIONS OF THE INPUT IMAGE AND ANALYZING THE NETWORK OUPUT



Zeiler+14

THE IDEA BEHIND INCEPTIONISM TECHNIQUES IS TO INVERT THE NETWORK TO GENERATE AN IMAGE THAT MAXIMIZES THE OUTPUT SCORE

Score of class c for image I $arg \max_{I} S_c(I) - \lambda ||I||_2^2$

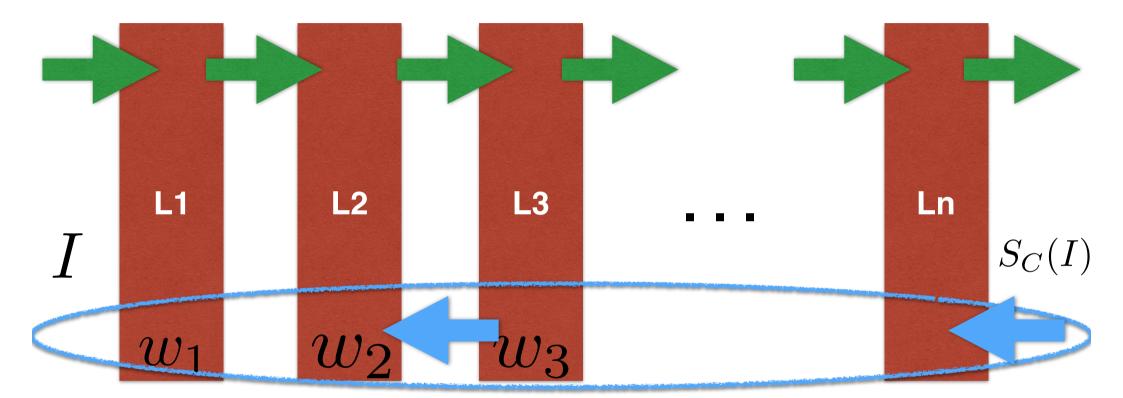
TRY TO FIND AN IMAGE THAT GENERATES A HIGH SCORE FOR A GIVEN CLASS

Simonyan+14



DURING THE TRAINING PHASE THE WEIGHTS ARE LEARNED TO MAP I INTO Sc

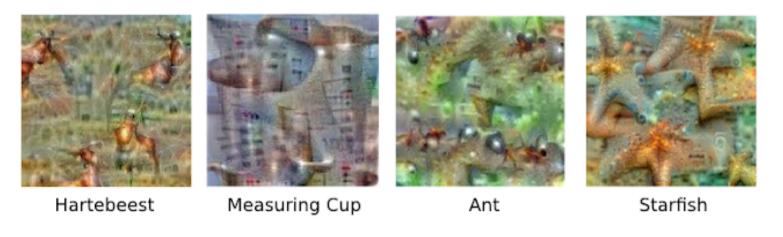
Simonyan+14



DURING THE RECONSTRUCTION PHASE, I IS LEARNT TRHOUG BACKPROPAGATION KEEPING THE WEIGHTS FIXED

Simonyan+14

RESULTS REVEAL INTERESTING INFORMATION ON HOW THE NETWORKS BUILD REPRESENTATIONS OF **OBJECTS**



Anemone Fish

Banana

Parachute

RESULTS REVEAL INTERESTING INFORMATION ON HOW THE NETWORKS BUILD REPRESENTATIONS OF OBJECTS



SOME STRANGE CASES...

DEEP DREAM

https://deepdreamgenerator.com/

IT HAS NOW BECOME A SORT OF ART?

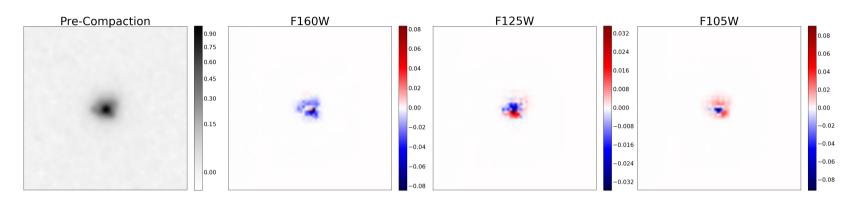
INTEGRATED GRADIENTS

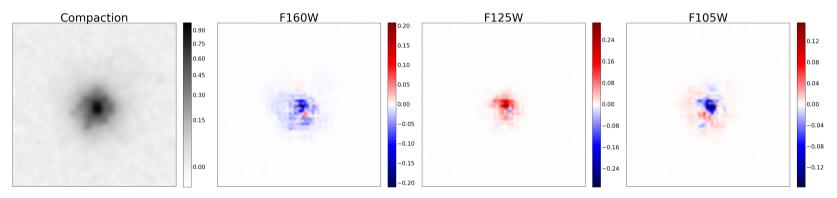
Integrated Gradient Visualization

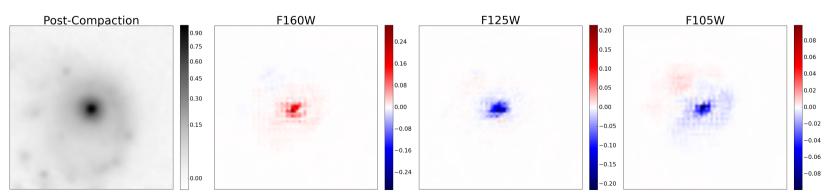


Sundararajan+17

INTEGRATED GRADIENTS







INTEGRATED GRADIENTS

KERAS IMPLEMENTATION: <u>https://github.com/hiranumn/IntegratedGradients</u>

PART IV: IMAGE 2 IMAGE NETWORKS + INTRODUCTION TO GENERATIVE MODELS