


NEURAL NETWORK TO PREDICT RESULTS OF MIDTERM
ELECTIONS
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Proportion of white residents
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GOP vote share
Generic Congressional Ballot |

Incumbency

Unemployment (By State)

Ratio of Funds Raised

2 hidden
layers SOURCE

Ratio of Funds Spent



NEURAL NETWORK TO PREDICT RESULTS OF MIDTERM
ELECTIONS

p = g3(Wsg2(Wagi1(Wi2p)))
Total Population / ‘ L ab elS[ ]

Median Age
Proportion of residents over 18

Proportion of residents over 65

Hidden Layer 1
Hidden Layer 2

Proportion of white residents
Democratypote share

Featu res Median Income

[X) Graduation Rate

Proportion of residents with bachelors degree

Presidential Popularity

GOP vote share

Generic Congressional Ballot

Incumbency

Unemployment (By State)

Ratio of Funds Raised

2 hidden
layers SOURCE

Ratio of Funds Spent



NEURAL NETWORK TO PREDICT RESULTS OF MIDTERM
ELECTIONS

Total Population
Median Age

Proportion of residents over 18

n Layer 1
n Layer 2

Drannare inn Af racidante Anuar GC \

Table 2 — Results of both Models:
Model not including past elections (Model A) | Model including past elections (Model B)

D +3 D+17
Democrat Seats: 219 Democrat Seats: 226
Republican Seats: 216 Republican Seats: 209

33% chance of Republicans keeping house* 0.3% chance of Republicans keeping house*

Generic Congressional Ballot

Incumbency

Unemployment (By State)
Ratio of Funds Raised /

Ratio of Funds Spent

SOURCE



OK, SO NOW LET’S FIND
THE WEIGHTS



OPTIMIZATION
[OR HOW TO FIND THE WEIGHTS?]

input layer

hidden layer 1 hidden layer 2

= NETWORK
p = g3(W3g2(Wsg1(W125))) € FUNCTION



OPT
[OR HOW TO

ZATION

D THE WEIGHTS?]

input layer

hidden layer 1 hidden layer 2

p = g3(W3g2(Wag1(W120)))

N

1

N Z(yz _pi)2 PR LOSS
1=1

FUNCTION



WE SIMPLY WANT TO MINIMIZE THE LOSS FUNCTION WITH
RESPECT TO THE WEIGHTS, 1.e. FIND THE WEIGHTS THAT
GENERATE THE MINIMUM LOSS




WE SIMPLY WANT TO MINIMIZE THE LOSS FUNCTION WITH
RESPECT TO THE WEIGHTS, 1.e. FIND THE WEIGHTS THAT
GENERATE THE MINIMUM LOSS

WE THEN USE STANDARD MINIMIZATION ALGORITHMS
THAT YOU ALL KNOW...



FOR EXAMPLE....

Gradient Descent | Newton

Wit =W, — MV, | Wiy = Wy — A[H LW "IV (W)

t 1

[gradient] [hessian]

NEWTON CONVERGES FASTER...




FOR EXAMPLE....

Gradient Descent | Newton

Wit =W, — MV, | Wiy = Wy — A[H LW "IV (W)

t 1

[gradient] [hessian]

NEWTON CONVERGES FASTER...

BUT NEEDS THE HESSIAN

[ O°f &*f Ff

OWE W, oW,  OW,0W,
&2 f &2 f & f

o | W20 W3 W, W,
| rr il
OW, 0W, OW,0W, = OW2




FOR EXAMPLE....

Gradient Descent | Newton

Wit =Wy = MV (W) | Wi = W = NH (W) V(W)

t 1

. hessian
[gradient] [ ]
NEWTON CONVERGES FASTER...
BUT NEEDS THE HESSIAN
- of o 0*f ]
‘ OWE W, oW,  OW,0W,
| 82 f *r 8
MOST USED BY FAR.... « H_ |Wow on? oW, OW,,
“ & i i
OW,OW, OW,0W, W2 |




FOR EXAMPLE....

Gradient Descent | Newton

—1
Wi = Wy Wi =Wy = AMH (W) V(W)
. hessian
[gradient] [ ]
| . _ ﬁ NEWTON CONVERGES FASTER...
EVERYTHING RELIES I
ON (ZSMPIJTING FEHE GRADIENT , | BUT NEEDS THE HESSIAN
* 92 f 02 f &2 f
| OWZ AW, 0W, 0w, 0W,
Cal A N ]
MOST USED BY FAR.... « Ho | W00 oW; oW, Wy,
f 82 f 82 f 82 f
oW, W, OW,oW,  OWZ |




NICE, BUT I NEED TO COMPUTE TE
GRADIENT AT EVERY ITERATION OF
AN ARBITRARY COMPLEX FUNCTION!



BACKPROPAGATION

[AT THE NEURON LEVEL]

activations

B

Credit: A. Karpathy



BACKPROPAGATION

[AT THE NEURON LEVEL]

activations

“local gradient”

f

Credit: A. Karpathy



BACKPROPAGATION

[AT THE NEURON LEVEL]

activations

“local gradient”

Z

f

oL
0z

gradients

Credit: A. Karpathy



BACKPROPAGATION

[AT THE NEURON LEVEL]
=] activations
“local gradient”
BN Sy
AL
% B
gradients

Credit: A. Karpathy



BACKPROPAGATION

[AT THE NEURON LEVEL]

-] activations

“local gradient”
= &

Z

oL
0z

gradients

Credit: A. Karpathy



BACKPROPAGATION

[AT THE NEURON LEVEL]

/ -] activations
“local gradient”
X 9

Z

oL
0z

gradients

Credit: A. Karpathy



LET’S FOLLOW A NETWORK
WHILE IT LEARNS...



b1 b2

EXAMPLE TAKEN FROM HERE




b1 b2
1 1

LET’S ASSUME A VERY SIMPLE TRAINING SET:
X=(0.05, 0.10) —> Y=(0.01,0.99)

EXAMPLE TAKEN FROM HERE




-~ 1nitial weights

b1 b2

1. THE FORWARD PASS

MK = W1l + walz + by
inp1 = 0.15 X 0.0540.2x 0.1 4+0.35 =0.3775

[with initial weights]



-~ 1nitial weights

b1 b2

1. THE FORWARD PASS

MK = W1l + walz + by

inp1 = 0.15 %X 0.0540.2 x 0.1 +0.35 = 0.3775

[with initial weights]
1
th1 = . = (.5932
OUlh1 1+ e—inn

[after the activation function]



-~ 1nitial weights

b1 b2

1. THE FORWARD PASS

WE CONTINUE TO ol

Myl = Wsoutp1 + wgoutyo + bo
my1 = 0.4 x 0.593 4+ 0.45 x 0.596 + 0.6 = 1.105

1
out,;] = [ 1105 — 0.751




-~ 1nitial weights

b1 b2

1. THE FORWARD PASS

AND THE SAME FOR 02

out,o = 0.7729



-~ 1nitial weights

2. THE LOSS FUNCTION

Livtal = Z 0.5(target — output)?

Loi = 0.5(target,1 — outputor)® = 0.5 x (0.01 — 0.751)% = 0.274
Lo = 0.023



-~ 1nitial weights

b1 b2

2. THE LOSS FUNCTION

Livtal = Z 0.5(target — output)?

Loi = 0.5(target,1 — outputor)® = 0.5 x (0.01 — 0.751)% = 0.274
Lo = 0.023

* Ltota,l — Lol + LOQ = (.298



-~ 1nitial weights

b1 b2

3. THE BACKWARD PASS
aLtotal

FOR W5 WE WANT: [gradient of loss function]
(911}5




4’//1/“1 l,lill/“l !’l'.'a Wl '//'..a il
— . — SREARAR —
output du's dnet dout Ju's

h1
w5
-
output W8 N net E o1 = Y4(target o1 - out o )?
Etotal = Eo1 + Eoz
b2
1
3. THE BACKWARD PASS
aLtotal . .
FOR W5 WE WANT: [gradient of loss function]
(911}5
WE APPLY THE CHAIN RULE:

aLtotal _ aLtotal v aOU’tOl > az.’nol
Ows, dout 1 0in,1 Ows,




dnet,1 . dout,1 . OEs otat OE} ot al

_ *
output du's e ,-'l ”””/.,I Ju's
h1

w5

output w6 net .

E o1 = Y2(target 5 - out ;)

Etotal - Eo1 +E 02
b2

1

3. THE BACKWARD PASS

8Ltotal ml aOfUJtol az.nol

—13

ows, out 5’zn01 (9w5

Liotar = 0.5(targetor — outor)* + 0.5(target o — outys)?

6Ltotal
dout,q

= 2 x 0.5(target,1 —outy,y) X (—1) = 0.741



dnet,1 . oout, | OE; ot al OE} 100

output Jws onet " dout dwy,
h1
w5
output wb i
hg net o1 E o1 = Y2(target ;- out 4 )*
Etotal - Eo1 +E 02
b2
1

3. THE BACKWARD PASS

6Lt0tal _ 8Ltotal < az.nol
Ows dout Ows
B 1
outyl = | & oo
dout,q

= out,1 X (1 —out,1) = 0.186

0@'7101



onet dout,1 . (/l'../“y,,,' l’/'.‘/,,y,,f
—_— *

output dws  Onet,
h1

' 4):1/1/“1 Ju's

w5

output w6 net.
h2 o1

E o1 = Y2(target ;- out 4 )*

Etotal - Eo1 +E 02
b2

1

3. THE BACKWARD PASS
8Lt0tal 8Ltotal < aOfUJtol

Ows  Ooutyy 01Ny1

z’nol = Wg X outp1 + Weg X outpo + b2

5’in01

— outy1 X w5_1 = outy1 = 0.593
8’(1]5



l’//l/“l . l,l'///“l l’/'.:a,,y,,,r’ l’l'.'j,l_r‘..'."

output 4’;/"' - 4’//{/“1 : 4)41/1/“[ I’II"'
h1

w5

output w6 net .

E o1 = Y2(target 5 - out ;)

Etotal - Eo1 + Eoz
b2

1

3. THE BACKWARD PASS

ALL TOGETHER:
aLtotal L 6Ltota,l % aOUtol v ainol
Ows  Ooutyy 01N 1 Ows,
aLtotal

= (0.741 x 0.186 x 0.593 = 0.082

6’w5



/’I/lfl,] . l/ffll/“] . l,/'..,a_y,;,' l’l'..‘a,,r,,,r'

Output l’l[" N ',“'/-'l 4’/!/{/“1 l/r('|
h1

w5
output w6
hg net E o1 = '4(target o1 - out )’
Etotal - Eo1 + EoZ
b2
1

4. UPDATE WEIGHTS WITH GRADIENT
AND LEARNING RATE

OLiotal
wé+1:w5—)\>< e
611)5

wit! = 0.4 — 0.5 x 0.082 = 0.358



THIS IS REPEATED FOR THE OTHER WEIGHTS
OF THE OUTPUT LAYER

wi™ = 0.408
wit = 0.511

wit! = 0.561



AND BACK-PROPAGATED TO THE HIDDEN

LAYERS




VISUALIZE SIMPLE
NETWORK LEARNING




ONE KEY PROBLEM WITH GRADIENT DESCENT IS THAT IT
EASILY CONVERGES TO LOCAL MINIMA BY FOLLOWING
THE STEEPEST DESCENT




ONE KEY PROBLEM WITH GRADIENT DESCENT IS THAT IT
EASILY CONVERGES TO LOCAL MINIMA BY FOLLOWING
THE STEEPEST DESCENT

THE CHOICES OF THE INITIAL WEIGHTS AND THE
LEARNING RATES ARE IMPORTANT




ONE KEY PROBLEM WITH GRADIENT DESCENT IS THAT IT
EASILY CONVERGES TO LOCAL MINIMA BY FOLLOWING
THE STEEPEST DESCENT

THE CHOICES OF THEINITIAL WEIGHTS AND THE
LEARNING RATES AREIMPORTANT

WE WILL TALK ABOUT
THIS LATER



LEARNING RATES

loss

low learning rate

high learning rate

good learning rate

epoch

Credit:



LEARNING RATES

Wipr = Wi = AV (W)

THERE ARE DIFFERENT WAYS
TO UPDATE THE LEARNING RATE

Credit:



LEARNING RATES

Wir = Wi = AV (W)

THERE ARE DIFFERENT WAYS
TO UPDATE THE LEARNING RATE

ADAGRAD:
THE LEARNING RATE IS SCALED DEPENDING ON THE HISTORY OF PREVIOUS GRADIENTS
A
Wt_|_1 — Wt — Vf(Wt)
\/ G t + €

G IS A MATRIX CONTAINING ALL PREVIOUS GRADIENTS. WHEN THE GRADIENT BECOMES
LARGE THE LEARNING RATE IS DECREASED AND VICE VERSA.

GH’l — Gt + (Vf)2 Credit:



LEARNING RATES

Wir = Wi = AV (W)

THERE ARE DIFFERENT WAYS
TO UPDATE THE LEARNING RATE

RMSPROP:
THE LEARNING RATE IS SCALED DEPENDING ON THE HISTORY OF PREVIOUS GRADIENTS
A
Wt_|_1 — Wt — Vf(Wt)
\/ G t + €

SAME AS ADAGRAD BUT G IS CALCULATED BY EXPONENTIALLY DECAYING AVERAGE

Gir1 = AGe + (1 = N)(Vf)? Credit:



ADAM [Adaptive moment estimator]:

SAME IDEA, USING FIRST AND SECOND ORDER
MOMENTUMS

Gip1 = PG+ (1= B2)(V[f)? M1 = BiMy + (1 - B1)(VS)

py N
Wit1 =Wy — — M;
\/Gt —+ €
. M A G
with: My = = tﬁl Gip1 = ] _%2



ADAM [Adaptive moment estimator]:

SAME IDEA, USING FIRST AND SECOND ORDER
MOMENTUMS

Gip1 = PG+ (1 — B2)(V[f)? M1 = B My + (1 - 51)(VS)
ONLY FOR YOUR

I RECORDS
\/Gt—|—€

with: M1 = Gip1 =



IN KERAS:

RMSprop [source]

keras.optimizers.RMSprop(1lr=0.601, rho=0.9, epsilon=None, decay=0.0)
RMSProp optimizer.

It is recommended to leave the parameters of this optimizer at their default values (except the learning rate, which

can be freely tuned).
This optimizer is usually a good choice for recurrent neural networks.
Arguments

e Ir:float >=0. Learning rate.

e rho:float >=0.
o epsilon: float >=0. Fuzz factor. If None ,defaultsto K.epsilon() .

» decay: float >= 0. Learning rate decay over each update.

References

e rmsprop: Divide the gradient by a running average of its recent magnitude



IN KERAS:

Adam [source]

keras.optimizers.Adam(1lr=0.001, beta_1=0.9, beta_2=0.999, epsilon=None, decay=6.0, amsgrad=False)

Adam optimizer.

Default parameters follow those provided in the original paper.

Arguments

e Ir:float >=0. Learning rate.

e beta_1:float, 0 < beta < 1. Generally close to 1.

e beta_2:float, O < beta < 1. Generally close to 1.

o epsilon: float >= 0. Fuzz factor. If None ,defaultsto K.epsilon() .

* decay: float >= 0. Learning rate decay over each update.

* amsgrad: boolean. Whether to apply the AMSGrad variant of this algorithm from the paper "On the Convergence of Adam
and Beyond".

References

o Adam - A Method for Stochastic Optimization
e Onthe Convergence of Adam and Beyond



training cost

=
=
o

MNIST Multilayer Neural Network + dropout

A

AdaGrad
RMSProp

SGDNesterov

AdaDelta
Adam

A

S0

100
iterations over entire dataset

150

200

Credit



N AR ~aomatacoente
- SGD

N '
| == Momentum E

= NAG
- Adagrad

AN | ~—— Adadelta

~ Rmsprop




BATCH GRADIENT DESCENT

LOCAL MINIMA CAN ALSO BE AVOIDED BY COMPUTING THE
GRADIENT IN SMALL BATCHES INSTEAD OF OVER THE FULL
DATASET



BATCH GRADIENT DESCENT

LOCAL MINIMA CAN ALSO BE AVOIDED BY COMPUTING THE
GRADIENT IN SMALL BATCHES INSTEAD OF OVER THE FULL
DATASET

MINI-BATCH GRADIENT DESCENT

Vt—l—l/num = Wi — Atvf(WtE x(i’i_l_b)a y(i7i+b))

THE GRADIENT IS COMPUTED OVER A BATCH OF SIZE B




STOCHASTIC GRADIENT
DESCENT

THE EXTREME CASE IS TO COMPUTE THE GRADIENT ON EVERY
TRAINING EXAMPLE.

STOCHASTIC GRADIENT DESCENT

Vt—l—l/num — Wt _ Atvf(WtE x(i’i_l_b)a y(i7i+b))

b=1



' " ' I L L
500 1000 1500 2000 2500 3000 3500

| A - 4 4 A
-1%00 -500 0 500 1000 1500 2000 Fluctuations in the total objective

0, function as gradient steps with respect
to mini-batches are taken.




CAN WE GO DEEP NOW?



CAN WE GO DEEP NOW?

ALMOST THERE...LET’S THINK FOR A
MOMENT ABOUT WHAT WE PUT AS
INPUT...



LIGe Wagang Doud

What do we put as input?
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What do we put as mput?
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PRE-PROCESS DATA TO EXTRACT MEANINGFUL
INFORMATION

THIS IS GENERALLY CALLED FEATURE EXTRACTION




Spiral!

Emission line!

Merger!

Clump!
AGN!




Spiral!

Emission line!

Merger!

Clump!
AGN!




—»‘) LABEL

L " Q(0), SF(1)
NETWORK FUNCTI(?N/ l
\, (U-V, V-J) FEATURES

sgn[(u-v)-0.8*(v-j)-0.7]

UVJ(U=-V versus V—))
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| (a) All 0.5<z<1.0 |
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THE “CLASSICAL” APPROACH

Pre-Processing:

Dimension
reduction
\ Learning
algorithm
— I\fgt?l\llgfll(, morphs.
/V SVM...) photoz’s

PCA or manual (colors,
C,A,n...)




“CLASSICAL” MACHINE LEARNING

e Y
Pre-Prog dosing: “\ > @’
= 4
Diny onsion ,l
reuctlon

Learning
algorithm

(Neural s g

Network, morphs.
Dililocd) photoz’s

__

PCA ok manual (colors,
%A, n...)




In Astronomy

+ Colors, Fluxes
- Shape indicators
- Line ratios, spectral features

- Stellar Masses, Velocity Dispersions

el

IT IMPLIES A DIMENSIONALITY REDUCTION!

Requires specialized software before
feeding the machine learning algorithm




PHOTOMETRIC REDSHIFTS

SDSS

N = = 0Q

Collister+08



EVERYTHING IS IN THE FEATURES....WHAT IF 1
IGNORED SOME IMPORTANT FEATURES?




EVERYTHING IS IN THE FEATURES....WHAT IF 1
IGNORED SOME IMPORTANT FEATURES?




NEURAL NETWORK TO PREDICT RESULTS OF MIDTERM
ELECTIONS

Total Population

Median Age
Proportion of residents over 18 \\\

Proportion of residents over 65

Hidden Layer 1

Proportion of white residents

Features Median Income

[X) Graduation Rate

Proportion of residents with bachelors degree

Bad Weather, Known to
Lower Turnout, Will Greet
Many Voters

Presidential Popularity

Rain can decrease voter
numbers, which studies
show tends to help
Republicans. “I hope it
rains hard tomorrow,” one
2 hidde Republican candidate said.

Generic Congressional Ballot

Incumbency

Unemployment (By State)

Ratio of Funds Raised

Ratio of Funds Spent

10h ago
layers -




Other general computer
vision features [for images!]|

« Pixel Concatenation

FOR MANY YEARS COMPUTER

» Color histograms VISION
- . RESEARCHERS HAVE BEEN
exture Features TRYING TO FIND THE MOST

GENERAL FEATURES

» Histogram of Gradients

- SIFT



Other general computer
vision features [for images! |

« Pixel Concatenation

- Texture Features

- SIFT

, FOR MANY YEARS COMPUTER
» Color histograms VISION

RESEARCHERS HAVE BEEN
TRYING TO FIND THE MOST
GENERAL FEATURES

» Histogram of Gradients




HISTOGRAM OF ORIENTED
GRADIENTS (HoG)

1. DIVIDE IMAGE INTO SMALL
SPATIAL REGIONS CALLED CELLS

2. COMPUTE INTENSITY GRADIENTS
OVER N DIRECTIONS [TYPICALLY 9
FOR IMAGE ]

90
135 45

3. COMPUTE WEIGHTED 1-D
HISTOGRAM OF ALL DIRECTIONS. A
CELL IS REDUCED TO N NUMBERS

180 0

225 315
270



HISTOGRAM OF ORIENTED
GRADIENTS (HoG)

S W A
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HISTOGRAM OF ORIENTED
GRADIENTS (HoG)

KEEP THIS IMAGE IN MIND FOR LATER...



What about using raw data?

ALL INFORMATION IS IN THE INPUT DATA
WHY REDUCING *?

LET THE NETWORK FIND THE INFO




What about using raw data?

ALL INFORMATION IS IN THE INPUT DATA

WHY REDUCING *?

LARGE DIMENSION SIGNALS SUCH AS IMAGES OR
SPECTRA WOULD REQUIRE TREMENDOUSLY LARGE
MODELS

A 512x512 image as input of a fully connected layer producing
output of same size:

(512 x 512)% = 7el0



FEEDING INDIVIDUAL RESOLUTION ELEMENTS IS NOT
VERY EFFICIENT SINCE IT LOOSES ALL INVARIANCE TO
TRANSLATION AND IGNORES CORRELATION IN THE DATA
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FEEDING INDIVIDUAL RESOLUTION ELEMENTS IS NOT
VERY EFFICIENT SINCE IT LOOSES ALL INVARIANCE TO
TRANSLATION

\ 4

SO?




DEEP LEARNING o LABEL
‘ — " Q,SF

LET THE MACHINE FIGURE THIS OUT (“unsupervised feature extraction”)

LET’S GO A STEP FORWARD INTO LOOSING CONTROL....



PART III:CONVOLUTIONAL
NEURAL NETWORKS




Discrete Convolution

1D g >=k:§+joof<k> gk —
[Spectra] =
k=—+o0c0 =400

[Images] h=—ool=—co



DISCRETE CONVOLUTION

1D: !
[Spectra]

2D:  f(x,y)xg(x,y), 4
[Images]

CONVOLUTION KERNEL INPU DATA




1-D CONVOLUTION

Input

X

Kernel

1 2 0 -1

W




1-D CONVOLUTION

Input

-2




1-D CONVOLUTION

Input

&
-

X

1 2 0 -1




1-D CONVOLUTION

Input

w




1-D CONVOLUTION

Input

w




1-D CONVOLUTION

Input




Input

1-D CONVOLUTION

) ,

1

2

0

-1

w




1-D CONVOLUTION

Input

e |2 frfs sl
5 :
-1
3 "




TE

5 CONVOLUTION BUILDING BLOCK OPERATION IS

EQUIVALENT TO A NEURON WITH AS MANY INPUTS AS
KERNEL ELEMENTS AND WEIGHTS EQUAL TO THE

KERNEL

Ao wo

Input *® synapse

axon from a neuron
WoT(

cell body f (Z"‘"I l b)

output axon

activation
function

wo 2




THE CONVOLUTION BUILDING BLOCK OPERATION IS

EQUIVALENT TO A NEURON WITH AS MANY INPUTS AS
KERNEL ELEMENTS AND WEIGHTS EQUAL TO THE
KERNEL

wo
*@® synapse

f (Zw;zi + b)

output axon

activation
function




THE CONVOLUTION BUILDING BLOCK OPERATION IS

EQUIVALENT TO A NEURON WITH AS MANY INPUTS AS
KERNEL ELEMENTS AND WEIGHTS EQUAL TO THE
KERNEL

Wo

e *@ synapse
gfi¥a neuron

f (Zw,-:r.i + b)

outputaxoﬁ

activation
function




THE CONVOLUTION BUILDING BLOCK OPERATION IS

EQUIVALENT TO A NEURON WITH AS MANY INPUTS AS
KERNEL ELEMENTS AND WEIGHTS EQUAL TO THE
KERNEL

Wo

B *@® synapse
gfi¥a neuron

f (Z w;z; + b)

output axon

activation
function

WITH THE ADVANTAGE THAT THE SAME WEIGHTS ARE
APPLIED TO ALL THE SIGNAL: TRANSLATION INVARIANCE




2-D CONVOLUTION

SAME IDEA, BUT THE KERNEL IS NOW 2D

KERNEL INPUT (IMAGE) OUTPUT

Credit: animations from https://github.com/vdumoulin/conv_arithmetic




2-D CONVOLUTION

SAME IDEA, BUT THE KERNEL IS NOW 2D

IN THE EXAMPLE: EACH 3x3 REGION GENERATES AN OUTPUT
lbyizeoutput — Sizeinput — Sizekernel + ]I

Credit: animations from https://github.com/vdumoulin/conv_arithmetic




EQUIVALENT TO A NEURON
WITH 9 INPUTS

WEIGHTS ARE CODED
IN THE KERNEL




EQUIVALENT TO A NEURON
\\“ WITH 9 INPUTS
i i

>
THIS IS WHAT —

THE /
NETWORK Q _—— S 7z -
LEARNS! ‘




THE KEY IS AGAIN THAT

THE SAME WEIGHTS ARE

APPLIED TO ALL IMAGE
REGIONS




, Wy
[weights]

ACTIVATION FUNCTION
AT EVERY KERNEL POSITION

-

= relu(wx + b)



, Wy
[weights]

ACTIVATION FUNCTION
AT EVERY KERNEL POSITION

2(x) = relu(wx + b)



CONVOLUTIONS CAN ALSO BE COMPUTED ACROSS
CHANNELS (OR COLORS)

28x28x3
24x24
Vi

A COLOR IMAGE IS A
TENSOR @

OF SIZE height x width x
channels p

/ 4

W

.

3D
tensor H




CONVOLUTIONS CAN ALSO BE COMPUTED ACROSS
CHANNELS (OR COLORS)

A COLOR IMAGE IS A
TENSOR

OF SIZE height x width x
channels

W

.

3D
tensor H

28x28x3
24x24
Vi

5x5x3

i

//////// h////

THEN THE KERNEL
HAS ALSO 3
CHANNELS




IN ASTRONOMY ...

IT OPENS THE DOOR TO ANALYZE MULTIPLE
FILTERS () SIMULTANEOUSLY




MULTIPLE CONVOLUTIONS WITH DIFFERENT KERNELS

CAN BE PERFORMED

£

y




MULTIPLE CONVOLUTIONS WITH DIFFERENT KERNELS

CAN BE PERFORMED

/

4




MULTIPLE CONVOLUTIONS WITH DIFFERENT KERNELS

CAN BE PERFORMED

/

/




MULTIPLE CONVOLUTIONS WITH DIFFERENT KERNELS
CAN BE PERFORMED




MULTIPLE CONVOLUTIONS WITH DIFFERENT KERNELS

CAN BE PERFORMED

28x28x3

5x5x3x4

24x24x4




MULTIPLE CONVOLUTIONS WITH DIFFERENT KERNELS

/

28x28x3

5x5x3x4

CAN BE PERFORMED

24x24 -

X

&I




IN KERAS...

model = Sequential()

model.add(Convolution2D(4,5,5, activation="relu”))

5x5x3x4 |

sizeX, sizeY

depth



SINCE CONVOLUTIONS OUTPUT ONE SCALAR, THEY CAN BE SEEN AS AN
INDIVIDUAL NEURON WITH A RECEPTIVE FIELD LIMITED TO THE KERNEL
DIMENSIONS

2-dimensional

input features a bank of 2 filters
output features

Credit



SINCE CONVOLUTIONS OUTPUT ONE SCALAR<THEY CAN BE SEEN AS AN
INDIVIDUAL NEURON WITH A RECEPTIVE FIELD LIMITED TO THE KERNEL
DIMENSIONS

THE SAME NEURON IS FIRED WITH DIFFERENT AREAS FROM THE INPUT

2-dimensional

input features a bank of 2 filters
output features

Credit



EXAMPLE OF 32 FILTERS LEARNED IN
A CONVOLUTIONAL LAYER

LR L
ELRILC
R
= LT
e AL 1S
7

(a) red channel
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(b) green channel
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(c) blue channel

Dieleman+16



EXAMPLE OF 32 FILTERS LEARNED IN
A CONVOLUTIONAL LAYER

L Anbetd L
S EONE
E . T RN
oL
= *FEr
rHE

(a) red channel

e [P E Ll
EFDL M
F_iEEn
BT ™
Rl |,
|

(b) green channel

TSN ER
EEDENE
HQ-E EF' I
TEF] s
sl | A
FE

(c) blue channel

Dieleman+16

THESE ARE CALLED FEATURE MAPS



ESTIMATING SHAPES AND

NUMBER OF PARAMETERS
KERNEL SHAPE: PADDING: STRIDES:
(F,F,C", C°) P S

OUTPUT SIZE: Wy = (W'—=F +2P)/S +1



OPTIONS: STRIDES

NO STRIDES STRIDES



OPTIONS: DILATION

NO STRIDES DILATION



OPTIONS: PADDING

NO STRIDES PADDING



ESTIMATING SHAPES AND

NUMBER OF PARAMETERS
KERNEL SHAPE: PADDING: STRIDES:
(F,F,C", C°) P S

OUTPUT SIZE: Wy = (W'—=F +2P)/S +1

NUMBER OF PARAMETERS: (F x F x C* 4+ 1) x C°



ESTIMATING SHAPES AND

NUMBER OF PARAMETERS
KERNEL SHAPE: PADDING: STRIDES:
(F,F,C", C°) P S

OUTPUT SIZE: Wy = (W'—=F +2P)/S +1

NUMBER OF PARAMETERS: (F x F x C* 4+ 1) x C°

the number of parameters increases fast!

32 filters of 5*5 on a color image —> 2432 parameters to learn



DOWNSAMPLING

DOWNSAMPLING IS APPLIED TO REDUCE THE OVERALL
SIZE OF TENSORS

) ()
AN
AN




POOLING

CONVOLUTIONS ARE OFTEN FOLLOWED BY AN
OPERATION OF DOWNSAMPLING [POOLING]

VERY SIMPLE OPERATION - ONLY ONE OUT OF EVERY
N PIXELS ARE KEPT

OFTEN MATCHED WITH AN INCREASE OF THE FEATURE
CHANNELS



TYPES OF POOLING

SUM POOLING Y=Y Tuw

SQUARE SUMPOOLING =1/ 42,

MAX POOLING Y = max(Tyy)




TYPES OF POOLING

SUM POOLING Y=Y Tuw

SQUARE SUMPOOLING =1/ 42,

~ MAXPOOLING ¥y = maz(Tuy)




MAX POOLING 1D

Qutput

Credit: F. Fleuret



MAX POOLING 1D

w

Qutput

Credit: F. Fleuret



MAX POOLING 1D

Credit: F. Fleuret



MAX POOLING 1D

w

Output

Credit: F. Fleuret



MAX POOLING 1D

Input

w

Credit: F. Fleuret



CONVNET OR CNN

A CONCATENATION OF MULTIPLE
CONVOLUTIONAL BLOCKS



CONVNET OR CNN

L1

N

L3

L4

EACH BLOCK TYPICALLY MADE OF:

CONV ACTIVATION POOLING

(+dropout
for training)



EXAMPLE OF VERY SIMPLE CNN

%
Input Images 3 @ \:(5:9 /\
7
(RGB) & | @9 N )

% 7
& T, " 3 z 7
\ ) ) \% \Zb A P 36992
% 7 \\:»Jr \:,s 64
< v

u | O 2x2 |:| =

+—
6x6 - [@ []

3x3
| 1 | L |
conv (RelLu) + conv (RelLu) + MaxPooling + conv (RelLu) + MaxPooling + conv (RelLu) + Fully
dropout (0.5) dropout (0.25) dropout (0.25) dropout (0.25) connected
W = 3488 W = 51264 W = 32896 W= 147584 W= 2367552

Dominguez-Sanchez+18



EXAMPLE OF VERY SIMPLE CNN

3 convolutional layers

Input Images
(RGB)

conv (RelLu) + conv (RelLu) + MaxPooling + conv (RelLu) + MaxPooling + conv (RelLu) + Fully
dropout (0.5) dropout (0.25) dropout (0.25) dropout (0.25) connected
W = 3488 W = 51264 W = 32896 W= 147584 W= 2367552

Dominguez-Sanchez+18



EXAMPLE OF VERY SIMPLE CNN

3 convolutional layers

KERNEL SIZE

Input Images
(RGB)

conv (RelLu) + conv (RelLu) + MaxPooling + conv (RelLu) + MaxPooling + conv (RelLu) + Fully
dropout (0.5) dropout (0.25) dropout (0.25) dropout (0.25) connected
W = 3488 W = 51264 W = 32896 W= 147584 W= 2367552

Dominguez-Sanchez+18



EXAMPLE OF VERY SIMPLE CNN

3 convolutional layers

Input Images
(RGB)

conv (RelLu) + conv (RelLu) + MaxPooling + conv (RelLu) + MaxPooling + conv (RelLu) + Fully
dropout (0.5) dropout (0.25) dropout (0.25) dropout (0.25) connected
W = 3488 W = 51264 W = 32896 W= 147584 W= 2367552

Dominguez-Sanchez+18



EXAMPLE OF VERY SIMPLE CNN

3 convolutional layers

Input Images
(RGB)

ReLu) + MaxPooling + &/
segrgpoUt (0.25)
W = 51264

Fully
connected
W= 2367552

Rel u activation

Dominguez-Sanchez+18



EXAMPLE OF VERY SIMPLE CNN

3 convolutional layers

Input Images
(RGB)

conv (RelLu) + conv (Relfy)) + MaxPooling + dl L ing conv (RelLu) + Fully
dropout (0.5) AropOUTHERE e i O8R5y~ dropout (0.25) connected
W = 3488 W = 51264 £ - W= 147584 W= 2367552

Pooling

Dominguez-Sanchez+18



EXAMPLE OF VERY SIMPLE CNN

- decrease of tensor size

OVERALL.:

- increase of depth

67
Input Images o @ \\/6:9 ; /\
(RGB) % & QG &
4 | 7= 4 G /.
% % & 07 < “
9 9 % 7 Gy > 36992

%, / \:’»Jr Y’» 64
N N 1
7 >
O | O 2x2 |:| =
ﬁ

6x6 ™ s [ []
I | | 1 3 |
conv (RelLu) + conv (ReLu) + MaxPooling + conv (RelLu) + MaxPooling + conv (RelLu) + Fully
dropout (0.5) dropout (0.25) dropout (0.25) dropout (0.25) connected
W = 3488 W = 51264 W = 32896 W= 147584 W= 2367552

Dominguez-Sanchez+18



IMPLEMENTATION IN KERAS

#========= Model definition
#Convolutional Layers

model = Sequential()

model.add{Convolution2D(32, 6,6, border_mode='same',
input_shape=(img_channels, img_rows, img_cols)))

model.add(Activation('relu'))

model.add(Dropout(0.5))

model.add{Convolution2D(64, 5, 5, border_mode='same'))
model.add(Activation('relu'))

model.add(MaxPooling2D(pool_size=(2, 2)))
model.add{Dropout(@.25))

model.add{Convolution2D(128, 2, 2, border_mode='same'))
model.add(Activation('relu'))

model.add(MaxPooling2D(pool_size=(2, 2)))
model.add{Dropout(@.25))

model.add{Convolution2D(128, 3, 3, border_mode='same'))
model.add(Activation('relu'))

model.add(Dropout(0.25))

#Fully Connected start here
# #

model.add(Flatten())

model.add(Dense(64, activation='relu'))
model.add(Dropout(.5))

model.add(Dense(1, init='uniform', activation='sigmoid'))

print("Compilation...")

model.compile(loss='binary_crossentropy',optimizer="'adam',metrics=['accuracy'])



o o
& d Q3: Bar

0.4z Accuracy=96.6 %

1 Nirain = 10000
0.2 Niesi = 1618
BARS A
0.0
0.0 0.2 0.4 0.6 0.8 1.0

FPR

MERGERS

Q6: Merger
Accuracy=97.1 %
Nirain = 5000
Niest = 903
N‘UU.S - 103

0.4 0.6 0.8 1.0

FPR *

P=0.99 P=0.99
P=0.98 P=0.99



EXAMPLE OF VERY SIMPLE CNN

OVERALL- - decrease of tensor size

- increase of depth

%
Input Images & @ ‘\/6:9 /\
V7 7
(RGB) % N\ QG &
e 7+, 4 I 7
% %, 3 o X 2
9 9 A 7 ® > 36992
v Z, 7 Is
%) % > 75 64
A A 1
-7 7

O |:|
6x6

| 0 2x2 =
— *
5x5 @ D
I | | 1 3

conv (RelLu) + conv (ReLu) + MaxPooling + conv (RelLu) + MaxPooling + conv (RelLu) + Fully
dropout (0.5) dropout (0.25) dropout (0.25) dropout (0.25) connected

W = 3488 W = 51264 W = 32896 W= 147584 W= 2367552
E e e = e e e ] 2 S ¥ SRR 1 - =

Dominguez-Sanchez+18

Number of parameters



EXAMPLE OF VERY SIMPLE CNN

OVERALL- - decrease of tensor size

- increase of depth

67
Input Images & @ \\/6:9 /\
V7 7
(RGB) % N\ QG &
e 7+, 4 I 7
% % & 07 < “
< 9 A 7 ® & 36992
v Z, 7 Is
%) % > 75 64
A 1A 1
-7 7

O |:|
6x6

L] o o O
2x2
—
5x5 @ D

I | | 1 3

conv (RelLu) + conv (ReLu) + MaxPooling + conv (RelLu) + MaxPooling + conv (RelLu) + Fully

dropout (0.5) dropout (0.25) dropout (0.25) dropout (0.25) connected

WV =3488 W =51264 W = 32896 W=147584 | | W= 2367552

™~

2 million of parameters for this very simple network!

Dominguez-Sanchez+18



CHECKING THE NUMBER OF
PARAMETERS / LAYERS WITH KERAS

Layer (type) Output Shape Param #
input_1 (InputLayer) (None, 1, 16, 112, 112) ©
conv3d_1 (Conv3D) (None, 16, 16, 112, 112) 448

batch_normalization_1 (Batch (None, 16, 16, 112, 112) 448

activation_1 (Activation) (None, 16, 16, 112, 112) ©

max_pooling3d_1 (MaxPooling3 (None, 16, 8, 56, 56) 0
conv3d_2 (Conv3D) (None, 32, 8, 56, 56) 13856
mOdel Summarv() ; batch_normalization_2 (Batch (None, 32, 8, 56, 56) 224
.
- activation_2 (Activation) (None, 32, 8, 56, 56) 0
max_pooling3d_2 (MaxPooling3 (None, 32, 4, 28, 28) 0
conv3d_3 (Conv3D) (None, 64, 4, 28, 28) 55360
batch_normalization_3 (Batch (None, 64, 4, 28, 28) 112
activation_3 (Activation) (None, 64, 4, 28, 28) 0
max_pooling3d_3 (MaxPooling3 (None, 64, 2, 14, 14) 0
activation_12 (Activation) (None, 64, 2, 14, 14) 0

Total params: 790,448
Trainable params: 70,056
Non-trainable params: 392




IN THE REAL LIFE.. e o

image
| 3x3 conv, 256

3x3 conv, 256

\ 4
3x3 conv, 256

RESNET

3x3 conv, 256

\ 4
3x3 conv, 256

3x3 conv, 256

\ 4
3x3 conv, 256

3x3conv, 256 |

e ———
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IN THE RE AL LIFE | 3layer residual

image

RESNET

DO WE
THIS
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APPL

NEE
DEE
RON

D TO GO
P FOR
OMY

CATIONS?

[34 layers - authors
explored up to 1202!]

He+15
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3x3 conv, 128




DEEPER TENDS TO BE BETTER...

ImageNet experiments 28.2
‘ 152 layers ’ .
A\
\\‘\ 16.4
\\‘ 11.7

‘ 22 layers ’ 19 Iayers I

ILSVRC'15 ILSVRC'14  ILSVRC'14 ILSVRC'13 ILSVRC'12 ILSVRC'11 ILSVRC'10
ResNet GoogleNet VGG AlexNet

ImageNet Classification top-5 error (%)



THE PROBLEMS OF
GOING “TOO DEEP”

- DEEP NETWORKS ARE MORE DIFFICULT TO

OPTIMIZE

- NEED MORE DATA - MORE SUBJECT TO OVER-

FITTING

- AND ALSO NEED MORE TIME ...



OVER-FITTING

THE TEST STAYS CONSTANT
OR INCREASES

Training Performance: Loss

/@ loss
0.55 X “ # —@— val_loss

THE TRAINING
LOSS DECREASES

(%]
N, N
a\\N\§$4Lig;

0.354

0.30 A

0.25 A

Epoch



DROPOUT

Hinton+12]

[

- THE IDEA IS TO REMOVE NEURONS RANDOMLY DURING

THE TRAINING

- ALL NEURONS ARE PUT BACK DURING THE TEST PHASE

(_d
(L
A

I\

/‘\0/‘\ ,
‘ww»w%&\\.ww’o%&\m

BAXN

\W
00700
7

R kK
Ny
/Q RN

b) After applying dropout.

a) Standard Neural Net



DROPOUT

WHY DOES IT WORK?

1. SINCE NEURONS ARE REMOVED RANDOMLY, IT AVO

CO-ADAPTATION AMONG TE

CEMSELVES




DROPOUT

validation

L ‘ ............ t ' ,:] | Ir‘l

0.23| | ¥ train(final+averaging)
1| Htest (final+avera ging )

Jrtest(final)

WITH A LITTLE BIT
OF DROPOUT

RMSE

| L |

1500 2000 2500

| I S U S S |

0 500 1000
# chunks

Huertas-Company+15



CAPTURING THE MODEL UNCERTAINTY

NEURAL NETWORKS AS BAYESIAN MODELS

Denker&LEcun91, Neal+95, Graves+11, Kingma+15, Gal+15...

BNNs ADD A PRIOR DISTRIBUTION TO GAL+15 SHOW THAT DROPOUT CAN
EACH WEIGHT - HARD TO TRAIN BE USED TO ESTIMATE UNCERTAINTY



IMPLEMENTATION IN KERAS / TENSORFLOW

#========= Model definition
#Convolutional Layers

model = Sequential()
model.add{Convolution2D(32, 6,6, border_mode='same',
input_shape=(img_channels, img_rows, img_cols)))

model.a '))
model.f#dd(Dropout(@.5))

model.add{Convolution2D(64, 5, 5, border_mode='same'))
model.add(Activation('relu'))

mode 1. add&MaxPoo L1ng20Te size=(2, 2)))

model.afld(Dropout(@.25))

model.add(Convolution2D(128, 2, 2, border_mode='same'))
model.add(Activation('relu'))

mode L. add(M size=(2, 2)))

model.afd(Dropout(@

25))

model.add(ConvolufionZD(lZS, 3, 3, border_mode='same'))
model.add(Activation('relu'))

model.add(Dropout(0.25))

#Fully Connected start here
# —#

model.add(Flatten())

model.add(Dense(64, activation='relu'))
model.add(Dropout(.5))

model.add(Dense(1, init='uniform', activation='sigmoid'))

print("Compilation...")

model.compile(loss='binary_crossentropy',optimizer="'adam',metrics=['accuracy'])



VANISHING / EXPLODING
GRADIENT PROBLEM

REMEMBER THAT:

Yi+1 = U[Z w;Yi]

output layer 1

output layer 1+1 weights

activation
function



VANISHING / EXPLODING
GRADIENT PROBLEM

WITH MANY LAYERS:




VANISHING/EXPLODING
GRADIENT PROBLEM

oo )




VANISHING/EXPLODING
GRADIENT PROBLEM

TRAINING BECOMES UNSTABLE

VERY SLOW OR NO CONVERGENCE
'\ N\ /) /7




VANISHING/EXPLODING
GRADIENT PROBLEM

; . / \ / 7N ) 77N N 7N N
" { ) ) A
X1 ¥ O N OO OO OO OO
\ 7\ \ \ \ \ \ 7\ \ y \ / ./ \ \ 7 N
/ \ \ / \ / \/ \/
X X X \l‘ X l'\ \l/ \'j/

IF WE ASSUME AN IDENTITY ACTIVATION FUNCTION:

@:xn’wz‘
n



VANISHING/EXPLODING
GRADIENT PROBLEM
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- — <33 1> IF WEIGHTS ARE ALL INITIALIZED

TO VALUES <<1:

wi — 0
VANISHING GRADIENT



VANISHING/EXPLODING
GRADIENT PROBLEM
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TO VALUES >1:
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EXPLODING GRADIENT

- — <33 1> IF WEIGHTS ARE ALL INITIALIZED



VANISHING/EXPLODING
GRADIENT PROBLEM

TRAINING BECOMES UNSTABLE
VERY SLOW OR NO CONVERGENCE

lterations lterations



WEIGHT INITIALIZATION IS A KEY POINT...

X1\,
\\
X2 .\
e Y e P
J— ) >y Z = T1W1 LoW9 LnWn
X3 N
/ a=g(z)



WEIGHT INITIALIZATION IS A KEY POINT...

X1 \

\\\
X9 >-~.\_\ :

" » 9 z2=mwr + T2we + ...+ Tpwy
X3 ) p

THE LARGER n, THE SMALLER
WEIGHTS SHOULD BE...




WEIGHT INITIALIZATION IS A KEY POINT...

X1\,
\\
SN PO
Xy — /_/_/’.\ ) >y Z = T1W1 ZC;’&UQ LnWn
X4 / a=g(z) rv
THE LARGER n, THE SMALLER
WEIGHTS SHOULD BE...
variance
N : 1
ONE SIMPLE SOLUTION: ¢~ (w;) = — number
n 4 of

inputs



WEIGHT INITIALIZATION IS A KEY POINT...

X1\,
\\
SN PO
Xy — /_/_/’.\ ) >y Z = T1W1 ZC;’&UQ LnWn
X4 / a=g(z) rv
THE LARGER n, THE SMALLER
WEIGHTS SHOULD BE...
variance
N : 1
ONE SIMPLE SOLUTION: ¢~ (w;) = — number
n 4 of

inputs



WEIGHT INITIALIZATION IS A KEY POINT...

For ReLU activation functions we typically use:

2
2 . : —
o (w;) "

[He 1nitialization, He+15]



WEIGHT INITIALIZATION IS A KEY POINT...

IMPLEMENTATION IN KERAS:

initialization = 'he normal'
act = ‘relu’

model = Sequential ()
model.add (Convolution2D (depth eeenvmedatm,eOnv size, activation=act, border mode='same',
name = "conv%i"%(layer_n)Hfinit:initialization W constraint=constraint))




WEIGHT INITIALIZATION IS A KEY POINT...

IMPLEMENTATION IN KERAS:

initialization = 'he normal'
act = ‘relu’

model = Sequential ()
model.add (Convolution2D (depth econvmsdiem,cONnv size, activation=act, border mode='same',

name = "conv%i"%(layer n)¢ init=initializationy W constraint=constraint))

MANY OTHER INITIALIZATIONS AVAILABLE:

https://keras.io/initializers/

keras.initializers oS e «aﬁ



BATCH NORMALIZATION

[SZEGEDY+15]

ANOTHER SOLUTION TO KEEP REASONABLE VALUES OF
THE ACTIVATIONS IN DEEP NETWORKS

BATCH NORMALIZATION PREVENTS LOW OR LARGE
VALUES BY RE-NORMALIZING THE VALUES BEFORE
ACTIVATION FOR EVERY BATCH

INPUT

E(y)

//vyz_ o (y;) -7

NORMALIZED INPUT \
SCATTER




BATCH NORMALIZATION

[SZEGEDY+15]

BATCH NORMALIZATION SPEEDS UP AND STABILIZES
TRAINING

AS FOR THE DROPOUT, THERE IS A DIFFERENT BEHAVIOR
BETWEEN TRAINING AND TESTING

//vy@— o (y;) -7

NORMALIZED INPUT \
~ SCATTER




BATCH NORMALIZATION

[SZEGEDY+15]

IN KERAS, IT IS IMPLEMENTED AS AN ADDITIONAL LAYER

BatchNormalization [source]

keras.layers.BatchNormalization(axis=-1, momentum=0.99, epsilon=0.001, center=True, scale=True, beta_initializer
Batch normalization layer (loffe and Szegedy, 2014).

Normalize the activations of the previous layer at each batch, i.e. applies a transformation that maintains the mean
activation close to O and the activation standard deviation close to 1.

Arguments



THIS IS A CHANGE OF PARADIGM!

Machine Learning

& &y 2273 -

Input Feature extraction Classification Output

Deep Learning

& - i - I

Input Feature extraction + Classification Output




Raw data

Learning

DATA FEATURE LEARNING algorithm g 4
LAYERS prediction




THE LEARNING ALGORITHM
CAN BE CHANGED

Raw data

<

DATA FEATURE LEARNING —
LAYERS prediction




THE LEARNING ALGORITHM
CAN BE CHANGED

Raw data

N

DATA FEATURE LEARNING SVM? g
LAYERS prediction




THE LEARNING ALGORITHM
CAN BE CHANGED

Raw data

N

DATA FEATURE LEARNING SVM? g

LAYERS prediction
OR
ANY
OTHER
LEARNING
ALGORITHM




THE FEATURES CAN
BE MANIPULATED OR COMBINED

Raw data

FEATURE LEARNING

DATA LAYERS SVM? _>
prediction

OR
ANY
OTHER
LEARNING

ALGORITHM
manual (colors, C, A, n

)




THE FEATURES CAN
BE MANITPIIT ATEDN NR COMRINED

Raw dat Features Learned from
N another CNN...

FEATURE LEARNING
DATA LAYERS 3 L —

prediction
0) 28
ANY
OTHER
LEARNING

ALGORITHM
manual (colors, C, A, n

..




THIS IS A CHANGE OF PARADIGM!

Fisher Vectors CNNs

ImageNet
top-5 error (%)

2010 2011 2012 2013 2014 2014 2015 Human

meoyan and
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ALSO FOR GALAXY MORPHOLOGY

ISVMs] |CNNs|
[HUERTAS-COMPANY+14] [HUERTAS-COMPANY+15b]
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ZPHOT

AUTOMATICALLY COMBINING MORPHOLOGY AND COLOR

PHOTOMETRIC REDSHIFTS

0.30f CNN B16 10
<Az>=0.00010 <Az>=0.00062
0.25} O'A”ADZO.OOng 0’_‘7\[‘41):0-01350
n=0.31% n=1.34% s
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Pasquet+18

FOR PHOTOZ ESTIMATION

GALAXY DENSITY



DATA QUALITY SELECTION FOR EUCLID

Thanks to H. McCracken



Training and validation accuracy
1.0 — o ® 0 o o8
o0 ® e ® -

DATA QUALITY SE

® Training acc
—  Validation acc

model = models.Sequential()
model.add(layers.Conv2D(32, (3, 3), activation="relu’,
input_shape=(150, 150, 1)))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Conv2D(64, (3, 3), activation='relu'))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Conv2D(64, (3, 3), activation="relu'))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Flatten())
model.add(layers.Dense(128, activation="relu'))

model.add(layers.Dense(1, activation='sigmoid')) Thanks to H. McCracken




WELL, BUT THIS IS AN
“OLD” IDEA - WHY NOW?

/McCuIloch/Pitts Neurons
/Hebbs Organization of Behavior
/Rosenblatts Perceptron
/Multi-Layer Perceptrons
/Backpropagation

/Convolutional Neural Networks

/Deep Learning

(Deep Learning with GPUs

T
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WELL, BUT THIS IS AN
“OLD” IDEA - WHY NOW?

1 - MORE DATA TO TRAIN! DEEP NETWORKS HAVE A
LARGE NUMBER OF PARAMETERS - THX TO SOCIAL
MEDIA ...



WELL, BUT THIS IS AN
“OLD” IDEA - WHY NOW?

2 - GPUs - TRAINING OF THESE DEEP NETWORKS
HAS REMAINED PROHIBITIVELY TIME CONSUMING

WITH CPUs - THX TO VIDEO GA

ES. L
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NVIDA TITANX GPU




GPUs vs. CPUs

i
CPUs | GPUs

FEWER CORES (~10x) MORE CORES (100x)

EACH CORE IS SLOWER

ERNRET =& NIRRT

EACH CORE IS FASTER

USEFUL FOR - USEFUL FOR PARALLEL
SEQUENTIAL TASKS | TASKS

CPU (Multiple Cores) GPU (Hundreds of Cores)

System Memory

(esssssssssssssss

core 1 I Core 2 SESESESESEEEEEES
SESESEEEEEEEEEES

SESEEESESEEEEEES

SESESESESEEEEEES

SESESEEESEEEEEES
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GPUs vs. CPUs

More benchmarks available here.

B ntel E5-2620 v3 [ Pascal Titan X (no cuDNN) Pascal Titan X (CuDNN 5.1)

\

66X 67x 71x  64x 76X

AN AN BN K

VGG-16 VGG-19 ResNet-18 Res-Net-50 ResNet-200

Figure credit: J. Johnson



GPUs for deep learning

NVIDIA GPUs ARE PROGRAMMED THROUGH CUDA
[Compute Unified Device Architecture]

ANOTHER ALTERNATIVE IS OPENCL, SUPPORTED BY

SEVERAL MANUFACTURES, LESS INVEST
used]

ENT [Way less

CuDNN IS A LIBRARY FOR SPECIFIC DEEP LEARNING
COMPUTATIONS ON NVIDIA GPUs




THE PRICE TO PAY?

1. LARGE NUMBER OF PARAMETERS IMPLIES LARGE
DATASETS TO TRAIN

2. LOOSE EVEN MORE DEGREE OF CONTROL OF WHAT
THE ALGORITHM IS DOING SINCE THE FEATURE
EXTRACTION PROCESS BECOMES UNSUPERVISED



IMAGE OF THE BACK OF THE EYE



DEEP LEARNING CAN
IDENTIFY
THE PATIENT’S

GENDER WITH 95%
ACCURACY

IMAGE OF THE BACK OF THE EYE



VISUALIZING CNNs
[what happens inside a CNN?]



DEEP NETWORKS ARE “BLACK BOXES™?

INTERPRETING THE RESULTS IS
EXTREMELY DIFFICULT

THIS IS TRUE BUT A LOT OF WORK
IS DONE TO UNVEIL THEIR BEHAVIOR



TE

5 SIMPLEST APPROACH IS TO VISUALIZE THE LEARNED

WEIGHTS AT INTERMEDIATE LAYERS

convl weights
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THE SIMPLEST APPROACH IS TO VISUALIZE THE LEARNED
WEIGHTS AT INTERMEDIATE LAYERS

o I.. conv1 weighs
: 1L F

NOT VERY INFORMATIVE
o THOUGH...
BT e




5 SIMPLEST APPROACH IS TO VISUALIZE THE LEARNED

WEIGHTS AT INTERMEDIATE LAYERS

IN KERAS:

model = Sequential ()
model.add (Convolution2D (depth, conv size0, conv size(, activation=act,
border mode='same', name = "conv0",

input shape=(img channels, img rows, img cols),
init=initialization, W constraint=constraint))
model .add (Dropout (dropout rate conv))

layer dict = dict([(layer.name, layer) for layer in model.layers])

layer dict[layer name] .W.get value (borrow=True)
W = np.squeeze (W)
print ("W shape : ", W.shape)

pl.figure(figsize= (15, ))
pl.title('convl weights')
nice imshow(pl.gca (), make mosaic (W, , ), cmap=cm.binary)



5 SIMPLEST APPROACH IS TO VISUALIZE THE LEARNED

WEIGHTS AT INTERMEDIATE LAYERS

IN KERAS: give names to layers

model = Sequential () '
model.add (Convolutiopzbscremptiymeeny sizeO, conv size0, activation=act,
border mode='same'§ : iy
‘ input shae€= (img channels, img rows, img cols),
init=initialization, W_constrafnt=constrgint))
model.add (Dropout (dropout rate conv))

layer dict = dict([(layer.name, layer) for layer in model.layers])

layer dict[layer name] .W.get value (borrow=True)
W = np.squeeze (W)
print ("W shape : ", W.shape)

pl.figure(figsize= (15, 15))
pl.title('convl weights')
nice imshow(pl.gca (), make mosaic (W, 6, 6), cmap=cm.binary)



5 SIMPLEST APPROACH IS TO VISUALIZE THE LEARNED

WEIGHTS AT INTERMEDIATE LAYERS

IN KERAS: create dictionary to link layers to names

# build model
model = Sequential ()
model.add(ConvolutionZD(depth,‘f

border mode='same', name = "cghv0",
¥ shape=(img channels, img rows, img cols),
C=initialization, W constraint=constraint))

fonv_size(O, conv_size(0, activation=act,

e Sl S, 1AMES ) .

([ (layer.name, layer) for layer in model.layers]) __ .@®

— RS SR i - Tr—
layer dict[layer name] .W.get value (borrow=True)
W = nE.squeeze(WT B
print ("W shape : ", W.shape)

# plot weights
pl.figure(figsize= (15, 15))

pl.title('convl weights')

nice imshow(pl.gca (), make mosaic (W, 6, 6), cmap=cm.binary)



5 SIMPLEST APPROACH IS TO VISUALIZE THE LEARNED

WEIGHTS AT INTERMEDIATE LAYERS

IN KERAS: for a given name, get the weights

# build model

model = Sequential () \
model.add (Convolution2D (depth, cgpnv size0O, conv size(, activation=act,
border mode='same', name = "con®0",

input Shape=(img channels, img rows, 1img cols),
initslnitialization, W constraint=constraint))
model.add (Dropout (dropout rgte conv))

# get the symbolic outpu@é of each "key" layer (we gave them unique names).

print ("W shape : ", W.shape)

# plot weights

pl.figure(figsize= (15, 15))

pl.title('convl weights')

nice imshow(pl.gca (), make mosaic (W, 6, 6), cmap=cm.binary)



USING THE SAME IDEA, ONE CAN ALSO VISUALIZE
THE FEATURE MAPS AT INTERMEDIATE LAYERS

THIS HELPS TRACING THE FEATURES LEARNED BY TH

NETWORK



USE “DECONVNETS” TO MAP BACK THE FEATURE MAP
INTO THE PIXEL SPACE

i

ove
ccccccccccc ion . Pooled Maps
Switches

- Max Pooling
Max Unpooling @ O—‘w
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Zeiler+14
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EVERY BLOCK OF 9 SHOWS
THE 9 STRONGEST RESPONSES TO A GIVEN FILTER OF LAYER2
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Zeiler+14



THE CORRESPONDING REGIONS OF IMAGES THAT
GENERATED THE MAXIMUM RESPONSE
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CAN BE
REPEATED
FOR DEEPER
LAYERS

ALTHOUGH IT _ .

k 7

Zeiler+14




KERAS IMPLEMENTATION OF VISUALIZATIONS
THROUGH DECONVNETS

https://github.com/jalused/Deconvnet-keras




OCCLUSION SENSITIVITY TRIES ALSO TO FIND
THE REGION OF THE IMAGE THAT TRIGGERED THE
NETWORK DECISION BY MASKING DIFFERENT REGIONS
OF THE INPUT IMAGE AND ANALYZING THE NETWORK
OUPUT

ITALLOWS TO IF THE NETWORK IS TAKING THE
DECISIONS BASED ON THE EXPECTED FEATURES

VERY TIME CONSUMING!

(c) Layer 5, strongest (d) Classifier, probability
of correct class

(@) Input Image (b) Layer 5, strongest feature map feature map projections

e

True Label: Pomeranian|

Zeiler+14




OCCLUSION SENSITIVITY TRIES ALSO TO FIND
THE REGION OF THE IMAGE THAT TRIGGERED THE
NETWORK DECISION BY MASKING DIFFERENT REGIONS
OF THE INPUT IMAGE AND ANALYZING THE NETWORK
OUPUT

for every position
of the square the maximum response of a given layer

\ the output probability as a
1s averaged

function of the occluding square

occluded region position

(e) Classifier, most
probable class

(c) Layer 5, strongest
feature map projections

(d) Classifier, probal ’Iity

7 . (a) Input Image (b) Layger 5, strongest feature map

True Label: Pomeranian f'"':

Zeiler+14




INCEPTIONISM - DEEP DREAM

THE IDEA BEHIND INCEPTIONISM TECHNIQUES
IS TO INVERT THE NETWORK TO GENERATE AN IMAGE
THAT MAXIMIZES THE OUTPUT SCORE

image I

Score of class ¢ for image I

arg maz Sc(I) — )\HIH%

TRY TO FIND AN IMAGE THAT GENERATES A
HIGH SCORE FOR A GIVEN CLASS

Simonyan+14



INCEPTIONISM - DEEP DREAM

DURING THE TRAINING PHASE THE WEIGHTS ARE
LEARNED TO MAPITINTO Sc

Simonyan+14



INCEPTIONISM - DEEP DREAM

DURING THE RECONSTRUCTION PHASE, I

S LEARNT

TRHOUG BACKPROPAGATION KEEPING TE

E WEIGHTS

FIXED

Simonyan+14



INCEPTIONISM - DEEP DREAM

RESULTS REVEAL INTERESTING INFORMATION ON

HOW TE

5 NETWORKS BUILD REPRESENTATIONS OF

OBJECTS

Anemone Fish Banana Parachute Screw



INCEPTIONISM - DEEP DREAM

RESULTS REVEAL INTERESTING INFORMATION ON
HOW THE NETWORKS BUILD REPRESENTATIONS OF

OBJECTS

SOME STRANGE CASES...




DEEP DREAM

https://deepdreamgenerator.com/

IT HAS NOW BECOME A SORT OF ART?

s =/
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INTEGRATED GRADIENTS

Integrated Gradient Visualization

Original Image Perturbed Image Sensitivity Map

Sundararajan+17




INTEGRATED GRADIENTS
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INTEGRATED GRADIENTS

KERAS IMPLEMENTATION:
https://github.com/hiranumn/IntegratedGradients




PART IV: IMAGE 2 IMAGE NETWORKS +
INTRODUCTION TO GENERATIVE
MODELS




