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SOME PRELIMINARY
NOTES

[ AM NOT A MACHINE LEARNING RESEARCHER



SOME PRELIMINARY

NOTES

[ AM NOT A MACHINE LEARNING RESEARCHER

ONLY AN ASTRONOMER WHO HAS BEEN USING MACHINE

LEARNING FOR TE

~ LAST ~14 YEARS FOR MY RESEARCH

THIS LECTURE IS INTENDED TO PROVIDE A GLOBAL
UNDERSTANDING OF HOW AI TECHNIQUES WORK AND
ESPECIALLY HOW TO USE THEM FOR YOUR RESEARCH



WHAT ARE WE GOING TO
LEARN?

data-science
pattern-recognition
artificial-inteligence
database

data

big-data machine

data-mining
learning

clustering

s—GLASBEFGEN

“Artificial intelligence is when you get a college degree,
but you’re still stupid when you graduate.”



WHAT ARE WE GOING TO
LEARN?

data-science ﬁ%

pattern-recogn A BUNCH OF
artificial-in

datab« SOMETIMES >\
d(] CONFUSING
_ TERMS...

4 . -
DIg-AaaAacad mac:. ... SR
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— but you’re still stupid when you graduate.”
learning

clustering
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Alan Turing, 1947
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Le CNRS, Inria, 'université PSL et les entreprises
Amazon, Criteo, Facebook, Faurecia, Google,
Microsoft, NAVER LABS, Nokia Bell Labs, le
Groupe PSA, SUEZ et Valeo font converger
intéréts académiques et industriels et s’unissent
pour créer, a Paris, I'Institut PRAIRIE dont I'objectif
est de devenir une référence internationale de
I'intelligence artificielle.

o HOMENITY ;-
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BEFORE 2012....

\\n DOG?

TRIVIAL HUMAN TASKS REMAINED
CHALLENGING FOR COMPUTERS




AFTER 2012

motor scooter
motor scooter
go-kart
moped
bumper car
golfcart

gr musnroom

agaric dalmatian monkey

grille mushroom grape spider monkey

i pickup jelly fungus elderberry titi
beach wagon gill fungus ire bullterrier indri

fire engine dood-mans-ﬂngonl currant howler monkey

IT HAS BECOME TRIVIAL....



THIS IS A CHANGE OF PARADIGM!

Fisher Vectors CNNs

ImageNet
top-5 error (%)

2010 2011 2012 2013 2014 2014 2015 Human

meoyan and
Unetal Sarche: and Srithevsky et o 2eder aod S‘;L::T‘"
n et Permonnin (AexNet) Ferpus o

Stegedy et al He et ol

Russ uke "
(GoogleNet) (Reshet) ek et o

‘annon Spider Web



ONE OF THE MAIN REASONS OF THIS
BREAKTHROUGH IS THE AVAILABILITY OF VERY
LARGE DATASETS TO LEARN

VOLUME VELOCITY VERA(ITY

DATA S\ZE DIFFERENT FORM UNCERTAINTY OF
F DATA SOUR(E DATA




COMBINED WITH THE TECHNOLOGY TO
PROCESS ALL THIS DATA




ONE OF THE MAIN REASONS OF THIS

BREAKTHROUGH IS THE AVAILABILITY OF VERY
LARGE DATASETS TO LEARN

'HOWEVER THERE HAS NOT BEE A MAJOR |
| _REVOLUTIONARY II

Y

VOLUME VELOCITY VARIETS VERACITY

DATA S\ZE DIFFERENT FORMS UNCERTAINTY OF
F DATA SOUR(E DATA



WHAT ARE WE GOING TO LEARN?

BASICS OF CLASSICAL MACHINE LEARNING
(this 1s mostly covered by my colleagues)

BASICS OF DEEP LEARN

NG

(BOTH SUPERVISED AND UNSUPERVISED)

HOPING THAT THIS WOULD BE USEFUL FOR YOUR

RESEARCH!

(Apologies 1n advance for biases on Extra-Galactic Science +

Imaging)



WHY DO WE NEED THESE TOOLS IN ASTRONOMY?



WHY DO WE NEED THESE TOOLS IN ASTRONOMY?

AS IN MANY OTHER DISCIPLINES THE BIG-DATA
REVOLUTION HAS ARRIVED TO ASTRONOMY TOO
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| ¢ we are here DELIVERING BILLIONS
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LSST simulation
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: NOT ONLY VOLUME: AN :
= INCREASING -
COMPLEXITY OF DATA

MUSE@VLT
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04 Dave+ 2001
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PROGRAM FOR THE
WEEK

 PART I: A VERY QUICK INTRODUCTION TO

‘CLASSICAI’ MACHINE LEARNING

- UNSUPERVISED / SUPERVISED

- GENERAL STEPS TO “TEACH A MACHINE”

- “CLASSICAL” CLASSIFIERS



PROGRAM FOR THE
WEEK

 PART II: FOCUS ON ‘SHALLOW’ NEURAL NETWORKS

- PERECPTRON, NEURON DEFINITION
- LAYER OF NEURONS, HIDDEN LAYERS
- ACTIVATION FUNCTIONS

. OPTIMIZATION [GRADIENT DESCENT, LEARNING
RATES]

- BACKPROPAGATION



PROGRAM FOR THE
WEEK

 PART III: CONVOLUTIONAL NEURAL NETWORKS

. CONVOLUTIONS AS NEURONS
. CNNs [POOLING, DROPOUT]

- VANISHING GRADIENT / BATCH
NORMALIZATION



PROGRAM FOR THE
WEEK

 PARTIV: IMAGE TO IMAGE NETOWRKS +
INTRODUCTION TO UNSUPERVISED DEEP LEARNING

- NETWORKS FOR IMAGE SEGMENTATION
- AUTO-ENCODERS
- GENERATIVE ADVERSARIAL NETOWRKS

- ANOMALY DETECTION



PROGRAM FOR THE
WEEK

« PART V: SOME PRACTICAL CONSIDERATIONS

- HOW DO I SETUP MY CNN?
- HOW LARGE DO TRAINING SETS NEED TO BE?

- OPTIMIZING YOUR NET: HYPER PARAMETER
SEARCH

- VISUALIZING CNNs [DECONVNETS,
INCEPTIONISM, INTEGRATED GRADIENTS]



HANDS-ON SESSION

WE WILL TRY TO IMPLE

SNT SOME OF TH

E THINGS

LEARNED

MORE PRECISELY WE WILL SET UP A DEEP NETWORK TO
MEASURE GALAXY ELLIPTICITIES

LET’S TRY TO DISCUSS AS MUCH AS POSSIBLE!



SOFTWARE
REQUIREMENTS

- PYTHON 3 OR GREATER

GPU CODING TRANSPARENT - S]

- TENSORFLOW FOR DEEP LEARNING

- KERAS - HIGH LEVEL LIBRARY WHICH MAKES

MPLIFIES

THINGS A LOT AND MOST OF TE

= TIME ENOUGH

FOR OUR APPLICATIONS



PART I: AN INTRODUCTION TO
“CLASSICAL” MACHINE LEARNING




THRE IS NO MAGIC IN MACHINE LEARNING,
AND ITISACTUALLY PRETTY SIMPLE
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Rest-frame U-V [mag]
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LABEL
Q, SF



Rest-frame U-V [mag]
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—»‘) LABEL

L " Q(0), SF(1)
NETWORK FUNCTI(?N/ l
\, (U-V, V-J) FEATURES
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“CLASSICAL” — f . » LABEL
MACHINE LEARNING W - Q, SF

sgn[(u-v)-W1*(v-j)-W2]

REPLACE THIS BY A GENERAL
NON LINEAR FUNCTION WITH SOME PARAMETERS W



WHAT DOES MACHINE
LEARNING DO?

the machine is told what to look for the machine is NOT told what to look for

SUPERVISED UN-SUPERVISED

Classification Regression Clustering Generatiye
(deep learning)



WHAT DOES MACHINE
LEARNING DO?

the machine is told what to look for the machine 1s NOT told what to look for

SUPERVISED UN-SUPERVISED

Classification ~ Regression i Clustering Generative
: (deep learning)

[LECTURES BY BIEHL ] [LECTURES BY BARON]



WHAT DOES MACHINE
LEARNING DO?

SUPERVISED UN-SUPERVISED

Classification Regression Clustering Generatiye
(deep learning)

DEEP LEARNING




LET’S HAVE A LOOK AT SOME
EXAMPLES OF DEEP LEARNING
APPLIED...



“OUR CATS AND DOGS”: GALAXY MORPHOLOGY

9

IRR

DISK

AUTOMATIC

SPHEROID - 7?

SPHEROID DISK IRR P
VISUAL DOMINANT CLASS

| VIS UAL A‘ Q‘l

DEEP LEARNING SOLVES
CNNs THE PROBLEM
OF GALAXY MORPHOLOGICAL
CLASSIFICATION? MHC+15b




“OUR CATS AND DOGS”: GALAXY MORPHOLOGY
AUTOMATIC

Late-Type

PS
IRR

Early-Typg

DISK

AUTOMATIC

>

SPHEROID - 79

SPHEROID DISK IRR PS

Early-Type Late-Type

VISUAL DOMINANT CLASS

VISUAL

SVMs

DEEP LEARNING SOLVES
CNNs THE PROBLEM
OF GALAXY MORPHOLOGICAL
CLASSIFICATION? MHC+15b



CLASSIFICATION: LENS
FINDER




CLASSIFICATION: LENS
FINDER

GAHEC IRAP

Space-Based

0.66

Name type AUROC TPRy TPR1/ short déjcription

CMU-DeepLens-ResNet-ground3  Ground-Based 0.98 0.09 0.

CMU-DeepLens-Resnet-Voting Ground-Based 0.98 0.02

LASTRO EPFL Ground-Based 0.97 0.07

CAS Swinburne Melb Ground-Based 0.96 0.02

AstrOmatic Ground-Based 0.96 0.00

Manchester SVM Ground-Based 0.93 0.22 .

Manchester-NA2 Ground-Based 0.89 0.00 0.01 Human Inspection

ALL-star Ground-Based 0.84 0.01 0.02 edges/gradiants and Logistic Reg.

CAST Ground-Based 0.83 0.00 0.00 CNN /SVM

YattaLensLite Ground-Based 0.82 0.00 0.00 SExtractor
“LASTROEPFL “Space-Based 093770700 0.08 Lot e

CMU-DeepLens-ResNet Space-Based 0.92 0.22 0.29

GAMOCLASS Space-Based 0.92 0.07 0.3f

CMU-DeepLens-Resnet-Voting Space-Based 0.91 0.00 0.9

AstrOmatic Space-Based 0.91 0.00 0.¢

CMU-DeepLens-ResNet-aug Space-Based 0.91 0.00 0.0p

Kapteyn Resnet Space-Based 0.82 0.00 0.06

CAST Space-Based 0.81 0.07 0.12

Manchesterl Space-Based 0.81 0.01 0.17 an Inspection

Manchester SVM Space-Based 0.81 0.03 0.08 SVM / Gabor

NeuralNet2 Space-Based 0.76  0.00 0.00 CNN / wavelets

YattaLensLite Space-Based 0.76 0.00 0.00 Arcs / SExtractor

All-now Space-Based 0.73 0.05 0.07 edges/gradiants and Logistic Reg.

0.00 0.01 arc finder

YIS AN T

Metcalf+18

,oA YT AN~

Jacobs+17



REGRESSION

Hezaveh+17, Nature

REGRESSION ON
STRONG LENSES PARAMETERS




GENERATIVE MODELS

(UNSUPERVISED)

eeeeeeeee

Margalef, MHC+19



GENERATIVE MODELS

(UNSUPERVISED)
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Generation of realistic galaxy images

Ravanbakhsh+16



GENERATIVE MODELS TO
BOOST DISCOVERY

Training the GAN
- -
Bl sp Healthy data Unseen data Anomalies
Preprocessing .

Schlegl+17



GENERATIVE MODELS

(UNSUPERVISED)

original

degraded GAN recovered

PSF=2.5", 100

Data Prep. Training of GAN

Original Image Original Image

Discriminator

’ '
' '
’ '
’ '
' '
—r—t
'
' '
' '
'
'

Recovered Image :

g

Artificial
Degrading

Degraded Image

(abeuw papeJﬁa% ‘3bew) pasenoaay)
10 (3bew| papesbag abew| jeuibup)

deconvolved

Schawinsky+17



SUPERVISED LEARNING

Given a dataset with known labels (measurements) - find a
function that can assign (predict) measurements for an unlabeled
dataset

Training set

— — — Measurements
(3717 3727 3337 coey ZCn) * (colors, fluxes, spectra indices...)

( - = = e ) * Label
yl 9 yQ y y37 ** yn (morphology, object type, transit ...)




SUPERVISED LEARNING

Given a dataset with known labels (measurements) - find a
function that can assign (predict) measurements for an unlabeled

dataset
Training set
L1,L2,L3 )

= fiv(Z) =y

(Y1, U2, Y3y -5 Yn)



SUPERVISED LEARNING

Unlabeled set

/ / / / / /

/ /
( 1 L2 L3 5.0y L ) (y17y27y37“'7yn)
Training set
(xlaana 3 s L




$1,$2,$3,...,$n) 7 c R

(y17y27y37°“7yn) jeR ¢yeN

GENERAL GOAL.: Find a (non-linear) function that outputs the
correct class / measurement for a given input object:

fw (Z)

Number of parameters - can be large

It is translated into a minimization problem : find W such as the
prediction error is minimal over all unseen vectors




Different “classical” supervised
machine learning methods

ARTIFICAL
RANDOM FORESTS NEURAL NETWORKS
- (DEEP LEARNING)

decision trees

{ this is not
i classical.. |

SUPPORT VECTOR MACHINES

kernel algorithms




—
The differences are f ‘/ ‘/ :I;

in the function '\\

that 1s used
ARTIFICAL
NEURAL NETWORKS

(DEEP LEARNING)

kernel algot




We need two key elements

1. ALOSS FUNCTION

2. A MINIMIZATION OR OPTIMIZATION
ALGORITHM



We need two key elements

1. ALOSS FUNCTION

2. A MINIMIZATION OR OPTIMIZATION
ALGORITHM

“THIS IS COMMON TO ALL MACHINE LEARNING
~ ALGORITHMS |

PP PO .



1. DEFINE A LOSS FUNCTION

loss(Fw(.),Z;, ;)

For example: (Fw (%;) —v;)* Quadratic loss function

2. MINIMIZE THE EMPIRICAL RISK
N
1

§Reafm,pirical(VV) — N Z[ZOSS(Wa fa g)]

1

MINIMIZE THE RISK




EMPIRICAL RISK?

1

%empirical(W) — N Z[ZOSS(Wa fa g)]

1

WE ARE MINIMIZING WITH RESPECT TO A FINITE NUMBER OF OBSERVED
EXAMPLES



1]

EMPIRICAL RISK?

éR<f37’n,1mj7°ical (W)

WE ARE MINIMIZING WITH RESPECT TO A FINITE NUMBER OF OBSERVED
EXAMPLES

OBSERVED DATASET




EMPIRICAL RISK?

1

%empirical(W) — N Z[ZOSS(Wa fa g)]

1

WE ARE MINIMIZING WITH RESPECT TO A FINITE NUMBER OF OBSERVED
EXAMPLES

ALL “GALAXIES IN THE UNIVERSE”




In practice

OPTIMIZATION ERROR

TRAINING  iVALIDATION| TEST

training set: use to train the classifier

validation set: use to monitor performance in real time - check
for overtfitting

fest set: use to train the classifier




In practice

OPTIMIZATION ERROR

NO CHEATING! NEVER USE TRAINING TO VALIDATE
YOURALGORITHM!




The algorithm used to minimize 1s
called OPTIMIZATION

THERE ARE SEVERAL OPTIMIZATION TECHNIQUES



Optimization

THERE ARE SEVERAL OPTIMIZATION TECHNIQUES

THEY DEPEND ON THE MACHINE LEARNING ALGORITHM




Optimization

THERE ARE SEVERAL OPTIMIZATION TECHNIQUES

THEY DEPEND ON THE MACHINE LEARNING ALGORITHM

NEURAL NETWORKS USE THE GRADIENT DESCENT AS WE
WILL SEE LATER

Wii1 =W — A v fF(Wy)

learning rate

weilghts to be learned




—
The differences are f ‘/ ‘/ :I;

in the function '\\

that 1s used
ARTIFICAL
NEURAL NETWORKS

(DEEP LEARNING)

kernel algot




HOW TO CHOOSE YOUR
CLASSICAL CLASSIFIER?

NO RULE OF THUMB - REALLY DEPENDS ON
APPLICATION

ML METHOD

CA RTS / Easy to 1nl‘;e(:)r)gf)e t ("White Over-complex trees sklearn.ensemble.RandomFo
R AN DO M Litte data preparation . Ungtable restClassifier
Both numerical - Biased tress 1f some classes sklearn.ensemble.RandomFo
FO ={= ST categorical dominate restRegressor
Easy to interpret + Fast not very well suited to sklearn.svm
SVM Kernel trick allows no linear multi-class problems Klearm
problems sklearn.sve
seed of deep-learning sklearn.neural network.MP
very efficient with large ~ more difficult to interpret L CLassifier
amount of data as we will computing intensive sklearn.neural network.MP

see L Regressor



CAN DEPEND ON YOUR MAIN

Qpreta bU

Perceptron

INTEREST

Decision Trees

Quinlan, 1979 (1D3),
Braman, 1984 (CART)

Ensembles
Braiman, 1994 (Bagging)

Braman, 2001 (Random Forasts)

Boosting

Schapira, 1989 (Boosting)
Schapira, 1995 (Adaboaost)

Support Vector Machines

Vapnik, 1963 Corina & Vapnik, 1995

Neural
Networks Deep Learning

Rosanblatl, 1957

Mingky, 1969 Fukushima, 1989 (ANN) Hinton, 2006

1950 1960 1970 | 1980 | 1990 2000 2010

2020

credit




Subjective Popularity

ALSO INFLUENCED BY
“MAINSTREAM” TRENDS

Vapnik, Cortes
J.R. Quinlan
Breiman
Freund, Schapire
Linnainmaa 1970
Werbos
& Decision Tree, ID3
ecision lree,
'6"\ QQ’Q & i
A h
& 8
d o LeCun
() >
. 3 Perceptron Ay Rumelhart, Hinton, Williams
‘ Hetch, Nielsen
Hochreiter et. al.
Hinton
B
Neural Networks / e LeCun
e ad IDSIA Andrew Ng.
Created by erogol
x @ I J >
1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 2015

My subjective ML timeline

Source




PART 1I: A FOCUS ON “SHALLOW”
NEURAL NETWORKS




THE NEURON

impulses carried
toward cell body

branches
dendntesﬁ I/ of axon
' B
nucleus “. axon 2 >te
> N

//f/ (\ Y impulses carried \S

away from cell body
cell body

INSPIRED BY NEURO - SCIENCE?

Credit: Karpathy



THE NEURON

Ag wy

impulses carried - N S
toward cell body axon irom a neuron womo
branches

dendrites of axon —
cell body f (Z wix; + b)
§ - 4 b TR > wizi+b i
\ > w;T; >
nucleus — aﬂ"_,_ 27 " te = g output axon
activation
function

> N\
7;( { impulses carried Wy Ty

away from cell body
cell body

INSPIRED BY NEURO - SCIENCE?

Credit: Karpathy



Mark I Perceptron

FIRST IMPLEMENTATION OF NEURAL NETWORK [Rosenblatt,
1957!]

INTENDED TO BE A MACHINE (NOT AN ALGORITHM)

it had an array of 400 photocells,
randomly connected to the "neurons".
Weights were encoded 1n
potentiometers, and weight updates
during learning were performed by
electric motors

:
i |
i
:
)
:
!
|
1
!
o
i
:
:
:



TODAY’S ARTIFICIAL NEURON

Pre-Activation
Weights




LAYER OF NEURONS

SAME IDEA. NOW W becomes a matrix and b a vector



Hidden Layers of Neurons

h
b




ACTIVATION FUNCTION

h
h L
“H-1 @% hH 1

e g

HIDDEN LAYER

g("(x)) = g(W"z +b")



H-1
b1
h(x) 2°(x)
OUTPUT LAYER

20 (x) = WOh(x) + v°



softmax

21 7 | fr=a

2°(x) £(x)
PREDICTION LAYER

f(x) = softmaz(z°)



“CLASSICAL” f - R LABEL
MACHINE LEARNING T Q, SF

REPLACE THIS BY A GENERAL
NON LINEAR FUNCTION WITH SOME PARAMETERS W

input layer

hidden layer 1 hidden layer 2

~ NETWORK
p = g3(Wsg2(Wag1 (W12))) €——FUnCTION



WHY HIDDEN LAYERS?

3 hidden neurons 6 hidden neurons 20 hidden neurons

More complex functions allow increasing complexity

Credit: Karpathy



SO LET’S GO DEEPER AND DEEPER!



SO LET’S GO DEEPER AND DEEPER!

YES BUT...

NOT SO STRAIGHTFORWARD, DEEPER MEANS MORE
WEIGHTS, MORE DIFFICULT OPTIMIZATION, RISK OF
OVERFITTING...



LET’S FIRST EXAMINE IN MORE DETAIL HOW SIMPLE
“SHALLOW” NETWORKS WORK



ACTIVATION FUNCTIONS?

o
W b
@ - F()
Ty g "n

ADD NON LINEARITIES TO THE PROCESS



ACTIVATION FUNCTIONS

15 T T T T 15 T T T T 15

) e
0.5
0.0
-0.5
-1.0}
_14 —1? (1) -1.27.0 —li.b —lx.() -0.5 0.’0 0.15 1.10 1.15 2.0
igm (z) 1 1 -1 1 0
sigm(z) = anl = ‘ = max(0, z
g . tanh () T relu(z) = max(0, z)
sigm’(x) = sigm(z)(1 — sigm(x)) = 1 — tanh(z)? relu’(z) = 1,0

T
”r() b
T !




ACTIVATION FUNCTIONS

2
1.225
~ Sigmoid
— Tanh
0.45 -- RelLU
— Leaky ReLU
- Smooth RelLU
-0.325
-1.1

-3 -225-15-0.76 0 0.75 1.5 225 3

1
Sigmoid: f(CC) — T Tanh: f(z) = tanh(x)

ReLu: f(x) =max(0,z) SoftReLu: f(x)=1log(l+e”)

Leaky ReLu: f(z) = ez + (1 — €)max(0, )



ACTIVATION FUNCTIONS

2
1.225 . .
~ Sigmoid
— Tanh
0.45 -+ RelLU
— Leaky RelLU
- Smooth RelLU
-0.325
1.1

-3 -225-15-075 0 0.75 1.5 225 3

1
Sigmoid: f(¢) = 17—=  Tanh: f(z) = tanh(a)

ReLu: f(x) = maz(0,2) SoftReLu: f(x)=Ilog(l+e”)

Leaky ReLu: f(z) = ez + (1 — €)max(0, )




WHAT IS THE MEANING OF
THE ACTIVATION FUNCTION?

Any real function 1n a interval (a,b) can be approximated with a linear
combination of translated and scaled ReLu functions
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Any real function 1n a interval (a,b) can be approximated with a linear
combination of translated and scaled ReLu functions



SOFTMAX

A generalization of the SIGMOID ACTIVATION

ex

softmax(x) = =5

D i €7

THE OUTPUT IS NORMALIZED BETWEEN O AND 1

THE COMPONENTS ADD TO 1

CAN BE INTERPRETED AS A PROBABILITY

p(Y =c|X = x) = softmazx(z(x)).



SOFTMAX

A generalization of the SIGMOID ACTIVATION

GENERALLY
USED AS ACTIVATION

THE OUT! OF LAST LAYER AND

(will come back later)

INTL—- \J\JIVvIl N\ 1T NL_T YT U 7 \L LY 1"\ 1

CAN BE INTERPRETED AS A PROBABILITY

p(Y =c|X = x) = softmazx(z(x)).



