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How	Quasars	Were	Not	Discovered	

GQ Comae V396 Her

Noted as variable 
sources early on, but 
… misclassified as 
variable stars
(e.g., BL Lacertae)

Historical 
(archival) 
lightcurve 
of 3C273, 
starting 
from the 
1880’s …

(C. Hoffmeister 1929) 



A	Systematic	Approach	to	Quasar	Variability	
•  CRTS	light	curve	archive	is	still	unique	in	terms	of	
the	spatiotemporal	coverage	(80%	of	the	sky,	13	
years)	
–  It	contains	~350,000	spectroscopically	confirmed	
quasars	and	>	1	million	of	quasar	candidates	

•  This	offers	an	unprecedented	opportunity	to	study	
a	variability	of	quasars	in	a	systematic	manner	



Statistical	Descriptors	of	Quasar	Variability	

Sesar	et	al.	2007	

A	traditional	approach:	
Structure	Function:	
Variability	amplitude	as	a	function	
of	the	time	lag	

	 	 	 	 	 	 						Drawback:	very	little	information	



Statistical	Descriptors	of	Quasar	Variability	

where	X(t)	is	the	flux,	τ	is	the	relaxation	time,	σ	is	the	
variability	on	time	scales	t	<	τ	,	bτ	is	the	mean	amplitude,	
and	ε(t)	is	a	white	noise	process	

A	modern	approach:		model	the	process	as	a	Damped	
Random	Walk	(DRW),	or	specifically	the	Gaussian	first-order	
continuous	autoregressive	process	(CAR(1)),	aka	the	
Ornstein-Uhlenbeck	process,	defined	by	the	equation:			

•  Characterized	by	the	variability	amplitude	and	time	scale	
•  Basis	for	the	stochastic	models	of	quasar	variability	
•  Not	a	perfect	descriptor:	some	deviations	noted	



CAR(1)	Process	
Its	autocorrelation	function	is:		
And	the	corresponding	
power	spectrum:	

τ	=	the	relaxation	time	
σ	=	variability	for		t	<	τ		
bτ	=	the	mean	amplitude	

Kelly	et	al.	2009		

Correct	modeling	of	the	stochastic	variability	is	essential	
for	the	analysis	of	the	observed	properties	of	quasars.	

It	can	be	further	generalized	by	
allowing	for	a	non-stationarity	(moving	average):	
CAR(1)	=	CARMA(1,0)	=	CARIMA(1,0,0)	=	CARFIMA(1,0,0)	



Variability	Feature	Space	
•  Generate	homogeneous	representation	of	time	series	
•  Most	Richards	et	al.	(2011)	features	carry	little	

information	
•  Measuring:	
− Morphology	(shape):	skew,	kurtosis	
− Scale:	Median	absolute	deviation,	biweight	midvar.	
− Variability:	Stetson,	Abbe,	von	Neumann	
− Timescale:	periodicity,	coherence,	characteristic	
− Trends:	Thiel-Sen	
− Autocorrelation:	Durbin-Watson	
− Long-term	memory:	Hurst	exponent	
− Nonlinearity:	Teraesvirta	
− Chaos:	Lyapunov	exponent	
− Models:	HMM,	CAR,	Fourier	decomposition,	wavelets	

•  Defines	high-dimensional	(representative)	feature	space	



Parameter	Spaces	of	Quasar	Variability	

Amplitude	

Slope	

Nonlinearity	 Chaos	Variability	 Autocorrelation	

Some	are	simple,	
but	most	are	not	

We	compare	them	with	the	distributions	for	stars	in	the	same	
magnitude	range,	and	use	machine	learning	tools	to	separate	
them	in	a	multidimensional	parameter	space		

Red	=	quasars,	Yellow	=	Stars,	Blue	=	Ratio	



Variability-Based	Selection	of	Quasars	

Using	the	light	
curve	variability		
parameter	space	
to	select	quasar	
candidates		



Spectroscopic	Confirmation	of	
Variability-Selected	QSO	Candidates	

Initial	
success	
rate	>	80%	



<=	WISE	color	plot	showing	
objects	classified	as	stars	
(red)	and	quasars	(green)		
by	the	ensemble	classifier			

Combining	Variability	and	WISE	Colors	
Spectroscopic	confirmation:	
Black	diamonds	=	quasars	
Blue	diamonds	=	stars			

QSO	
region	

A	combined	parameter	space	=>	
of	variability	(Slepian	slope,	Y	
axis)	and	WISE	colors.		Black	
diamonds	are	confirmed	quasars	



Initial	results	from	the	Kepler	field:	a	100%	success	rate!	



●  Data	set	of	1.5+	million	QSOs/QSO	candidates,	selected	in	
the	WISE	colors	and	variability	parameter	space	
− Stacked	framework	for	ensemble		
classification	

●  CRTS	Southern	Quasar	Catalog	
− Within	the	SSS	footprint,	there																																																											
are	25,828	spectroscopically-confirmed	AGN	

− The	first	pass	SSS	quasar	catalog	has	454,763	color	and	
variability-selected	AGN	candidates	to	V	~	19.5	

Southern	Sky	Quasar	Catalog	



Wavelet	Decomposition	of	Light	Curves	

	
•  A	time	series	can	be	decomposed	by	applying	a	set	of	wavelet	

filters	

•  The	wavelet	variance	at	a	given	scale:	

	

					is	the	total	variance	contribution	due	to	scale	τj	
•  Characteristic	scales	are	indicated	by	peaks	or	changes	of	

behavior	in	log(ν2X)	vs.	log(τj)	

•  Slepian	wavelets	work	with	irregular	and	gappy	time	series	

Wj,t = hjlXt−l
l=0

Lj−1

∑ ; t=0,±1,...; j =1, 2,...;  L ≥ 2d

τ j = 2 j−1Δ ;  ν 2
X (τ j ) = var(Wj,t ) ;  var(Xt ) = ν 2

X (τ j )
j=1

∞

∑

•  Wavelets	allow	
localized	time	and	
frequency	analysis	



A	Characteristic	Time	Scale	for	a	Stochastic	
Variability,	from	the	Wavelet	Analysis	

Stars	Quasars	

(Graham	et	al.	2014)	

•  Quasars	deviate	from	the	pure,	correlated	noise	CAR(1)	
process,	that	was	established	by	numerous	studies	

•  There	is	a	characteristic	time	scale,	~	54	day	in	the	restframe	
•  Its	physical	origin	is	not	yet	established	

DRW	



Evidence	for	a	Characteristic	Time	Scale	
•  First	solid	evidence	for	a	characteristic	time	scale	(~	50	days)	
associated	with	the	quasar	variability	in	the	visible	
–  Previous	indications	in	the	X-ray	

•  Possible	probe	of	the	accretion	disk	physics	
–  Diffusion	time	scale	in	the	outer	regions	of	the	accretion	flow?	

•  Anticorrelated	with	
the	luminosity,	and	
possibly	with	other	
physical	parameters	
(work	in	progress)	

(Graham	et	al.	2014)	



Looking	for	Outliers	in	the	QSO	
Variability	Parameter	Space	

•  Identify	quasars	with	anomalous/unusual	variability	patterns	
as	outliers	in	the	variability	parameter	space	

•  Spectroscopic	follow-up	+	archival	spectra,	to	look	for	a	
correlated	photometric	and	spectroscopic	variability	

•  Quasars	with	large,	gradual	changes	in	flux	contain	at	least	
three	different	types	of	interesting	objects	



Some	Are	Changing	Look	(Type)	Quasars	

•  Correlated	photometric	and	
spectroscopic	change,	Type	I	to	
Type	II,	or	v.v.	

•  Indicative	of	changes	in	the	
accretion	rate	or	obscuration	



Fe-LoBAL	quasar	with	time-varying	
absorption	trough	depths,	
correlated	with	a	rise	in	luminosity.	
Suggests	changes	in	the	
photoionization	equilibrium.	

Stern	et	al.	
2017	



Some	Are	Double	Peak	Emitters	

Known	to	be	spectroscopically	variable.		Believed	to	be	caused	
by	instabilities	in	the	outer	regions	of	the	accretion	disks	



The	Case	of	CSS100217:102913+404220	
Drake	et	al.	2011,	ApJ	735,	106	

•  Transient	in	a	narrow-line	Seyfert	1	(NLS1)	galaxy	at	z	=	0.147	
•  Peak	MI	≈	–23	mag,	integrated	visible	luminosity	>	6	×	1051	erg	
•  SWIFT	and	GALEX	ToO	obs.	exclude	a	“traditional”	TDE	
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The	Nature	of	CSS100217	
HST	ToO	and	Keck	AO+LGS	imaging	shows	
a	single,	unresolved	point	source:	

The	event	within	~	150	pc	from	the	AGN	

No	morphological	indications	of	star		
forming	regions	or	dust	outside	of	the	unresolved	nucleus	
Vicinity	of	an	AGN	is	not	conducive	to	star	formation,	except…	
…	near	the	outer	edge	of	the	accretion	
disk,	which	is	shielded	from	the	UVX	
radiation,	and	should	be	violently	
unstable	

The	first	case	of	a	SN	from	
an	AGN	accretion	disk?		

Predicted	by	theory	but	never	previously	seen	



Quasar	Megaflares	

Normal	SN	The	Prototype	

(Graham	et	al.	2017)	



A	Mixed	Population?	
Some	reach	unprecedented	energetics	for	SNe:	

The	light	curves	do	not	match	
the	traditional	TDEs,	and	some	
are	too	broad	and/or	symmetric	
for	SNe	
Some	may	be	gravitational	
microlensing	events	

Mpeak	=	-25.5	
Etot	~	1052	erg	



Does	Lensing	Explain	All	Events?	
•  Weibull	characterization	for	

100,000	simulated	single-point	
single	lens	model	with	data	
priors	

•  Best-fit	MCMC	single-point	
single	lens	model	to	detected	
flares	



● Superluminous	supernova	(SLSN-II)	
− J102912+404220	(Drake	et	al.	2011)	within		
150pc	of	the	nucleus	of	NLS1	

● Slow	TDE	(spinning	SMBH)	
− Relativistic	precession	from	black	hole	spin	
	prevents	the	TDE	debris	stream	from	
	self-interacting	until	after	many	windings	

− Not	for	M	>	108	solar	masses	

● Stellar	mass	black	hole	merger	
− Potentially	important	dynamic	sub-channel		

=>	Explosive	stellar	activity	in	the	accretion	disk	
● Accretion	disk	wind	–	BLR	interaction?	

Other	Possible	Explanations	



Measuring	Periodicity	

Early	20th	Century:	
count	the	waves	

Late	20th	Century:	periodograms	

Early	21st	Century:			
detailed	process	modeling	

Frequency	

Po
w
er
	



Accuracy	of	Period	Estimates	
Graham	et	al.	(2013,	MNRAS,	
434,	3423)	did	a	systematic	
comparative	study	of	9	
different	period	finding	
algorithms	for	a	variety	of	
periodic	variable	types	from		
MACHO,	CRTS,	and	ASAS,	as	a	
function	of	magnitude,	for	
different	samplings,	S/N,	etc.	

All	methods	generally	measure	the	periods	with	a	reasonable	
accuracy	over	a	10	yr	baseline	in	only	~	50%	of	the	cases.		If	just		
a	detection	of	periodicity	is	needed,	the	success	rate	is	~70%.	

Sample	plot	

The	best	performing	method	is	the	Conditional	Entropy.	



Coditional	Entropy	Method	
Graham	et	al.	(2013,	MNRAS,	434,	2629)	

Hc	is	computed	for	every	trial	period	P,	and	the	smallest	value	
is	interpreted	as	the	true	period.	

A	time	series,	m(ti),	is	normalized	to	occupy	a	unit	square	
in	the	(φ,	m)	plane	where	φi	is	the	phase	at	ti	for	a	trial	period,	P.	

The	square	is	then	partitioned	into	
k	bins,	and	the	Shannon	entropy	
for	the	distribution,	H0,	is	given	by:	
where	μi	is	the	occupation	probability	for	the	non-empty	bins.	
The	Conditional	
Entropy	is:	

where	where	p(mi,	φj)	is	the	occupation	probability	for	the		
corresponding	bins,	and	p(φj)	is	integrated	over	all	mi's.	



Finding	Periodic	Signals	in	a	Red	Noise	
If	a	periodic	variability	is	present,	there	will	be	peaks	in	the	
autocorrelation	function	ACF	at	the	multiples	of	the	period	

For	the	irregularly	sampled,	gappy	data,	the	best	estimator	
is	the	z-transform	based	discrete	correlation	function	
(ZDCF)	defined	by	Alexander	(2013)	

A	quasar	light	curve	 ZDCF	based	ACF	

ACF	derived	using	
the	standard	
Scargle	algorithm	

Possible	period	



SMBH	Growth	Mechanisms	
•  In	a	hierarchical	picture,	as	galaxies	merge	so	will	their	BH’s		
•  This	can	naturally	lead	to	the	establishment	of	the	SMBH	-	

host	galaxy	correlations,	which	may	be	also	sharpened	by	the	
AGN	feedback	



The	Physics	of	SMBH	Mergers	
Stage	I	(>	1pc)	
•  SMBHs	dissipate	angular	momentum	through	
dynamical	friction	with	surrounding	stars	

Stage	II	(0.01	–	1pc)	
•  Stalled	phase	due	to	stellar	depletion	(~106	–	107	
yrs)	

Stage	III	(	<	0.01pc)	
•  Orbital	angular	momentum	lost	by	gravitational	
radiation	

Stage	IV	
•  Coalescence	and	recoil	
•  The	“final	parsec”	problem	
•  Subparsec	systems	are	not	resolvable	



Periodically	Variable	Quasars:	
Evidence	for	SMBH	Binaries?	

•  Additional	~20	candidates	~	10–4	of	all	quasars,	in	an	
agreement	with	the	theoretical	predictions	

•  The	best	case:								
PG	1302–102								
Prest=	4.04	±	0.19	yr	

•  For	M�~10
8	Msun,	

implied	separation					
<	10	millipc	

(Graham	et	al.	2015)	

•  Applying	a	novel	technique	to	CRTS	light	curves	of	247,000																																													
known	quasars	



New	Data	Extend	the	Light	Curve	
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IR	Light	Curve	of	PG	1302-102	

Using	WISE	data:		
consistent	with	the	
optical	period,	but	
with	a	wavelength-
dependent	time	
delay	and	amplitude	

(H.	Jun	et	al.	2015)	

Time	lags:		
2448	±	12	days	at	3.4	μm		
2538	±	14	days	at	4.6	μm	

Interpretation:	due	to	the	light-travel	time	from	the	accretion	
disk	to	the	surrounding	dust	"torus".		Estimated	radius	=	2.1	pc,	
in	an	excellent	agreement	with	theoretical	expectations	



Theoretical	Models	and	Inetrpretation	
•  Several	papers	by	Z.	Haiman’s	group	

(D’Orazio	et	al.,	Charisi	et	al.	2015)	
•  Archival	UV	data	support	the	

interpretation	as	a	binary	SMBH	
The	model:			
•  Hydrodynamical	simulations	suggest	that	

the	strongest	periodicity	is	associated	
with	a	cavity	in	circumbinary	disk	=>	true	
binary	period	3-8	times	shorter	than	
observed	

•  Relativistic	boosting	for	line-of-sight	
motion	of	minidisk	around	secondary	
SMBH	orbiting	around	system	barycenter	
~	scaled	version	of	QPOs	seen	in	stellar	
BH	binaries	



A	Relativistic	Doppler	Boosting	Model	

It	fits	reasonably	well	the	shape	of	the	waveform,	and	predicts	
correctly	the	wavelength	dependence	of	the	amplitude	(larger	
at	the	shorter	wavelengths)		



An	Improved	and	Expanded	Search	
Wavelets	
Peak	value	
Period	
Slepian	wavelet	characteristic	timescale	
Autocorrelation	function	
Period	
Amplitude	of	exponentially	damped	cosine	
Decay	constant	of	exponentially	damped	cosine	
Shape	and	coverage	
Scatter	around	best-fit	Fourier	series	
At	least	1.5	cycles	
Train	SVM	to	better	describe	discriminating	hyperplane	
The	result:		111	candidates	out	of	a	sample	of	~250,000	QSOs	
	

(Graham	et	al.	2015,	MNRAS,	453,	1562)	



Examples	of	Light	Curves	



More	Data	Confirms	the	Periodicity	
Black	=	CRTS,	Blue	=	LINEAR	



•  Stochastic	variability	is	a	red	noise	process	
•  Typical	periodograms	assume	a	white	noise	for	

determining	the	significance	of	peaks	-->	this	will	
overestimate	the	significance	for	a	red	noise	model	

•  Too	much	white	noise	(incorrect	error	model)	reduces	
probability	of	simulations	producing	strong,	smooth	
modulations	

How	Do	We	Know	the	Detections	are	Real?		

•  Simulated	data	set	of	objects		
following	a	DRW	model	with	
the	same	sampling	as	the	real	
data	and	CRTS	errors	produces		
no	candidates	with	our	
selection	criteria	



Real	vs.	the	Simulated	Light	Curves	
Simulated	data	from	a	pure	CAR(1)	process,	with	
the	same	sampling	and	errors	as	the	real	data	

Graham	et	al.	2015,	MNRAS	453,	1562	



How	to	Find	a	Fake	Periodicity	
Liu	et	al.	(2015)	find	the	observed	period	of	542	±	15	days	in	
PanSTARRS	data	for	PSO	J334.2028+01.4075,	using	periodograms.		
This	is	the	strongest	candidate	out	of	40	“statistically	significant”,	
out	of	a	parent	sample	of	320	QSOs.		Subsequently	they	retracted	
the	claim.	

“10	σ“	line	

Not	a	Gaussian	
noise	



The	News	of	PG1302’s	Death	Has	Been	Greatly	Exaggerated	
Liu	et	al.	(2018)	claim	that	the	inclusion	of	ASAS-SN	data	has	
“killed”	the	SMBHB	in	PG	1302-102.		Judge	for	yourself:	

Their	use	of	the	p-value	statistics	for	a	combined	data	sample	
is	also	incorrect	(Graham	et	al.	in	prep.)	



How	Many	Should	We	Expect	to	See?	
Using	theoretical	predictions	for	a	population	of	SMBHs	en	
route	to	a	merger,	in	the	range	of	periods	we	probe:		

Down	to	19th	mag:	predicted	116	-	we	find	104	
Down	to	20th	mag:	predicted	451	-	we	find	110	

(but	we	are	seriously	incomplete)	
	The	frequency	of	

binary	SMBH	as									
a	function	of		
restframe	period		
	
Blue:	log(MBH)	<	9		
Green:	log(MBH)	>	9		



Spectroscopic	
follow-up:	looking	
for	the	shape	
changes	in	the	
emission	lines	



Spectroscopic	follow-up:	looking	for	shape	
changes	in	the	emission	lines	



Can	These	SMBH	Binaries	Be	Detected	
in	Gravitational	Waves?	

Not	yet,	but	maybe	within	a	decade,	with	the	pulsar	timing	arrays	



SMBH	Binaries:	Looking	for	More	

	
•  Extending	search	with	more	sophisticated	algorithms	and	

combined	data	sets	(LINEAR,	PTF,	ZTF)	
− Using	coregionalized	Gaussian	process	regression	
•  Understanding	the	issues	of	red	noise	components	in	the	

light	curve	(Vaughan	et	al.	2016)	through	both	detection	
algorithms	and	population	simulations	



Randomness	and	Deterministic	Chaos	
Deterministic	Chaos:	generation	of	random,	unpredictable	
behavior	from	a	simple,	but	nonlinear	rule.		

Hidden	Markov	Models:	

Example:	Poincare	map,	or	Surface	of	Section	

Hidden	
States	

Observables	

Probabilities	

Henon-Heiles	potential	



Predicting	Stochastic	Behavior	
Discriminative	models	(e.g.,	most	
supervised	ML	methods)	learn	the	
boundaries	between	classes.	
Generative	models	find	a	probabilistic	
model	describing	the	structure	of	the	
data.	

They	may	be	used	to	predict	
(within	some	time	scale)	the	
stochastic	behavior.	

Predictions	using	an	
Autoencoder	ANN	

Work	still	in	progress…	



Summary	
•  The	new	large	samples	allow	systematic	studies	of	AGN	on	

an	unprecedented	scale,	and	discovery	of	rare	or	unusual	
types	of	objects	or	events	

•  Correct	modeling	of	the	stochastic	variability	is	essential	
•  Quasar	variability	studies	and	results	so	far	include:	

²  The	best	ever	method	for	quasar	discovery	
²  Discovery	of	a	characteristic	time	scale	for	the	stochastic	

variability,	a	possible	probe	of	the	accretion	disk	physics	
²  Insights	into	the	physics	of	unusual	populations	of	quasars	

(LoBAL,	DPE,	…)	
²  Quasar	Megaflares,	including	a	new	population	of	luminous	SNe	

from	accretion	disks	and	microlensing	events	
²  Discovery	of	a	population	of	binary	SMBH,	a	key	predictions	of	

the	hierarchical	formation	models	

Big	Data	+	Novel	Analytics	=	New	Discoveries	


