Astroinformatics in the Time Domain:

Classification of Light Curves and Transients

Prof. S. George Djorgovski With: M. Graham, A. Mahabal, A. Drake, and many students and collaborators Center for Data-Driven Discovery and Astronomy Dept., Caltech

> Lecture 3 XXX Canary Islands Winter School November 2018

Caltech

CENTER FOR DATA-DRIVEN DISCOVERY

What *can* we observe? Astronomy in SpaceTime

Traditional astronomy is on the **3D hyper-surface** (aka space) of the past light cone in the 4D spacetime

Time-domain astronomy carves out a **4D hypervolume** as we move along the time axis of the 4D spacetime

Astronomy in the Time Domain

Rich phenomenology, from the Solar system to cosmology and extreme relativistic physics

Touches essentially every field of astronomy

- For some phenomena, time domain information is a key to the physical understanding
- A qualitative change:

Static ⇒ Dynamic sky

Sources ⇒ Events

 Real-time discovery/reaction requirements pose new challenges for knowledge discovery

Synoptic Sky Surveys

- Synoptic digital sky surveys i.e., a panoramic cosmic cinematography – are now the dominant data producers in astronomy
 - From Terascale to Petascale data streams
- A major new growth area of astrophysics
 - Driven by the new generation of large digital synoptic sky surveys (CRTS, PTF/ZTF, PanSTARRS, SkyMapper, ...), leading to LSST, SKA, etc.
- A broader significance for an automated, real-time knowledge discovery in massive data streams

Characterizing Synoptic Sky Surveys

Define a measure of **depth** (roughly ~ S/N of indiv. exposures):

$$D = [A \times t_{exp} \times \varepsilon]^{1/2} / FWHM$$

where A = the effective collecting area of the telescope in m² $t_{exp} =$ typical exposure length $\varepsilon =$ the overall throughput efficiency of the telescope+instrument *FWHM* = seeing

Define the **Scientific Discovery Potential** for a survey:

$$SDP = D \times \Omega_{tot} \times N_b \times N_{avg}$$

where Ω_{tot} = total survey area covered N_b = number of bandpasses or spec. resolution elements N_{avg} = average number of exposures per pointing

Transient Discovery Rate:

$$TDR = D \times R \times N_e$$

where $R = d\Omega/dt$ = area coverage rate N_e = number of passes per night

Parameter Spaces for the Time Domain

(in addition to everything else: flux, wavelength, etc.)

• For *surveys*:

- Total exposure per pointing
- Number of exposures per pointing
- o How to characterize the cadence?

Window function(s)

Inevitable biases

- For *objects/events* ~ light curves:
 - Significance of periodicity, periods
 - Descriptors of the power spectrum (e.g., power law)
 - Amplitudes and their statistical descriptors
 - ... etc. over 70 parameters defined so far, but which ones are the minimum / optimal set?

The Palomar-Quest Event Factory

Sept. 2006 – Sept. 2008

λ (A)

Real-time detection and publishing of transients using VOEvent baseline current R .

- Precursor of the PTF
- Progenitor of the CRTS

Automating Real-Time Astronomy

- Cyber-infrastructure for time domain astronomy
- *VOEvent* standard for real-time publishing/requests
- **VOEventNet:** A telescope network with a feedback
- Scientific measurements spawning other measurements and data analysis in the real time

The Transient Alert Data Environment

Matthew J. Graham

November 7, 2017

Catalina Real-Time Transient Survey (CRTS)

- Data from a search for near-Earth asteroids at UA/LPL; we discover astrophysical transients in their data stream
- 3 (now 2) telescopes in AZ, AU
- > 80% of the sky covered ~ 300
 500 times down to ~ 19 21
 mag, baselines 10 min to 12 yrs
- So far ~ 17,000 transients, including > 4,000 SNe, > 1,500 CVs, ~ 5,000 AGN, etc.

http://crts.caltech.edu

Open data policy: all data are made public; transients are published immediately on line, for the entire community

A Variety of CRTS Transients

Event Publishing / Dissemination

- Real time: VOEvent, RSS, (initially also SkyAlert, Twitter, iApp)
- Next day: annotated tables on the CRTS website

CRTS ID	RA (J2000)	Dec (J2000)	Date	Mag	CSS images	SDSS	Others	Followed	Last	LC	FC	Classification
CSS140107:082255+073033	125.72901	7.50903	20140107	18.88	1401071070454146201	yes	14620	no	2014-01-07	14620	yes	Unknown SDSS mag 22
CSS140107:015854+053524	29.72348	5.59009	20140107	15.33	1401071040114136538	yes	13653	no	2014-01-07	13653	yes	SN 2013hs (Howerton) mag 1
CSS140107:114807+014254	177.02819	1.71506	20140107	19.34	1401071010634128518	yes	12851	no	2014-01-07	12851	yes	QSO SDSS mag 20,5
CSS140107:145029-083859	222.61934	-8.64971	20140107	14.16	1401070090794151988	yes	15198	no	2014-01-07	15198	yes	HPM LHS_381
CSS140107:133002-084233	202.50739	-8.70909	20140107	12.83	1401070090724151417	no	15141	no	2014-01-07	15141	yes	HPM GJ_514
CSS140107:230108-015805	345.28333	-1.96798	20140107	17.75	1401070011234112940	yes	11294	no	2014-01-07	11294	yes	Blazar mag 19,0
CSS140104:013741+220312	24.42141	22.05338	20140104	14.51	1401041210094138406	yes	13840	no	2014-01-04	13840	yes	Unknown SDSS mag 22
CSS140104:020225+144325	30.60214	14.72357	20140104	19.89	1401041150114109714	yes	10971	no	2014-01-04	10971	yes	AGN SDSS mag 21,9
CSS140104:034718+014254	56.82594	1.71497	20140104	19.42	1401041010214127020	no	12702	no	2014-01-04	12702	yes	SN mag 16

Discovery data

Archival data

Light curve+images

Finding chart

500 Million Light Curves with > 10¹¹ data points V mag

V mag

Zwicky Transient Facility (2017-)

- New camera on Palomar Oschin 48" with 47 deg² field of view
- 3750 deg² / hr to 20.5-21 mag (1.2 TB / night)
- Full northern sky (~12,000 deg²) every three nights
- Galactic Plane every night
- Over 3 years: 3 PB, 750 billion detections, ~1000 detections / src
- First megaevent survey: 10⁶ alerts per night (Apr 2018)

ZTF = 0.1 LSST

	E	LSS57	
No. of sources	1 billion	37 billion	
No. of detections	1 trillion	37 trillion	
Annual visits per source	1000 (2+1 filters)	100 (6 filters)	
No. of pixels	600 million (1320 cm ² CCDs)	3.2 billion (3200 cm ² CCDs)	
Field of view	47 deg ²	9 deg ²	
Hourly survey rate	3750 deg ²	1000 deg ²	
Nightly alert rate	1 million	10 million	
Nightly data rate	1.4 TB	15 TB	

November 7, 2017

Automated Classification of Transients

Flare star

Dwarf Nova

Blazar

Vastly different physical phenomena, yet they look the same! Which ones are the most interesting and worthy of follow-up? Rapid, automated transient classification is a critical need!

Semantic Tree of Astronomical Variables and Transients

Event Classification is a Hard Problem

- Classification of transient events is essential for their astrophysical interpretation and uses
 - Must be done in real time and iterated dynamically
- Human classification is already unsustainable, and will not scale to the Petascale data streams
- This is **hard:**
 - Data are sparse and heterogeneous: feature vector approaches do not work; using Bayesian approach
 - Completeness vs. contamination 👽
 - Follow-up resources are expensive and/or limited: only the most interesting events
 - Iterate classifications dynamically as new data come in
- Traditional DP pipelines do not capture a lot of the relevant contextual information, prior/expert knowledge, etc.

Spectroscopic Follow-up is a Critical Problem (and it will get a lot worse)

Recently: data streams of ~ 0.1 TB / night, ~ 10² transients / night (CRTS, PTF, various SN surveys, microlensing, etc.)

♦ We were already in the regime where we *cannot follow them all* ♦ Spectroscopy is the key bottleneck now, and it will get worse

- Now (ZTF): ~1 TB / night, ~ 10⁵ 10⁶ transients / night (PanSTARRS, Skymapper, VISTA, VST, SKA precursors...)
- Forthcoming (soonish?): LSST, ~ 30 TB / night,
 ~ 10⁷ transients / night, SKA
- So... which ones will you follow up?
- Follow-up resources will likely remain limited J

A major, qualitative change!

Transient classification is essential

Towards an Automated Event Classification

- Incorporation of the contextual information (archival, and from the data themselves) is essential
- Automated prioritization of follow-up observations, given the available resources and their cost
- A dynamical, iterative system

Automated Detection of Artifacts

Automated classification and rejection (> 95%) of artifacts masquerading as transient events in the PQ survey pipeline, using a Multi-Layer Perceptron ANN (C. Donalek)

A Variety of Classification Methods

s (69)

a (2)

Bayesian Networks

- Can incorporate heterogeneous and/or missing data
- Can incorporate contextual data, e.g., distance to the nearest star or galaxy

Probabilistic Structure Functions

- A new method, based on 2D [Δt_1 , Δm] distributions
- Now expanding to data point triplets: Δt_{12} , Δm_{12} , Δt_{23} , Δm_{23} , giving a 4D histogram

Random Forests

- Ensembles of Decision Trees
- Feature Selection Strategies
 - Optimizing classifiers
- Machine-Assisted Discovery

A Hierarchical Approach to Classification

Different types of classifiers perform better for some event classes than for the others Event We use some astrophysically 96% accuracy motivated major features to SN not SN separate different groups of classes 86% accuracy 93% accuracy CV/Blazar RR Lyr / Mira SN - II **SN - I** Proceeding down the classification hierarchy Collapsing every node uses those classifiers that work best for CV Blazar **RR** Lyrae Mira that particular task Periodic

Cataclysmic

Data are Sparse and Heterogeneous

-0.5

Change in Magnitude Over One Day

0.5

➡ Bayesian approaches

Generating priors for various observables for different types of variables

(Lead: A. Mahabal)

Gaussian Process Regression (GPR)

A generalization of a Gaussian probability, specified by a mean function and a positive definite covariance function.

Given two flux measurement points for a new transient we can ask which of the different models it fits, and what stage of their period or phase. The more points you have, the better the estimate.

2D Light Curve Priors

- For any pair of light curve measurements, compute the Δt and Δm, make a 2D histogram
 - N independent measurements
 generate N² correlated data points
- Compare with the priors for different types of transients
- Repeat as more measurements are obtained, for an evolving, constantly improving classification
- Now expanding to consecutive data point triplets: Δt₁₂, Δm₁₂, Δt₂₃, Δm₂₃, giving a 4D histogram

Applying Δm vs. Δt Histograms

 Measure of a divergence between the unknown transient histogram and two prototype class histograms

∆m

Δm vs. Δt Classifier Performance

 Performance measured using Leave-one-out crossvalidation (LOOCV)

	SN	CVBlazarRRMira			
SN	A0 = 96.5%	3.5%			
CVBlazarRRMira	2.1%	A1 = 97.9%			

- Optimize histogram parameters (binning, smoothing, Dirichlet prior parameters) using a genetic algorithm
- A modest, but a consistent improvement over the human expert selected parameters

(Y. Chen, C. Donalek)

	SN	CVBlazarR RMira
SN	99.3%	0.7%
CVBlazarR RMira	1.5%	98.5%

A New Approach Using Convolutional ANN

A. Mahabal et al. 2017, IEEE Computational Intelligence 2017, p. 2757 = arxiv/1709.06257

From Light Curves to Feature Vectors

- We compute ~ 70 parameters and statistical measures for each light curve: amplitudes, moments, periodicity, etc.
- This turns *heterogeneous* light curves into *homogeneous feature vectors* in the parameter space
- Apply a variety of automated classification methods

Variability Feature Space

- Generate homogeneous representation of time series
- Most Richards et al. (2011) features carry little information
- Measuring:
 - Morphology (shape): skew, kurtosis
 - Scale: Median absolute deviation, biweight midvar.
 - Variability: Stetson, Abbe, von Neumann
 - Timescale: periodicity, coherence, characteristic
 - Trends: Thiel-Sen
 - Autocorrelation: Durbin-Watson
 - Long-term memory: Hurst exponent
 - Nonlinearity: <u>Teraesvirta</u>
 - Chaos: Lyapunov exponent
 - Models: HMM, CAR, Fourier decomposition, wavelets
- Defines high-dimensional (representative) feature space

Automated Classification of Variable

Stars Dubath et al. (2011):

Used random forests on a set of 14 light curve features to recover 26 classes of variable stars from the *Hipparcos* catalog

Confusion matrix ==>

Similar results by the Berkeley group (Richards et al. 2011)

Light Curves Clustering in Feature Space

- Unsupervised Machine Learning
- Can be used to determine the number of classes and cluster the input data in classes on the basis of their statistical properties only
- Search for Outliers, Trajectories, etc.
- Methods: SOM, K-means, Hierarchical Clustering, etc.
- Given a set of features, which ones are the most discriminating between different classes?

Principal Component Analysis (PCA) Solving the eigen-problem of the data hyperellipsoid in the parameter space of measured attributes

Correlation Searches in Attribute Space

A real-life example:

"Fundamental Plane" of elliptical galaxies, a set of bivariate scaling relations in a parameter space of ~ 10 dimensions, containing valuable insights into their physics and evolution

What About the Clustering?

Feature Selection Algorithms

They are a subset of **dimensionality reduction** techniques.

- **Filter methods** apply a statistical measure to assign a scoring to each feature, usually independently (univariate). The features are ranked by the score.
- Wrapper methods look for a set of features where different feature combinations are evaluated and compared to other combinations.
- **Embedded methods** learn which features best contribute to the accuracy of the model while the model is being created.
- The scoring criterion depends on the goal, e.g.:
 - Accurate predictions for the regression searches
 - Classification discrimination power for clustering

Feature Selection Algorithms: Examples

- Fast Relief Algorithm (aka ReliefF) ranks features according to how well their values distinguish between instances.
- **Fisher Discriminant Ratio** (FDR) ranks features according to their classification discriminatory power. It can be applied only to binary classification problems.
- **Correlation-based Feature Selection** (CFS) is a wrapper method which selects features that have low redundancy (i.e., not correlated with each other) and is strongly predictive of a class.
- Fast Correlation Based Filter (FCBF) is a supervised filter algorithm, similar to the CFS. Searches for features that have predominant correlation with the class. Can be computationally efficient with very high dimensional data.
- Multi Class Feature Selection (MCFS) is an unsupervised method based on the spectral analysis of the data.

Feature Selection Algorithms

Optimal sets of features may be different for

Different regression target variables:

e.g., $y_1 = f_1(x_i, x_j, x_k, ...), y_2 = f_2(x_p, x_q, x_r, ...)$, etc.

- Different classification tasks:
 e.g., Class (A,B) = f(x_a, x_b, x_c, ...), Class (A,B,C) = f(x_d, x_e, x_f, ...)
- Different regression or classification algorithms: e.g., ANN, DT, RF, SVM, ...

... so they have to be optimized in each individual case

See:

Donalek et al., IEEE BigData 2013, p. 35 = arxiv/1310.1976 D'Isanto et al. 2016, MNRAS, 457, 3119

Optimizing Feature Selection

Select a subset of features from the data matrix X that best predict the data in classes Y by sequentially selecting features until there is no improvement in prediction: using Decision Trees with a 10-fold cross validation.

		Completeness	Contamination		Amplitude	
Blazar	83%	13%		beyond1std flux percentile ratio mid6		
	CV	94%	6%		max_slope	
	RR Lyrae	97%	4%		qso	
	L	I		1	std	
			1	-	lomb-scargle	
		Completeness	Contamination		0	
	Blazar	81%	13%		Linear_trend	
	CV	96%	5%		Median_absolute_deviation	
	SN Ia	100%	<1%			

(Lead: C. Donalek)

Optimizing Feature Selection

0.6

pdf

Rank features in the order of classification quality for a given classification problem, e.g., RR Lyrae vs. WUMa

Feature Rank

fO

mad

pdf magr skew a01

ampl

fO

(Lead: C. Donalek)

Contextual Information is Essential

- Visual context contains valuable information about the reality and classification of transients
- So does the **temporal context**, from the archival light curves
- And the **multi-wavelength context**
- The importance and role of the archival information can only grow

Bayesian Networks (BN): An Example

- Use the available measurements, missing data are not an issue
- Can use heterogeneous data, e.g., colors, flux changes, proximity to the nearest star or a galaxy (in projection)
 - x = input measurements of individual kinds (e.g., mags, colors, etc.) y = classes of events, y = 1, ..., k. Then:

$$P(y = k \mid x) = P(x \mid y = k)P(k)/P(x) \propto$$
$$\propto P(k)P(x \mid y = k) \approx P(k)\prod_{b=1}^{B}P(x_{b} \mid y = k)$$

Initial results for Supernova vs. non-Supernova classification, using a 3 parameter network:

Completness $\sim 80 - 90 \%$ Contamination $\sim 10 - 20\%$

Can be improved with the additional observables

(Lead: A. Mahabal)

Bayesian Networks: Implementation

(Lead: A. Mahabal)

Can incorporate contextual parameters, e.g., the normalized distances to the nearest star and the nearest galaxy as one of the BN variables ⇒

Machine Discovery of Relationships

(see Graham et al. 2013, MNRAS 431, 2371)

- Employs symbolic regression to determine best-fitting functional form to data and its parameters simultaneously
- Specify building blocks to be used: algebraic operators, analytical functions, constants

- Test: rediscover known astrophysical correlations (HRD, FP)
- An experiment in a binary classification of variable stars:
 - Characterize with ~70 periodic/non-periodic features
 - Use Eureqa for binary classification: class 1 vs. class 2
 - Fit: class = step[$f(x_1, x_2, x_3, ..., x_{60})$

Classifying Light Curves with Eureqa

Light curves of two known stellar classes:

	Eure	eqa™	Decision Tree			
Data set	Purity	Efficiency	Purity	Efficiency		
RR Lyrae	<u>98%</u>	96%	95%	95%		
W UMa	97%	99%	96%	96%		
CV	89%	91%	92%	92%		
Blazar	68%	63%	87%	83%		
SN Ia	76%	93%	90%	96%		
CC SN	74%	41%	92%	80%		

Metaclassification: An optimal combining of classifiers

Automating the Optimal Follow-Up

For the *potentially most interesting events*, what type of follow-up observations has the greatest potential to discriminate among the competing event classes, given the available assets, and the potential scientific value?

Automating the Optimal Follow-Up

For the *potentially most interesting events*, what type of follow-up observations a *x* has the greatest potential to discriminate among the

competing event classes y, Telescope 1: P(x_A,y | x₀) given the available assets, Updated $P(y | x_0, x_A)$ and the potential scientific value? Initial $P(y | x_0)$ H = 1.31Telescope 2: P(x_B,y | x₀) Updated $P(y | x_0, x_B)$ H = 1.82Request the optimal follow-up observations H = 1.79from the available assets that maximize the $H[p(y | x_+, x_0)] = -\sum p(y, x_+ | x_0) \log p(y | x_+, x_0)$ entropy drop:

 y, x_+

Some Closing Thoughts

- Time domain astronomy requires an interconnected ecosystem of survey and follow-up telescopes, archives, and computational assets, which we do not yet have
 - Coordinated complementary time cadences
 - Multi- λ co-observing
- Transients (time-critical events) may be becoming less interesting, while the scientific potential of time domain archives (non-time-critical) is steadily increasing
- The spectroscopic follow-up crisis is going to get much worse; thus the (near)real-time classification of transients and an automated follow-up prioritization are getting even more critical
- Real-time mining of massive data streams has many applications outside astronomy