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What	can	we	observe?	
Astronomy	in	SpaceTime	

Traditional	astronomy	is	
on	the	3D	hyper-surface	
(aka	space)	of	the	past	
light	cone	in	the	4D	
spacetime	

Time-domain	astronomy	
carves	out	a	4D	hyper-
volume	as	we	move	
along	the	time	axis	of	the	
4D	spacetime	



Astronomy	in	the	Time	Domain	
•  Rich	phenomenology,	from	the	Solar	system	to	

cosmology	and	extreme	relativistic	physics	
–  Touches	essentially	every	field	of	astronomy	

•  For	some	phenomena,	time	domain	information	
is	a	key	to	the	physical	understanding	

•  A	qualitative	change:	
Static	_	Dynamic	sky	
Sources	_	Events	

•  Real-time	discovery/reaction	requirements	pose	
new	challenges	for	knowledge	discovery	

Synoptic,	panoramic	surveys	➙	event	discovery	
Rapid	follow-up	and	multi-λ	➙	keys	to	understanding	



Synoptic	Sky	Surveys	
•  Synoptic	digital	sky	surveys	–	i.e.,	a	panoramic	cosmic	

cinematography	–	are	now	the	dominant	data	producers	
in	astronomy	
–  From	Terascale	to	Petascale	data	streams	

•  A	major	new	growth	area	of	astrophysics	
– Driven	by	the	new	generation	of	large	digital	synoptic			
sky	surveys	(CRTS,	PTF/ZTF,	PanSTARRS,	SkyMapper,	…),	
leading	to	LSST,	SKA,	etc.	

•  A	broader	significance	for	an	automated,	real-time	
knowledge	discovery	in	massive	data	streams		



Characterizing	Synoptic	Sky	Surveys	
Define	a	measure	of	depth	(roughly	~	S/N	of	indiv.	exposures):	

D	=	[	A	×	texp	×	ε	]1/2		/	FWHM	

where 	A	=	the	effective	collecting	area	of	the	telescope	in	m2	

	 	texp	=	typical	exposure	length		
ε 	=	the	overall	throughput	efficiency	of	the	telescope+instrument	

	 	FWHM	=	seeing	

Define	the	Scientific	Discovery	Potential	for	a	survey:	

SDP	=	D	×	Ωtot	×	Nb	×	Navg	
where 	Ωtot	=	total	survey	area	covered	

	 	Nb	=	number	of	bandpasses	or	spec.	resolution	elements	
	 	Navg	=	average	number	of	exposures	per	pointing	

Transient	Discovery	Rate:	

TDR	=	D	×	R	×	Ne	
where 	R	=	dΩ/dt	=	area	coverage	rate	

	 	Ne	=	number	of	passes	per	night			



Parameter	Spaces	for	the	Time	Domain	

•  For	surveys:	
o  Total	exposure	per	pointing		
o  Number	of	exposures	per	pointing	
o  How	to	characterize	the	cadence?	
	 	 	 	 	 	 	 	 	ÊWindow	function(s)	

	 	 	 	 	 	 	 	 	 	 	 	 	Ê	Inevitable	biases		

(in	addition	to	everything	else:	flux,	wavelength,	etc.)	

•  For	objects/events	~	light	curves:	
o  Significance	of	periodicity,	periods	
o  Descriptors	of	the	power	spectrum	(e.g.,	power	law)	
o  Amplitudes	and	their	statistical	descriptors	
…	etc.	−	over	70	parameters	defined	so	far,	but	which	ones	are	

the	minimum	/	optimal	set?	



The	Palomar-Quest	Event	Factory	

R	

I	

current	 baseline	

Sept.	2006	–	Sept.	2008	

Young	SNe	Ia,	P200	
spectra	~	1h	after	the	
initial	detection	

• 		Precursor	of	the	PTF	
• 		Progenitor	of	the	CRTS	

Real-time	detection	and	
publishing	of	transients	

using	VOEvent	



Automating	Real-Time	Astronomy	

P48	
PQ	Event	
Factory	

VOEN	Engine	

P60	

Raptor	

Paritel	
Web	Event	
Archive	

External	
archives	

Compute	resources	 Robotic	
telescope	
network	

Follow-up	obs.	

PI:	R.	Williams	

Now	skyalert.org	

•  Cyber-infrastructure	for	time	domain	astronomy	
•  VOEvent	standard	for	real-time	publishing/requests		
•  VOEventNet:		A	telescope	network	with	a	feedback	
•  Scientific	measurements	spawning	other	measurements	

and	data	analysis	in	the	real	time	
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The	Transient	Alert	Data	Environment	

R.	Street,	LCO	



•  Data	from	a	search	for	near-
Earth	asteroids	at	UA/LPL;	we	
discover	astrophysical		
transients	in	their	data	stream	

•  3	(now	2)	telescopes	in	AZ,	AU	
•  >	80%	of	the	sky	covered	~	300	

–	500	times	down	to	~	19	–	21	
mag,	baselines	10	min	to	12	yrs	

•  So	far	~	17,000	transients,	
including	>	4,000	SNe,	>	1,500	
CVs,	~	5,000	AGN,	etc.	

Open	data	policy:	all	data	are	made	public;	transients	are	
published	immediately	on	line,	for	the	entire	community		

Catalina	Real-Time	Transient	Survey	(CRTS)	
http://crts.caltech.edu	



A	Variety	of	CRTS	Transients	
SNe	 Blazars/AGN	

CVs	 Flare	stars	

Eclipses	and	
occultations	

GRB	
afterglows	



Event	Publishing	/	Dissemination	
•  Real	time:		VOEvent,	RSS,	(initially	also	SkyAlert,	Twitter,	iApp)	
•  Next	day:		annotated	tables	on	the	CRTS	website	

	

	
	

Discovery	data	 Archival	data	 Light	curve+images	
Finding	
chart	



500	Million	Light	Curves	with	~		1011	data	points	

RR	Lyrae	 W	Uma	

Eclipsing	

CV	

Flare	star	(UV	Ceti)	

Blazar	

>	
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Zwicky	Transient	Facility	(2017-)	

•  New	camera	on	Palomar	Oschin	48”	
with	47	deg2	field	of	view		

•  3750	deg2	/	hr	to	20.5-21	mag	(1.2	
TB	/	night)	

•  Full	northern	sky	(~12,000	deg2)	
every	three	nights	

•  Galactic	Plane	every	night	
•  Over	3	years:	3	PB,	750	billion	
detections,	~1000	detections	/	src	

•  First	megaevent	survey:	106	alerts	
per	night	(Apr	2018)	



November 7, 2017 Matthew J. Graham 

ZTF	=	0.1	LSST	



Automated	Classification	of	Transients	
Flare	star	 	Dwarf	Nova	 Blazar	

Vastly	different	physical	phenomena,	yet	they	look	the	same!	
Which	ones	are	the	most	interesting	and	worthy	of	follow-up?	

Rapid,	automated	transient	classification	is	a	critical	need!	



Semantic	Tree	of	Astronomical	Variables	
and	Transients	 AGN	Subtypes	

SN	Subtypes	

+	Unknown?	



Event	Classification	is	a	Hard	Problem	

•  Traditional	DP	pipelines	do	not	capture	a	lot	of	the	relevant	
contextual	information,	prior/expert	knowledge,	etc.	

•  Classification	of	transient	events	is	essential	for	
their	astrophysical	interpretation	and	uses	
− Must	be	done	in	real	time	and	iterated	dynamically	

•  Human	classification	is	already	unsustainable,	
and	will	not	scale	to	the	Petascale	data	streams	

•  This	is	hard:	
–  Data	are	sparse	and	heterogeneous:	feature	vector	

approaches	do	not	work;	using	Bayesian	approach	

– Completeness	vs.	contamination	[ 
–  Follow-up	resources	are	expensive	and/or	limited:	only	the	

most	interesting	events	
–  Iterate	classifications	dynamically	as	new	data	come	in	



Spectroscopic	Follow-up		
is	a	Critical	Problem							
(and	it	will	get	a	lot	worse)	

•  Now	(ZTF):		~	1	TB	/	night,	~	105	-	106	
transients	/	night	(PanSTARRS,	Skymapper,	
VISTA,	VST,	SKA	precursors…)	

•  Forthcoming	(soonish?):	LSST,	~	30	TB	/	night,	
~	107	transients	/	night,	SKA	

•  So…	which	ones	will	you	follow	up?	
•  Follow-up	resources	will	likely	remain	limited	

A	major,	
qualitative	
change!	

•  Recently:		data	streams	of	~	0.1	TB	/	night,	~	102	transients	/	
night	(CRTS,	PTF,	various	SN	surveys,	microlensing,	etc.)	
² We	were	already	in	the	regime	where	we	cannot	follow	them	all	
² Spectroscopy	is	the	key	bottleneck	now,	and	it	will	get	worse	

} 
} 

Transient	
classification	
is	essential	



Towards	an	Automated	Event	Classification	

•  Incorporation	of	the	contextual	information	(archival,	and	
from	the	data	themselves)	is	essential	

•  Automated	prioritization	of	follow-up	observations,	given	the	
available	resources	and	their	cost	

•  A	dynamical,	iterative	system	



Automated	Detection	of	Artifacts	

Automated	classification	and	rejection	(>	95%)	of	artifacts	
masquerading	as	transient	events	in	the	PQ	survey	pipeline,	
using	a	Multi-Layer	Perceptron	ANN	 (C.	Donalek)	



•  Bayesian	Networks	
–  Can	incorporate	heterogeneous	and/or	

missing	data	
–  Can	incorporate	contextual	data,	e.g.,	

distance	to	the	nearest	star	or	galaxy	
•  Probabilistic	Structure	Functions	

–  A	new	method,	based	on	2D	[Δt1,	Δm]	
distributions	

–  Now	expanding	to	data	point	triplets:		
Δt12	,	Δm12	,	Δt23	,	Δm23	,	giving	a	4D	
histogram	

•  Random	Forests	
–  Ensembles	of	Decision	Trees	

•  Feature	Selection	Strategies	
–  Optimizing	classifiers	

•  Machine-Assisted	Discovery	

A	Variety	of	Classification	Methods	

etc., etc. 



A	Hierarchical	Approach	to	Classification	

We	use	some	astrophysically	
motivated	major	features	to	
separate	different	groups	of	
classes	
	
	
Proceeding	down	the	
classification	hierarchy												
every	node	uses	those	
classifiers	that		work	best	for	
that	particular	task	

Different	types	of	classifiers	perform	better	for	some	event	
classes	than	for	the	others		



Generating	
priors	for	
various	
observables	
for	different	
types	of	
variables	

(Lead:	A.	Mahabal)	

Data	are	Sparse	and	Heterogeneous	
aBayesian	
approaches	



Gaussian	Process	Regression	(GPR)	
A	generalization	of	a	Gaussian	probability,	specified	by	a	mean	
function	and	a	positive	definite	covariance	function.		
Given	two	flux	measurement	points	for	a	new	transient	we	can	ask	
which	of	the	different	models	it	fits,	and	what	stage	of	their	period	
or	phase.		The	more	points	you	have,	the	better	the	estimate.	



2D	Light	Curve	Priors	
•  For	any	pair	of	light	curve	

measurements,	compute	the	Δt	
and	Δm,	make	a	2D	histogram	
–  N	independent	measurements	

generate	N2	correlated	data	points	

•  Compare	with	the	priors	for	
different	types	of	transients	

•  Repeat	as	more	measurements	are	
obtained,	for	an	evolving,	
constantly	improving	classification	

•  Now	expanding	to	consecutive	
data	point	triplets:		Δt12	,	Δm12	,	Δt23	,	
Δm23	,	giving	a	4D	histogram	 (Lead:	B.	Moghaddam)	

SN	Ia	

RR	Lyrae	

SN	IIp	



Applying	Δm	vs.	Δt		Histograms	

•  Measure	of	a	divergence	between	the	unknown	transient	
histogram	and	two	prototype	class	histograms	

?

Unknown	
transient	
light	curve	

Its		
Δm	vs.	Δt	
histogram	



Δm	vs.	Δt		Classifier	Performance	
•  Performance	measured	using	Leave-one-out	cross-

validation	(LOOCV)	

SN	 CVBlazarRRMira	
SN	 A0	=	96.5%	 										3.5%	
CVBlazarRRMira	 											2.1%	 A1	=	97.9%	

•  Optimize	histogram	parameters	(binning,	smoothing,	
Dirichlet	prior	parameters)	using	a	genetic	algorithm		

SN	 CVBlazarR
RMira	

SN	 99.3%	 0.7%	

CVBlazarR
RMira	

1.5%	 98.5%	

•  A	modest,	but	a	consistent	
improvement	over	the	human	
expert	selected	parameters	
(Y.	Chen,	C.	Donalek)	



A	New	Approach	Using	Convolutional	ANN	
A.	Mahabal	et	al.	2017,	IEEE	Computational	Intelligence	2017,	p.	2757	=	arxiv/1709.06257	

CNN	

RF	



From	Light	Curves	to	Feature	Vectors	
•  We	compute	~	70	parameters	and	statistical	measures	for	

each	light	curve:	amplitudes,	moments,	periodicity,	etc.	
•  This	turns	heterogeneous	light	curves	into	homogeneous	

feature	vectors	in	the	parameter	space	
•  Apply	a	variety	of	automated	classification	methods	
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Variability	Feature	Space	
•  Generate	homogeneous	representation	of	time	series	
•  Most	Richards	et	al.	(2011)	features	carry	little	

information	
•  Measuring:	
− Morphology	(shape):	skew,	kurtosis	
− Scale:	Median	absolute	deviation,	biweight	midvar.	
− Variability:	Stetson,	Abbe,	von	Neumann	
− Timescale:	periodicity,	coherence,	characteristic	
− Trends:	Thiel-Sen	
− Autocorrelation:	Durbin-Watson	
− Long-term	memory:	Hurst	exponent	
− Nonlinearity:	Teraesvirta	
− Chaos:	Lyapunov	exponent	
− Models:	HMM,	CAR,	Fourier	decomposition,	wavelets	

•  Defines	high-dimensional	(representative)	feature	
space	



Automated	Classification	of	Variable	
Stars	 Predicted	Class	

True	Class	

Dubath	et	al.	(2011):	

Used	random	forests	
on	a	set	of	14	light	
curve	features	to	
recover	26	classes	of	
variable	stars	from	the	
Hipparcos	catalog	

Confusion	matrix	==>			

Similar	results	by	the	
Berkeley	group	
(Richards	et	al.	2011)	



Light	Curves	Clustering	in	Feature	Space	

•  Given	a	set	of	features,	
which	ones	are	the	most	
discriminating	between	
different	classes?	

•  Unsupervised	Machine	Learning	
•  Can	be	used	to	determine	the	number	

of	classes	and	cluster	the	input	data	
in	classes	on	the	basis	of	their	
statistical	properties	only	

•  Search	for	Outliers,	Trajectories,	etc.	
•  Methods:		SOM,	K-means,	

Hierarchical	Clustering,	etc.	



Principal	Component	Analysis	(PCA)	
Solving	the	eigen-problem	of	the	data	hyperellipsoid	in	

the	parameter	space	of	measured	attributes	

p1	
p2	

p3	
ξ1	

ξ2	

ξ3	

p	i	=	observables	
				(i	=	1,	…Ddata)	
ξ	j	=	eigenvectors,	or	
principal	axes	of	the	
data	hyperellipsoid	
e	j	=	eigenvalues,	or		
amplitudes	of	ξ	j	
					(	j	=	1,	…Dstat	)	



Correlation	Searches	in	Attribute	Space	

xi	

xj	 xk	
f	(
x i,
	x
j,	
…
)	

Data	dimension	DD	=	2	
Statistical	dim.		DS	=	2	

DD	=	2	
DS	=	1	

If	DS	<	DD,	
correlations	
are	present	

A	real-life	example:	
“Fundamental	Plane”	of	
elliptical	galaxies,	a	set	of	
bivariate	scaling	relations	in	
a	parameter	space	of	~	10	
dimensions,	containing	
valuable	insights	into	their	
physics	and	evolution	

Correlations	are	clusters	
with	dimensionality	

reduction	



What	About	the	Clustering?	

Outlier	



Feature	Selection	Algorithms	
They	are	a	subset	of	dimensionality	reduction	techniques.	

•  Filter	methods	apply	a	statistical	measure	to	assign	a	scoring	
to	each	feature,	usually	independently	(univariate).		The	
features	are	ranked	by	the	score.	

•  Wrapper	methods	look	for	a	set	of	features	where	different	
feature	combinations	are	evaluated	and	compared	to	other	
combinations.	

•  Embedded	methods	learn	which	features	best	contribute	to	
the	accuracy	of	the	model	while	the	model	is	being	created.	

•  The	scoring	criterion	depends	on	the	goal,	e.g.:	
–  Accurate	predictions	for	the	regression	searches	
–  Classification	discrimination	power	for	clustering	

Djorgovski	



Feature	Selection	Algorithms:	Examples	
•  Fast	Relief	Algorithm	(aka	ReliefF)	ranks	features	according	to	

how	well	their	values	distinguish	between	instances.	

•  Fisher	Discriminant	Ratio	(FDR)	ranks	features	according	to	
their	classification	discriminatory	power.		It	can	be	applied	only	to	
binary	classification	problems.	

•  Correlation-based	Feature	Selection	(CFS)	is	a	wrapper	method	
which	selects	features	that	have	low	redundancy	(i.e.,	not	
correlated	with	each	other)	and	is	strongly	predictive	of	a	class.	

•  Fast	Correlation	Based	Filter	(FCBF)	is	a	supervised	filter	
algorithm,	similar	to	the	CFS.		Searches	for	features	that	have	
predominant	correlation	with	the	class	.	Can		be	computationally	
efficient	with	very	high	dimensional	data.	

•  Multi	Class	Feature	Selection	(MCFS)	is	an	unsupervised	method	
based	on	the	spectral	analysis	of	the	data.		

Djorgovski	
…	etc.	



Feature	Selection	Algorithms	
Optimal	sets	of	features	may	be	different	for	
•  Different	regression	target	variables:	

e.g.,	y1	=	f1(xi	,	xj	,	xk	,	…),	y2	=	f2(xp	,	xq	,	xr	,	…),	etc.		

•  Different	classification	tasks:	
e.g.,	Class	(A	,B)	=	f(xa	,	xb	,	xc	,	…),	Class	(A	,B,C)	=	f(xd	,	xe	,	xf	,	…)		

•  Different	regression	or	classification	algorithms:	
e.g.,	ANN,	DT,	RF,	SVM,	…	

.	.	.	so	they	have	to	be	optimized	in	each	individual	case	

Djorgovski	

See:	
				Donalek	et	al.,	IEEE	BigData	2013,	p.	35	=	arxiv/1310.1976	
				D'Isanto	et	al.	2016,	MNRAS,	457,	3119	



Optimizing	Feature	Selection	

Completeness	 Contamination	

Blazar	 83%	 13%	

CV	 94%	 6%	

RR	Lyrae	 97%	 4%	

Amplitude																										
beyond1std																									
flux_percentile_ratio_mid65								
max_slope																										
qso																																
std																																
lomb-scargle	

Completeness	 Contamination	
Blazar	 81%	 13%	
CV	 96%	 5%	
SN	Ia	 100%	 <1%	

Linear_trend	
Median_absolute_deviation																							
lomb-scargle	

Select a subset of features from the data matrix X that best predict 
the data in classes Y by sequentially selecting features until there is 
no improvement in prediction:  using Decision Trees with a 10-fold 
cross validation.  

(Lead: C. Donalek) 



Optimizing	Feature	Selection	

Eclipsing binary (W U Ma) RR Lyrae 

Rank features in the 
order of classification 
quality for a given 
classification problem, 
e.g., RR Lyrae vs. 
WUMa  

(Lead: C. Donalek) 



Contextual	Information	is	Essential	

Radio	 Gamma	Visible	

CV	not	SN	

Artifact	 SN	

•  Visual	context	contains	valuable	
information	about	the	reality	and	
classification	of	transients	

•  So	does	the	temporal	context,	from	
the	archival	light	curves	

•  And	the	multi-wavelength	context	
•  Initial	detection	data	contain	little	

information	about	the	transient:	α,	δ,	
m,	Δm,	(tc).		Almost	all	of	the	initial	
information	is	archival	or	contextual;	
follow-up	information	trickles	in	
slowly,	if	at	all	

•  The	importance	and	role	of	the	
archival	information	can	only	grow	



Bayesian	Networks	(BN):	An	Example	

x = input measurements of individual kinds (e.g., mags, colors, etc.) 
y = classes of events, y = 1, … k.    Then: 

Initial results for Supernova vs. 
non-Supernova classification, 
using a 3 parameter network: 
Completness ~ 80 – 90 % 
Contamination ~ 10 – 20% 
Can be improved with the 
additional observables (Lead: A. Mahabal) 

•  Use	the	available	measurements,	missing	data	are	not	an	issue	
•  Can	use	heterogeneous	data,	e.g.,	colors,	flux	changes,	

proximity	to	the	nearest	star	or	a	galaxy	(in	projection)	



Bayesian	Networks:	Implementation	

^ Rank light curve 
features in the order 
of the classification 
discrimination power 

Can incorporate contextual parameters, 
e.g., the normalized distances to the 
nearest star and the nearest galaxy as 
one of the BN variables  _   

(Lead: A. Mahabal) 



Machine	Discovery	of	Relationships	

•  Employs	symbolic	regression	to	
determine	best-fitting	functional	
form	to	data	and	its	parameters	
simultaneously	

•  Specify	building	blocks	to	be	
used:	algebraic	operators,	
analytical	functions,	constants	

Fundamental	plane	
rediscovery	test	

•  An	experiment	in	a	binary	classification	of	variable	stars:	
o 		Characterize	with	~70	periodic/non-periodic	features	
o 		Use	Eureqa	for	binary	classification:		class	1	vs.	class	2	
o 		Fit:			class	=	step[f(x1,	x2,	x3,	…,	x60)	

•  Test:		rediscover	known	astrophysical	correlations	(HRD,	FP)		

(see	Graham	et	al.	2013,	MNRAS	431,	2371	)	



Classifying	Light	Curves	with	Eureqa	
Light	curves	of	two	known	stellar	classes:	
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Eclipsing	binary	(W	U	Ma)	

4x10

16.1

16.2

16.3

16.4

16.5

16.6

16.7

16.8

16.9

17.0

17.1

17.2

5.36 5.38 5.40 5.42 5.44 5.46 5.48 5.50 5.52 5.54 5.56
MJD

M
ag

Pulsating	variable	(RR	Lyrae)	

Test	using	independent	features	



Metaclassification:	

Markov Logic Networks, Diffusion Maps, Multi-Arm Bandit, 
Sleeping Expert… 

Exploring a variety of techniques for an optimal classification fusion: 

An optimal combining of classifiers 



Automating	the	Optimal	Follow-Up	
For the potentially most interesting events, what type of follow-up 
observations has the greatest potential to discriminate among the 

competing event classes, given the available assets, and the 
potential scientific value? 



Automating	the	Optimal	Follow-Up	
For the potentially most interesting events, what type of follow-up 
observations a x has the greatest potential to discriminate among the 
competing event classes y, 

Request the optimal 
follow-up observations 
from the available assets 
that maximize the     
entropy drop: 

given the available assets, 
and the potential scientific 
value? 



Some	Closing	Thoughts	
•  Time	domain	astronomy	requires	an	interconnected	

ecosystem	of	survey	and	follow-up	telescopes,	archives,	
and	computational	assets,	which	we	do	not	yet	have	
–  Coordinated	complementary	time	cadences	
– Multi-λ	co-observing		

•  Transients	(time-critical	events)	may	be		becoming	less	
interesting,	while	the	scientific	potential	of	time	domain	
archives	(non-time-critical)	is	steadily	increasing	

•  The	spectroscopic	follow-up	crisis	is	going	to	get	much	
worse;	thus	the	(near)real-time	classification	of	transients	
and	an	automated	follow-up	prioritization	are	getting	even	
more	critical	

•  Real-time	mining	of	massive	data	streams	has	many	
applications	outside	astronomy	


