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Solving the perceptron storage problem
re-write the problem ...
consider a given data set ID = {⇠µ, Sµ

R}

... find a vector w with Sµ
H = sign(w · ⇠µ

) = Sµ
R for all µ

Note: sign(w · ⇠µ
) = Sµ

R , sign(w · ⇠µ Sµ
R) = 1 , Eµ

= w · ⇠µ Sµ
R > 0

( local potentials Eµ)

equivalent problem: solve a set of linear inequalities (in w)

... find a vector w with Eµ
= w · ⇠µ Sµ

R � c > 0 for all µ

Note that the actual value of c > 0 is irrelevant:

⇣

w
1

satisfies {Eµ
1

� c}P
µ=1

⌘

,
⇣

w
2

= �w
1

satisfies {Eµ
2

� � c}P
µ=1

⌘

 the storage problem revisited 
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 solving equations ?  

Instead of inequalities, try to solve P equations for N unknowns:  

(A)  if no solution exists,  find approximation by least square dev.: 

Eµ
=

NX

j=1

wj⇠
µ
j Sµ

= 1 for all µ = 1, 2, . . . , P

minimization, e.g. by means of gradient descent with 

minimize f =
1

2

PX

µ=1

(1� Eµ)2

rwf = �
PX

µ=1

(1� Eµ) ⇠µ Sµ
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 solving equations ?  

(B)  if the system is under-determined  →  find a unique solution:  

minimize

1

2

| w |2 under constraints {Eµ
= 1}Pµ=1

Lagrange function  

necessary conditions for optimum:  
@L

@�µ
= (1� Eµ)

!
= 0

rwL = w �
PX

µ=1

�µ ⇠µ Sµ !
= 0 ) w =

PX

µ=1

�µ ⇠µ Sµ

Lagrange parameters ~ embedding strengths  λµ  (rescaled with N) 
                                    solution is a linear combination of the data 

L =
1

2
| w |2 +

PX

µ=1

�µ (1� Eµ)
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eliminate weights:  

in terms of weights:  
the same as in (A) !!!   

simplified problem:  max� L = �1

2

X

µ,⌫

�⌫ C⌫µ �µ
+

X

µ

�µ

E⌫ =
PX

µ=1

1

N

NX

k=1

(⇠µkS
µ) (⇠⌫kS

⌫)

| {z }
⌘C⌫µ

�µ

@L

@�⇢
= 1�

X

µ

C⇢µ�µ = (1� E⇢)gradient ascent with:  

�w /
X

⇢

(1� E⇢) ⇠⇢ S⇢

 solving equations ?  

NX

j=1

w2
j /

X

µ,⌫

�⌫ C⌫µ �µ
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rename the Lagrange parameters, re-writing the problem:  

in terms of weights:  
the same as in (A) !!!   

simplified problem:  

gradient ascent with:  

�w /
X

⇢

(1� E⇢) ⇠⇢ S⇢

E

⌫ =
PX

µ=1

1

N

NX

k=1

(⇠µkS
µ) (⇠⌫kS

⌫)

| {z }
⌘C⌫µ

x

µ
NX

j=1

w

2
j /

X

µ,⌫

x

⌫
C

⌫µ
x

µ

max

x

L = �1

2

X

µ,⌫

x

⌫

C

⌫µ

x

µ

+

X

µ

x

µ

@L

@x

⇢
= 1�

X

µ

C

⇢µ
x

µ = (1� E

⇢)

 solving equations ?  
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classical algorithm: ADALINE   

 Adaline algorithm:  

Adaptive Linear Neuron     (Widrow and Hoff,  1960) 

gradient based learning for linear regression (MSE) 
frequent strategy: regression as a proxy for classification 

more general:   training of a linear unit with continuous output   

iteration of weights / embedding strengths    

w(t) = w(t� 1) + ⌘

⇣
1� E

µ(t)
⌘
⇠

µ(t)
S

µ(t)

x

µ(t) = x

µ(t� 1) + ⌘

⇣
1� E

µ(t)
⌘

sequence µ(t) 
of examples  

minimize f =
1

2

PX

µ=1

(hµ � Eµ)2 with hµ 2 IR, µ = 1, 2 . . . , P

f =
1

2

PX

µ=1

�
yµ � w>⇠µ

�2
with yµ = hµ Sµ
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hardware realization        “Science in action” ca. 1960 

http://www.youtube.com/watch?v=IEFRtz68m-8 

 youtube video “science in action” with Bernard Widrow 
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Introduction: 
•  supervised learning, clasification, regression 
•  machine learning “vs.” statistical modeling  

 
Early (important!) approaches:           

•  linear threshold classifier,  Rosenblatt’s Perceptron  
•  adaptive linear neuron, Widrow and Hoff’s Adaline  

 
From Perceptron to Support Vector Machine 

•  large margin classification 
•  beyond linear separability  

 Distance-based systems 
•  prototypes: K-means and Vector Quantization 
•  from K-Neares_Neighbors to Learning Vector Quantization  
•  adaptive distance measures and relevance learning 

 



 Optimal stability by quadratic optimization 

Note: the solution                of the problem yields stability    

minimize

1

2

w2
subject to inequality constraints

�
Eµ

= w>⇠µ Sµ
R � 1

 P

µ=1

w
max


max

=
1

| w
max

|



Notation: 

correlation matrix                             (outputs incorporated) 
                             

with elements  

P-vectors: 

inequalities 

“one-vector”:  

(C is positive semi-definite) 



We can formulate optimal stability completely in terms of embedding strengths: 

    minimize                   subject to linear constraints  

This is a special case of a standard problem in  Quadratic Programming: 
minimize a nonlinear function under linear inequality constraints 

 Optimal stability by quadratic optimization 

Note: the solution                of the problem yields stability    

minimize

1

2

w2
subject to inequality constraints

�
Eµ

= w>⇠µ Sµ
R � 1

 P

µ=1

w
max


max

=
1

| w
max

|



Optimization theory:  Kuhn–Tucker theorem  
   see, e.g., R. Fletcher, Practical Methods of Optimization (Wiley, 1987) 
   or  http://wikipedia.org  “Karush-Kuhn-Tucker-conditions” for a quick start 

necessary conditions for a local solution   of a general 
non-linear optimization problem with equality and inequality constraints 



Lagrange function:  

minimize

~x

1

2

~x

>
C ~x subject to C~x � ~

1

L(~x,~�) =
1

2
~x

>
C ~x � ~

�

> (C~x�~1)

Max. stability:  Kuhn–Tucker theorem  for a special non-linear optimization problem 

Any solution can be represented by a Kuhn-Tucker (KT) point          with:  

non-negative embedding strengths  (←minover) 

linear separability 

complementarity 

implies also:   

→   all KT-points yield the same unique perceptron weight vector  

→   any local solution is globally optimal  

straightforward to show:  
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Duality, theory of Lagrange multipliers ! equivalent formulation (Wolfe dual):

maximize

~x

e
f = �1

2

~x

T
C ~x + ~x

T
~

1 subject to ~x � 0

AdaTron algorithm:

– sequential presentation of examples ID = { ⇠

µ
, S

µ }

– gradient ascent w.r.t. e
f , projected onto ~x � 0

x

µ ! max { 0, x

µ
+ ⌘ ( 1� [C~x]

µ
) } (0 < ⌘ < 2)

for the proof of convergence one can show:

• for an arbitrary ~x � 0 and a KT point ~x⇤: e
f(~x

⇤
) � e

f(~x)

• e
f(x) is bounded from above in ~x � 0

• e
f(x) increases in every cycle through ID, unless a KT point has been reached

5

absent in the 
Adaline problem 
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Duality, theory of Lagrange multipliers ! equivalent formulation (Wolfe dual):

maximize

~x

e
f = �1

2

~x

T
C ~x + ~x

T
~

1 subject to ~x � 0

AdaTron algorithm:

– sequential presentation of examples ID = { ⇠

µ
, S

µ }

– gradient ascent w.r.t. e
f , projected onto ~x � 0

x

µ ! max { 0, x

µ
+ ⌘ ( 1� [C~x]

µ
) } (0 < ⌘ < 2)

for the proof of convergence one can show:

• for an arbitrary ~x � 0 and a KT point ~x⇤: e
f(~x

⇤
) � e

f(~x)

• e
f(x) is bounded from above in ~x � 0

• e
f(x) increases in every cycle through ID, unless a KT point has been reached

5

z }| {
⌘
h
r

~x

ef
i
µ

(Adaptive PercepTron) [Anlauf and Biehl, 1989] 
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e
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C ~x + ~x

T
~
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for the proof of convergence one can show:
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• e
f(x) is bounded from above in ~x � 0

• e
f(x) increases in every cycle through ID, unless a KT point has been reached

5

[Anlauf and Biehl, 1989] (Adaptive PercepTron) 
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Support Vectors
complementarity condition: x

µ
( 1� E

µ
) = 0 for all µ

i.e. either
⇢

E

µ
= 1

x

µ � 0

�
or

⇢
E

µ
> 1

x

µ
= 0

�

examples ... have to be embedded or ... are stabilized “automatically”

P
µthe�weights� Z/ x

µ
⇠

µ
S

µ

depend (explicitly) only on a subset of ID

if these support vectors were known
in advance, training could be restricted
to the subset

6

(unfortunately they are not...) 
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learning in version space ?  

...  even then, it only makes sense if  
•  the unknown rule is a linearly separable function 
•  the data set is reliable ( noise-free )  

...  (including max. stability) is only possible if  
•  the data set is linearly separable  

? 

lin. separable  nonlin. boundary  noisy data (?)  



. &lassiIication beyond linear separability 
assume    is not linearly separable  - what can we do? 

● accept an approximation by a linearly separable function → see “pocket algorithm”
and �large margin with errors� 

● construct more complex architectures from perceptron-like units.
  e.g. multilayer networks  (universal classificators, difficult training) 

→ see “committee and 
  parity-machine” 

● consider  ensembles of perceptrons
  train several student perceptrons  

- each student should make a small number of errors 
- the perceptrons should differ significantly  

combine the     into an ensemble classifier , e.g. by majority vote 

competing aims:    

potential reasons: noisy data, more complex problem

 

!   large margins with errors 
admit disagreements w.r.t. training data, but keep basic idea of optimal stability 

minimizew,�
1

2

w2
+ �

PX

µ=1

�µ
subject to Eµ � 1� �µ

for all µ

and �µ � 0 for all µ

slack variables 

(
�µ

= 0 $ Eµ � 1

�µ > 0 $ Eµ < 1 includes errors with Eµ < 0

minimize

~x,

~

�

1

2

~x

>
C ~x + �

~

� ·~1 subject to C ~x � ~

1� ~

�

and

~

� � 0

rewritten in terms of embedding strengths (see above for notation) 
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!   large margins with errors 
admit disagreements w.r.t. training data, but keep basic idea of optimal stability 

minimizew,�
1

2

w2
+ �

PX

µ=1

�µ
subject to Eµ � 1� �µ

for all µ

and �µ � 0 for all µ

slack variables 

(
�µ

= 0 $ Eµ � 1

�µ > 0 $ Eµ < 1 includes errors with Eµ < 0

minimize

~x,

~

�

1

2

~x

>
C ~x + �

~

� ·~1 subject to C ~x � ~

1� ~

�

and

~

� � 0

rewritten in terms of embedding strengths (see above for notation) 

� 

 

  dual problem:   (elimination of slack variables!) 

maximize

~x

� 1

2

~x

>
C ~x +

~

1 · ~x subject to 0  ~x  �

~

1

  positive and upper-bounded embedding strengths 
  parameter γ   -  limits the growth of xµ for misclassified data points 
                        -  controls a compromise between aims of large margin and low error 
                                    -  has to be chosen appropriately, e.g. by validation methods (later chapter) 
                           note: even for lin. sep. data the optimum can include misclassifications!  

AdaTron with errors   (projected gradient ascent)   

˜

x

µ  x

µ
+ ⌘ (1� [C~x]

µ
) gradient step

ˆ

x

µ  max

�
0,

˜

x

µ
 

enforce non-negative embeddings

x

µ  min

�
�,

ˆ

x

µ
 

limit embedding strenghts to x

µ  �

- does not (in general) minimize the number of errors 



IAC Winter School November 2018, La Laguna 

 

  dual problem:   (elimination of slack variables!) 

maximize

~x

� 1

2
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>
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~
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                                    -  has to be chosen appropriately, e.g. by validation methods (later chapter) 
                           note: even for lin. sep. data the optimum can include misclassifications!  

AdaTron with errors   (projected gradient ascent)   

˜

x

µ  x

µ
+ ⌘ (1� [C~x]

µ
) gradient step

ˆ

x

µ  max

�
0,

˜

x

µ
 

enforce non-negative embeddings

x

µ  min

�
�,

ˆ

x

µ
 

limit embedding strenghts to x

µ  �

example algorithm:  



. &lassiIication beyond linear separability 
assume    is not linearly separable  - what can we do? 

● accept an approximation by a linearly separable function → see “pocket algorithm”
and �large margin with errors� 

● construct more complex architectures from perceptron-like units.
  e.g. multilayer networks  (universal classificators, difficult training) 

→ see “committee and 
  parity-machine” 

● consider  ensembles of perceptrons
  train several student perceptrons  

- each student should make a small number of errors 
- the perceptrons should differ significantly  

combine the     into an ensemble classifier , e.g. by majority vote 

competing aims:    

potential reasons: noisy data, more complex problem

see also: Decision Trees and Forests (lectures by Dalya Baron)  



● employ a linear decision boundary, but after a non-linear transformation of the data
to an M-dim. feature space  (M=N is possible, but not required)

M-dim. weight vector 

non-linear transformation 

for a given, explicit transformation   , perceptron training can be applied in 

important examples: 

-  Rosenblatt’s perceptron with masks, transformed features 

-  Support Vector Machines:     M > N     transformation to higher-dim. space 

  is defined only implicitly (kernel-trick)  

  perceptron of optimal stability in M dimensions 

● most frequent approach: approximate classification by continuous regression
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The Support Vector Machine 

•  Perceptron of optimal stability: support vectors 
•  SVM: non-linear transformation to high-dim. feature space 
•  implicit kernel formulation, Mercer’s theorem  

history: www.svms.org 



The Support Vector Machine
assume ID = { ⇠

µ
, S

µ } is not linearly separable — what can we do?

• accept an approximation by a linearly separable function

(limited flexibility and usefulness)

• construct more complex architectures from perceptron units,

e.g. multilayer networks (universal approximators, difficult training)

• generate a non-linear decision surface for the original data

S

µ
H = sign [ f(⇠

µ
) ], ⇠ 2 IR

N ! f(⇠) 2 IR

• employ a linear decision boundary, but after a non-linear transformation of the data

S

µ
H = sign [ W ·  (⇠

µ
) ], ⇠ 2 IR

N !  (⇠) 2 IR

M with weights W 2 IR

M

in general M 6= N , mostly M > N

61

SVM: transformation with M>N to high-dim. feature space 

An illustrative example (c/o R. Dietrich, PhD thesis)

consider original, two-dimensional data (x

1

, x

2

)

and the non-linear transformed data  (x

1

, x

2

) =

⇣
x

2

1

,

p
2 x

1

x

2

, x

2

⌘
2 IR

3

linearly separable classification in IR

3:

S

µ
= sign ( W ·  (x

1

, x

2

) ) with ~

W = (1, 1,�1)

the non-separable classification in IR2 becomes linearl\ separable in IR3

62
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⇣
x
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p
2 x

1

x

2

, x
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⌘
2 IR

3
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S

µ
= sign ( W ·  (x

1

, x

2

) ) with ~

W = (1, 1,�1)

the non-separable classification in IR2 becomes linearl\ separable in IR3

62

basic idea:  
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assume: transformation guarantees linear separability of { (⇠

µ
), S

µ }
! a vector W exists with S

µ
H = sign ( W ·  (⇠

µ
) ) for all µ.

optimal stability:

maximize

W
(W ) where (W ) = min

µ

⇢


µ
=

W · (⇠

µ
) S

µ

|W |

�

Exact same structure as the original perceptron problem – all above results from
optimization theory apply accordingly

re-formulate:

minimize

~X

1

2

~

X

T
�

~

X subject to �

~

X � ~

1

here:
W =

1

M

PX

µ=1

X

µ
 (⇠

µ
) S

µ
�

µ⌫
=

1

M

S

µ
 (⇠

µ
) ·  (⇠

⌫
) S

⌫

W

2

=

1

M

~

X

T
�

~

X

63
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Kernel formulation
consider the function K : IR

N ⇥ IR

N ! IR with K(⇠

µ
, ⇠

⌫
) =

1

M  (⇠

µ
) ·  (⇠

⌫
)

re-write in terms of this kernel function
• the classification scheme: SH(⇠) = sign ( W · (⇠) )
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@
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X

µ
S

µ
 (⇠

µ
) ·  (⇠)

1

A
= sign

0
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µ
K(⇠

µ
, ⇠)

1

A

• training algorithms for the embedding strengths, just one example:

Kernel AdaTron X

µ ! max

(
0, X

µ
+ ⌘

 
1� S

µ
PX

⌫=1

S

⌫
X

⌫
K(⇠

µ
, ⇠

⌫
)

!)

– no explicit use of the transformed feature vectors  (⇠)

– only dot-products required, which can be expressed in terms of the kernel
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so far: define non-linear  (⇠) 2 IR

M , find corresponding kernel function K(⇠

µ
, ⇠

⌫
)

now: as we will never use  (⇠) explicitly, why not start with defining a kernel
function in the first place?

for practical purposes, we need not know  nor its dimension M

Question: does a given kernel K correspond to some valid transformation  ?

Mercer’s Theorem (sufficient condition)

a given kernel function K can be written as K(⇠

µ
, ⇠

⌫
) =  (⇠

µ
) · (⇠

⌫
), if

Z Z
g(⇠

µ
) K(⇠

µ
, ⇠

⌫
) g(⇠

⌫
) d

N
⇠

µ
d

N
⇠

⌫ � 0 holds true

for all functions g with finite norm
Z

g(⇠)

2

d

N
⇠ < 1
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popular classes of kernels    (which satisfy Mercer’s conditon) 

● polynomial kernels of degree (up to) q,  e.g.

linear kernel 

= perceptron with threshold in original space 

quadratic kernel 

->  perceptron with respect to feature vectors containing all single  and products of 2 original features 
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● Radial basis function (RBF) kernel

involves all powers of the features, “M → ∞” 

attractive aspects of the SVM approach: 
- optimization problem is uniquely solvable (no local minima)
- efficient training algorithms are known
- maximum stability facilitates good generalization ability

… if the kernel (its parameters) is (are) appropriately chosen

in practice: 
- select simple kernels, allow for violations of some of the linear constraints
by means of slack variables (e.g. kernel-version of Adatron with errors, see above)

- choose kernel (kernel parameters) by means of cross-validation procedures
- use approximate schemes for huge amounts of data (many support vectors) 
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● Radial basis function (RBF) kernel

involves all powers of the features, “M → ∞” 

attractive aspects of the SVM approach: 
- optimization problem is uniquely solvable (no local minima)
- efficient training algorithms are known
- maximum stability facilitates good generalization ability

… if the kernel (its parameters) is (are) appropriately chosen

in practice: 
- select simple kernels, allow for violations of some of the linear constraints
by means of slack variables (e.g. kernel-version of Adatron with errors, see above)

- choose kernel (kernel parameters) by means of cross-validation procedures
- use approximate schemes for huge amounts of data (many support vectors) 

(“kernelized” max. stability algorithms) 

so much for the “curse of dimensionality” J  




