
Michael Biehl
Bernoulli Institute for Mathematics,
Computer Science and Artificial Intelligence
University of Groningen

www.cs.rug.nl/biehl

Support Vector Machine
(streamlined)

extended version: Biehl-Part1.pdf

IAC Winter School November 2018, La Laguna 2

Solving the perceptron storage problem
re-write the problem ...
consider a given data set ID = {⇠µ, Sµ

R}

... find a vector w with Sµ
H = sign(w · ⇠µ

) = Sµ
R for all µ

Note: sign(w · ⇠µ
) = Sµ

R , sign(w · ⇠µ Sµ
R) = 1 , Eµ

= w · ⇠µ Sµ
R > 0

(local potentials Eµ)

equivalent problem: solve a set of linear inequalities (in w)

... find a vector w with Eµ
= w · ⇠µ Sµ

R � c > 0 for all µ

Note that the actual value of c > 0 is irrelevant:

⇣

w
1

satisfies {Eµ
1

� c}P
µ=1

⌘

,
⇣

w
2

= �w
1

satisfies {Eµ
2

� � c}P
µ=1

⌘

 the storage problem revisited

IAC Winter School November 2018, La Laguna 3

 solving equations ?

Instead of inequalities, try to solve P equations for N unknowns:

(A) if no solution exists, find approximation by least square dev.:

Eµ
=

NX

j=1

wj⇠
µ
j Sµ

= 1 for all µ = 1, 2, . . . , P

minimization, e.g. by means of gradient descent with

minimize f =
1

2

PX

µ=1

(1� Eµ)2

rwf = �
PX

µ=1

(1� Eµ) ⇠µ Sµ

IAC Winter School November 2018, La Laguna 4

 solving equations ?

(B) if the system is under-determined → find a unique solution:

minimize

1

2

| w |2 under constraints {Eµ
= 1}Pµ=1

Lagrange function

necessary conditions for optimum:
@L

@�µ
= (1� Eµ)

!
= 0

rwL = w �
PX

µ=1

�µ ⇠µ Sµ !
= 0) w =

PX

µ=1

�µ ⇠µ Sµ

Lagrange parameters ~ embedding strengths λµ (rescaled with N)
 solution is a linear combination of the data

L =
1

2
| w |2 +

PX

µ=1

�µ (1� Eµ)

IAC Winter School November 2018, La Laguna 5

eliminate weights:

in terms of weights:
the same as in (A) !!!

simplified problem: max� L = �1

2

X

µ,⌫

�⌫ C⌫µ �µ
+

X

µ

�µ

E⌫ =
PX

µ=1

1

N

NX

k=1

(⇠µkS
µ) (⇠⌫kS

⌫)

| {z }
⌘C⌫µ

�µ

@L

@�⇢
= 1�

X

µ

C⇢µ�µ = (1� E⇢)gradient ascent with:

�w /
X

⇢

(1� E⇢) ⇠⇢ S⇢

 solving equations ?

NX

j=1

w2
j /

X

µ,⌫

�⌫ C⌫µ �µ

IAC Winter School November 2018, La Laguna 6

rename the Lagrange parameters, re-writing the problem:

in terms of weights:
the same as in (A) !!!

simplified problem:

gradient ascent with:

�w /
X

⇢

(1� E⇢) ⇠⇢ S⇢

E

⌫ =
PX

µ=1

1

N

NX

k=1

(⇠µkS
µ) (⇠⌫kS

⌫)

| {z }
⌘C⌫µ

x

µ
NX

j=1

w

2
j /

X

µ,⌫

x

⌫
C

⌫µ
x

µ

max

x

L = �1

2

X

µ,⌫

x

⌫

C

⌫µ

x

µ

+

X

µ

x

µ

@L

@x

⇢
= 1�

X

µ

C

⇢µ
x

µ = (1� E

⇢)

 solving equations ?

IAC Winter School November 2018, La Laguna 7

classical algorithm: ADALINE

 Adaline algorithm:

Adaptive Linear Neuron (Widrow and Hoff, 1960)

gradient based learning for linear regression (MSE)
frequent strategy: regression as a proxy for classification

more general: training of a linear unit with continuous output

iteration of weights / embedding strengths

w(t) = w(t� 1) + ⌘

⇣
1� E

µ(t)
⌘
⇠

µ(t)
S

µ(t)

x

µ(t) = x

µ(t� 1) + ⌘

⇣
1� E

µ(t)
⌘

sequence µ(t)
of examples

minimize f =
1

2

PX

µ=1

(hµ � Eµ)2 with hµ 2 IR, µ = 1, 2 . . . , P

f =
1

2

PX

µ=1

�
yµ � w>⇠µ

�2
with yµ = hµ Sµ

8

hardware realization “Science in action” ca. 1960

http://www.youtube.com/watch?v=IEFRtz68m-8

 youtube video “science in action” with Bernard Widrow

IAC Winter School November 2018, La Laguna 9

Introduction:
•  supervised learning, clasification, regression
•  machine learning “vs.” statistical modeling

Early (important!) approaches:

•  linear threshold classifier, Rosenblatt’s Perceptron
•  adaptive linear neuron, Widrow and Hoff’s Adaline

From Perceptron to Support Vector Machine

•  large margin classification
•  beyond linear separability

 Distance-based systems
•  prototypes: K-means and Vector Quantization
•  from K-Neares_Neighbors to Learning Vector Quantization
•  adaptive distance measures and relevance learning

 Optimal stability by quadratic optimization

Note: the solution of the problem yields stability

minimize

1

2

w2
subject to inequality constraints

�
Eµ

= w>⇠µ Sµ
R � 1

 P

µ=1

w
max


max

=
1

| w
max

|

Notation:

correlation matrix (outputs incorporated)

with elements

P-vectors:

inequalities

“one-vector”:

(C is positive semi-definite)

We can formulate optimal stability completely in terms of embedding strengths:

 minimize subject to linear constraints

This is a special case of a standard problem in Quadratic Programming:
minimize a nonlinear function under linear inequality constraints

 Optimal stability by quadratic optimization

Note: the solution of the problem yields stability

minimize

1

2

w2
subject to inequality constraints

�
Eµ

= w>⇠µ Sµ
R � 1

 P

µ=1

w
max


max

=
1

| w
max

|

Optimization theory: Kuhn–Tucker theorem
 see, e.g., R. Fletcher, Practical Methods of Optimization (Wiley, 1987)
 or http://wikipedia.org “Karush-Kuhn-Tucker-conditions” for a quick start

necessary conditions for a local solution of a general
non-linear optimization problem with equality and inequality constraints

Lagrange function:

minimize

~x

1

2

~x

>
C ~x subject to C~x � ~

1

L(~x,~�) =
1

2
~x

>
C ~x � ~

�

> (C~x�~1)

Max. stability: Kuhn–Tucker theorem for a special non-linear optimization problem

Any solution can be represented by a Kuhn-Tucker (KT) point with:

non-negative embedding strengths (←minover)

linear separability

complementarity

implies also:

→ all KT-points yield the same unique perceptron weight vector

→ any local solution is globally optimal

straightforward to show:

IAC Winter School November 2018, La Laguna

Duality, theory of Lagrange multipliers ! equivalent formulation (Wolfe dual):

maximize

~x

e
f = �1

2

~x

T
C ~x + ~x

T
~

1 subject to ~x � 0

AdaTron algorithm:

– sequential presentation of examples ID = { ⇠

µ
, S

µ }

– gradient ascent w.r.t. e
f , projected onto ~x � 0

x

µ ! max { 0, x

µ
+ ⌘ (1� [C~x]

µ
) } (0 < ⌘ < 2)

for the proof of convergence one can show:

• for an arbitrary ~x � 0 and a KT point ~x⇤: e
f(~x

⇤
) � e

f(~x)

• e
f(x) is bounded from above in ~x � 0

• e
f(x) increases in every cycle through ID, unless a KT point has been reached

5

absent in the
Adaline problem

IAC Winter School November 2018, La Laguna

Duality, theory of Lagrange multipliers ! equivalent formulation (Wolfe dual):

maximize

~x

e
f = �1

2

~x

T
C ~x + ~x

T
~

1 subject to ~x � 0

AdaTron algorithm:

– sequential presentation of examples ID = { ⇠

µ
, S

µ }

– gradient ascent w.r.t. e
f , projected onto ~x � 0

x

µ ! max { 0, x

µ
+ ⌘ (1� [C~x]

µ
) } (0 < ⌘ < 2)

for the proof of convergence one can show:

• for an arbitrary ~x � 0 and a KT point ~x⇤: e
f(~x

⇤
) � e

f(~x)

• e
f(x) is bounded from above in ~x � 0

• e
f(x) increases in every cycle through ID, unless a KT point has been reached

5

z }| {
⌘
h
r

~x

ef
i
µ

(Adaptive PercepTron) [Anlauf and Biehl, 1989]

IAC Winter School November 2018, La Laguna

Duality, theory of Lagrange multipliers ! equivalent formulation (Wolfe dual):

maximize

~x

e
f = �1

2

~x

T
C ~x + ~x

T
~

1 subject to ~x � 0

AdaTron algorithm:

– sequential presentation of examples ID = { ⇠

µ
, S

µ }

– gradient ascent w.r.t. e
f , projected onto ~x � 0

x

µ ! max { 0, x

µ
+ ⌘ (1� [C~x]

µ
) } (0 < ⌘ < 2)

for the proof of convergence one can show:

• for an arbitrary ~x � 0 and a KT point ~x⇤: e
f(~x

⇤
) � e

f(~x)

• e
f(x) is bounded from above in ~x � 0

• e
f(x) increases in every cycle through ID, unless a KT point has been reached

5

[Anlauf and Biehl, 1989] (Adaptive PercepTron)

IAC Winter School November 2018, La Laguna

Support Vectors
complementarity condition: x

µ
(1� E

µ
) = 0 for all µ

i.e. either
⇢

E

µ
= 1

x

µ � 0

�
or

⇢
E

µ
> 1

x

µ
= 0

�

examples ... have to be embedded or ... are stabilized “automatically”

P
µthe�weights� Z/ x

µ
⇠

µ
S

µ

depend (explicitly) only on a subset of ID

if these support vectors were known
in advance, training could be restricted
to the subset

6

(unfortunately they are not...)

IAC Winter School November 2018, La Laguna 19

learning in version space ?

... even then, it only makes sense if
•  the unknown rule is a linearly separable function
•  the data set is reliable (noise-free)

... (including max. stability) is only possible if
•  the data set is linearly separable

?

lin. separable nonlin. boundary noisy data (?)

. &lassiIication beyond linear separability
assume is not linearly separable - what can we do?

● accept an approximation by a linearly separable function → see “pocket algorithm”
and �large margin with errors�

● construct more complex architectures from perceptron-like units.
 e.g. multilayer networks (universal classificators, difficult training)

→ see “committee and
 parity-machine”

● consider ensembles of perceptrons
 train several student perceptrons

- each student should make a small number of errors
- the perceptrons should differ significantly

combine the into an ensemble classifier , e.g. by majority vote

competing aims:

potential reasons: noisy data, more complex problem

!   large margins with errors
admit disagreements w.r.t. training data, but keep basic idea of optimal stability

minimizew,�
1

2

w2
+ �

PX

µ=1

�µ
subject to Eµ � 1� �µ

for all µ

and �µ � 0 for all µ

slack variables

(
�µ

= 0 $ Eµ � 1

�µ > 0 $ Eµ < 1 includes errors with Eµ < 0

minimize

~x,

~

�

1

2

~x

>
C ~x + �

~

� ·~1 subject to C ~x � ~

1� ~

�

and

~

� � 0

rewritten in terms of embedding strengths (see above for notation)

IAC Winter School November 2018, La Laguna

!   large margins with errors
admit disagreements w.r.t. training data, but keep basic idea of optimal stability

minimizew,�
1

2

w2
+ �

PX

µ=1

�µ
subject to Eµ � 1� �µ

for all µ

and �µ � 0 for all µ

slack variables

(
�µ

= 0 $ Eµ � 1

�µ > 0 $ Eµ < 1 includes errors with Eµ < 0

minimize

~x,

~

�

1

2

~x

>
C ~x + �

~

� ·~1 subject to C ~x � ~

1� ~

�

and

~

� � 0

rewritten in terms of embedding strengths (see above for notation)

�

 dual problem: (elimination of slack variables!)

maximize

~x

� 1

2

~x

>
C ~x +

~

1 · ~x subject to 0  ~x  �

~

1

 positive and upper-bounded embedding strengths
 parameter γ - limits the growth of xµ for misclassified data points
 - controls a compromise between aims of large margin and low error
 - has to be chosen appropriately, e.g. by validation methods (later chapter)
 note: even for lin. sep. data the optimum can include misclassifications!

AdaTron with errors (projected gradient ascent)

˜

x

µ x

µ
+ ⌘ (1� [C~x]

µ
) gradient step

ˆ

x

µ max

�
0,

˜

x

µ

enforce non-negative embeddings

x

µ min

�
�,

ˆ

x

µ

limit embedding strenghts to x

µ  �

- does not (in general) minimize the number of errors

IAC Winter School November 2018, La Laguna

 dual problem: (elimination of slack variables!)

maximize

~x

� 1

2

~x

>
C ~x +

~

1 · ~x subject to 0  ~x  �

~

1

 positive and upper-bounded embedding strengths
 parameter γ - limits the growth of xµ for misclassified data points
 - controls a compromise between aims of large margin and low error
 - has to be chosen appropriately, e.g. by validation methods (later chapter)
 note: even for lin. sep. data the optimum can include misclassifications!

AdaTron with errors (projected gradient ascent)

˜

x

µ x

µ
+ ⌘ (1� [C~x]

µ
) gradient step

ˆ

x

µ max

�
0,

˜

x

µ

enforce non-negative embeddings

x

µ min

�
�,

ˆ

x

µ

limit embedding strenghts to x

µ  �

example algorithm:

. &lassiIication beyond linear separability
assume is not linearly separable - what can we do?

● accept an approximation by a linearly separable function → see “pocket algorithm”
and �large margin with errors�

● construct more complex architectures from perceptron-like units.
 e.g. multilayer networks (universal classificators, difficult training)

→ see “committee and
 parity-machine”

● consider ensembles of perceptrons
 train several student perceptrons

- each student should make a small number of errors
- the perceptrons should differ significantly

combine the into an ensemble classifier , e.g. by majority vote

competing aims:

potential reasons: noisy data, more complex problem

see also: Decision Trees and Forests (lectures by Dalya Baron)

● employ a linear decision boundary, but after a non-linear transformation of the data
to an M-dim. feature space (M=N is possible, but not required)

M-dim. weight vector

non-linear transformation

for a given, explicit transformation , perceptron training can be applied in

important examples:

- Rosenblatt’s perceptron with masks, transformed features

- Support Vector Machines: M > N transformation to higher-dim. space

 is defined only implicitly (kernel-trick)

 perceptron of optimal stability in M dimensions

● most frequent approach: approximate classification by continuous regression

IAC Winter School November 2018, La Laguna

The Support Vector Machine

•  Perceptron of optimal stability: support vectors
•  SVM: non-linear transformation to high-dim. feature space
•  implicit kernel formulation, Mercer’s theorem

history: www.svms.org

The Support Vector Machine
assume ID = { ⇠

µ
, S

µ } is not linearly separable — what can we do?

• accept an approximation by a linearly separable function

(limited flexibility and usefulness)

• construct more complex architectures from perceptron units,

e.g. multilayer networks (universal approximators, difficult training)

• generate a non-linear decision surface for the original data

S

µ
H = sign [f(⇠

µ
)], ⇠ 2 IR

N ! f(⇠) 2 IR

• employ a linear decision boundary, but after a non-linear transformation of the data

S

µ
H = sign [W · (⇠

µ
)], ⇠ 2 IR

N ! (⇠) 2 IR

M with weights W 2 IR

M

in general M 6= N , mostly M > N

61

SVM: transformation with M>N to high-dim. feature space

An illustrative example (c/o R. Dietrich, PhD thesis)

consider original, two-dimensional data (x

1

, x

2

)

and the non-linear transformed data (x

1

, x

2

) =

⇣
x

2

1

,

p
2 x

1

x

2

, x

2

⌘
2 IR

3

linearly separable classification in IR

3:

S

µ
= sign (W · (x

1

, x

2

)) with ~

W = (1, 1,�1)

the non-separable classification in IR2 becomes linearl\ separable in IR3

62

An illustrative example (c/o R. Dietrich, PhD thesis)

consider original, two-dimensional data (x

1

, x

2

)

and the non-linear transformed data (x

1

, x

2

) =

⇣
x

2

1

,

p
2 x

1

x

2

, x

2

⌘
2 IR

3

linearly separable classification in IR

3:

S

µ
= sign (W · (x

1

, x

2

)) with ~

W = (1, 1,�1)

the non-separable classification in IR2 becomes linearl\ separable in IR3

62

basic idea:

The Support Vector Machine
assume ID = { ⇠

µ
, S

µ } is not linearly separable — what can we do?

• accept an approximation by a linearly separable function

(limited flexibility and usefulness)

• construct more complex architectures from perceptron units,

e.g. multilayer networks (universal approximators, difficult training)

• generate a non-linear decision surface for the original data

S

µ
H = sign [f(⇠

µ
)], ⇠ 2 IR

N ! f(⇠) 2 IR

• employ a linear decision boundary, but after a non-linear transformation of the data

S

µ
H = sign [W · (⇠

µ
)], ⇠ 2 IR

N ! (⇠) 2 IR

M with weights W 2 IR

M

in general M 6= N , mostly M > N

61

SVM: transformation with M>N to high-dim. feature space

An illustrative example (c/o R. Dietrich, PhD thesis)

consider original, two-dimensional data (x

1

, x

2

)

and the non-linear transformed data (x

1

, x

2

) =

⇣
x

2

1

,

p
2 x

1

x

2

, x

2

⌘
2 IR

3

linearly separable classification in IR

3:

S

µ
= sign (W · (x

1

, x

2

)) with ~

W = (1, 1,�1)

the non-separable classification in IR2 becomes linearl\ separable in IR3

62

An illustrative example (c/o R. Dietrich, PhD thesis)

consider original, two-dimensional data (x

1

, x

2

)

and the non-linear transformed data (x

1

, x

2

) =

⇣
x

2

1

,

p
2 x

1

x

2

, x

2

⌘
2 IR

3

linearly separable classification in IR

3:

S

µ
= sign (W · (x

1

, x

2

)) with ~

W = (1, 1,�1)

the non-separable classification in IR2 becomes linearl\ separable in IR3

62

basic idea:

The Support Vector Machine
assume ID = { ⇠

µ
, S

µ } is not linearly separable — what can we do?

• accept an approximation by a linearly separable function

(limited flexibility and usefulness)

• construct more complex architectures from perceptron units,

e.g. multilayer networks (universal approximators, difficult training)

• generate a non-linear decision surface for the original data

S

µ
H = sign [f(⇠

µ
)], ⇠ 2 IR

N ! f(⇠) 2 IR

• employ a linear decision boundary, but after a non-linear transformation of the data

S

µ
H = sign [W · (⇠

µ
)], ⇠ 2 IR

N ! (⇠) 2 IR

M with weights W 2 IR

M

in general M 6= N , mostly M > N

61

SVM: transformation with M>N to high-dim. feature space

An illustrative example (c/o R. Dietrich, PhD thesis)

consider original, two-dimensional data (x

1

, x

2

)

and the non-linear transformed data (x

1

, x

2

) =

⇣
x

2

1

,

p
2 x

1

x

2

, x

2

⌘
2 IR

3

linearly separable classification in IR

3:

S

µ
= sign (W · (x

1

, x

2

)) with ~

W = (1, 1,�1)

the non-separable classification in IR2 becomes linearl\ separable in IR3

62

An illustrative example (c/o R. Dietrich, PhD thesis)

consider original, two-dimensional data (x

1

, x

2

)

and the non-linear transformed data (x

1

, x

2

) =

⇣
x

2

1

,

p
2 x

1

x

2

, x

2

⌘
2 IR

3

linearly separable classification in IR

3:

S

µ
= sign (W · (x

1

, x

2

)) with ~

W = (1, 1,�1)

the non-separable classification in IR2 becomes linearl\ separable in IR3

62

An illustrative example (c/o R. Dietrich, PhD thesis)

consider original, two-dimensional data (x

1

, x

2

)

and the non-linear transformed data (x

1

, x

2

) =

⇣
x

2

1

,

p
2 x

1

x

2

, x

2

⌘
2 IR

3

linearly separable classification in IR

3:

S

µ
= sign (W · (x

1

, x

2

)) with ~

W = (1, 1,�1)

the non-separable classification in IR2 becomes linearl\ separable in IR3

62

basic idea:

assume: transformation guarantees linear separability of { (⇠

µ
), S

µ }
! a vector W exists with S

µ
H = sign (W · (⇠

µ
)) for all µ.

optimal stability:

maximize

W
(W) where (W) = min

µ

⇢


µ
=

W · (⇠

µ
) S

µ

|W |

�

Exact same structure as the original perceptron problem – all above results from
optimization theory apply accordingly

re-formulate:

minimize

~X

1

2

~

X

T
�

~

X subject to �

~

X � ~

1

here:
W =

1

M

PX

µ=1

X

µ
 (⇠

µ
) S

µ
�

µ⌫
=

1

M

S

µ
 (⇠

µ
) · (⇠

⌫
) S

⌫

W

2

=

1

M

~

X

T
�

~

X

63

assume: transformation guarantees linear separability of { (⇠

µ
), S

µ }
! a vector W exists with S

µ
H = sign (W · (⇠

µ
)) for all µ.

optimal stability:

maximize

W
(W) where (W) = min

µ

⇢


µ
=

W · (⇠

µ
) S

µ

|W |

�

Exact same structure as the original perceptron problem – all above results from
optimization theory apply accordingly

re-formulate:

minimize

~X

1

2

~

X

T
�

~

X subject to �

~

X � ~

1

here:
W =

1

M

PX

µ=1

X

µ
 (⇠

µ
) S

µ
�

µ⌫
=

1

M

S

µ
 (⇠

µ
) · (⇠

⌫
) S

⌫

W

2

=

1

M

~

X

T
�

~

X

63

Kernel formulation
consider the function K : IR

N ⇥ IR

N ! IR with K(⇠

µ
, ⇠

⌫
) =

1

M (⇠

µ
) · (⇠

⌫
)

re-write in terms of this kernel function
• the classification scheme: SH(⇠) = sign (W · (⇠))

= sign

0

@
PX

µ=1

X

µ
S

µ
 (⇠

µ
) · (⇠)

1

A
= sign

0

@
PX

µ=1

X

µ
S

µ
K(⇠

µ
, ⇠)

1

A

• training algorithms for the embedding strengths, just one example:

Kernel AdaTron X

µ ! max

(
0, X

µ
+ ⌘

1� S

µ
PX

⌫=1

S

⌫
X

⌫
K(⇠

µ
, ⇠

⌫
)

!)

– no explicit use of the transformed feature vectors (⇠)

– only dot-products required, which can be expressed in terms of the kernel
64

Kernel formulation
consider the function K : IR

N ⇥ IR

N ! IR with K(⇠

µ
, ⇠

⌫
) =

1

M (⇠

µ
) · (⇠

⌫
)

re-write in terms of this kernel function
• the classification scheme: SH(⇠) = sign (W · (⇠))

= sign

0

@
PX

µ=1

X

µ
S

µ
 (⇠

µ
) · (⇠)

1

A
= sign

0

@
PX

µ=1

X

µ
S

µ
K(⇠

µ
, ⇠)

1

A

• training algorithms for the embedding strengths, just one example:

Kernel AdaTron X

µ ! max

(
0, X

µ
+ ⌘

1� S

µ
PX

⌫=1

S

⌫
X

⌫
K(⇠

µ
, ⇠

⌫
)

!)

– no explicit use of the transformed feature vectors (⇠)

– only dot-products required, which can be expressed in terms of the kernel
64

Kernel formulation
consider the function K : IR

N ⇥ IR

N ! IR with K(⇠

µ
, ⇠

⌫
) =

1

M (⇠

µ
) · (⇠

⌫
)

re-write in terms of this kernel function
• the classification scheme: SH(⇠) = sign (W · (⇠))

= sign

0

@
PX

µ=1

X

µ
S

µ
 (⇠

µ
) · (⇠)

1

A
= sign

0

@
PX

µ=1

X

µ
S

µ
K(⇠

µ
, ⇠)

1

A

• training algorithms for the embedding strengths, just one example:

Kernel AdaTron X

µ ! max

(
0, X

µ
+ ⌘

1� S

µ
PX

⌫=1

S

⌫
X

⌫
K(⇠

µ
, ⇠

⌫
)

!)

– no explicit use of the transformed feature vectors (⇠)

– only dot-products required, which can be expressed in terms of the kernel
64

so far: define non-linear (⇠) 2 IR

M , find corresponding kernel function K(⇠

µ
, ⇠

⌫
)

now: as we will never use (⇠) explicitly, why not start with defining a kernel
function in the first place?

for practical purposes, we need not know nor its dimension M

Question: does a given kernel K correspond to some valid transformation ?

Mercer’s Theorem (sufficient condition)

a given kernel function K can be written as K(⇠

µ
, ⇠

⌫
) = (⇠

µ
) · (⇠

⌫
), if

Z Z
g(⇠

µ
) K(⇠

µ
, ⇠

⌫
) g(⇠

⌫
) d

N
⇠

µ
d

N
⇠

⌫ � 0 holds true

for all functions g with finite norm
Z

g(⇠)

2

d

N
⇠ < 1

65

so far: define non-linear (⇠) 2 IR

M , find corresponding kernel function K(⇠

µ
, ⇠

⌫
)

now: as we will never use (⇠) explicitly, why not start with defining a kernel
function in the first place?

for practical purposes, we need not know nor its dimension M

Question: does a given kernel K correspond to some valid transformation ?

Mercer’s Theorem (sufficient condition)

a given kernel function K can be written as K(⇠

µ
, ⇠

⌫
) = (⇠

µ
) · (⇠

⌫
), if

Z Z
g(⇠

µ
) K(⇠

µ
, ⇠

⌫
) g(⇠

⌫
) d

N
⇠

µ
d

N
⇠

⌫ � 0 holds true

for all functions g with finite norm
Z

g(⇠)

2

d

N
⇠ < 1

65

popular classes of kernels (which satisfy Mercer’s conditon)

● polynomial kernels of degree (up to) q, e.g.

linear kernel

= perceptron with threshold in original space

quadratic kernel

-> perceptron with respect to feature vectors containing all single and products of 2 original features

popular classes of kernels (which satisfy Mercer’s conditon)

● polynomial kernels of degree (up to) q, e.g.

linear kernel

= perceptron with threshold in original space

quadratic kernel

-> perceptron with respect to feature vectors containing all single and products of 2 original features

● Radial basis function (RBF) kernel

involves all powers of the features, “M → ∞”

attractive aspects of the SVM approach:
- optimization problem is uniquely solvable (no local minima)
- efficient training algorithms are known
- maximum stability facilitates good generalization ability

… if the kernel (its parameters) is (are) appropriately chosen

in practice:
- select simple kernels, allow for violations of some of the linear constraints
by means of slack variables (e.g. kernel-version of Adatron with errors, see above)

- choose kernel (kernel parameters) by means of cross-validation procedures
- use approximate schemes for huge amounts of data (many support vectors)

● Radial basis function (RBF) kernel

involves all powers of the features, “M → ∞”

attractive aspects of the SVM approach:
- optimization problem is uniquely solvable (no local minima)
- efficient training algorithms are known
- maximum stability facilitates good generalization ability

… if the kernel (its parameters) is (are) appropriately chosen

in practice:
- select simple kernels, allow for violations of some of the linear constraints
by means of slack variables (e.g. kernel-version of Adatron with errors, see above)

- choose kernel (kernel parameters) by means of cross-validation procedures
- use approximate schemes for huge amounts of data (many support vectors)

● Radial basis function (RBF) kernel

involves all powers of the features, “M → ∞”

attractive aspects of the SVM approach:
- optimization problem is uniquely solvable (no local minima)
- efficient training algorithms are known
- maximum stability facilitates good generalization ability

… if the kernel (its parameters) is (are) appropriately chosen

in practice:
- select simple kernels, allow for violations of some of the linear constraints
by means of slack variables (e.g. kernel-version of Adatron with errors, see above)

- choose kernel (kernel parameters) by means of cross-validation procedures
- use approximate schemes for huge amounts of data (many support vectors)

(“kernelized” max. stability algorithms)

so much for the “curse of dimensionality” J

