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university of

groningen the storage problem revisited

Solving the perceptron storage problem
re-write the problem ...

consider a given data set ID = {¢", S}

... find avector w with S% =sign(w-¢") =545 forall i

Note: sign(w-¢&")=95% < sign(w-£"Sh) =1 < EF =w-£"SEL >0

( local potentials E")

equivalent problem: solve a set of linear inequalities (in w)

.. findavector w with E¥=w.-£"S,>c>0 forallp
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3 3 f . .
¢ / groningen solving equations ?

Instead of inequalities, try to solve P equations for N unknowns:

N
E“:ijffsl‘ =1 forall u=1,2,...,P

(A) if no solution exists, find approximation by least square dev.:
P

1
minimize f = 5 Z (1— EM)

p=1

minimization, e.g. by means of gradient descent with
P
Z 1 — E*) g g+
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groningen SOIVlng equatIOI‘IS 7

(B) if the system is under-determined — find a unique solution:

1
minimize = | w |*> under constraints {E" = 1}P_1
> p=

P
1

Lagrange function L=3 w2+ M (1-E")

pu=1

oL

!

necessary conditions for optimum:

P P
Vol =w — > NESH=0 = w=) A¢E'sH
pu=1

p=1

Lagrange parameters ~ embedding strengths A# (rescaled with N)
solution is a linear combination of the data

IAC Winter School November 2018, La Laguna 4



university of

groningen SOIVing equations 7

eliminate weights:

N
Z%Z fS” ) (§kSY) A Zw mZA”C’”")\“
y J=1 v

,u:1 =1
ECV“
simplified problem: max) L = —— Z A CVENR + Z s
[TRY
oL

- e _ PENE — (1 _ FP

gradient ascent with: =32 = =1 Z CPEN = (1 — E7)
in terms of weights: AW X Z (1— Er) &P 8P

the same as in (A) !!!
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groningen SOIVing equations 7

rename the Lagrange parameters, re-writing the problem:

N
z DICTEICOCRIND DI ot
7=1 W,V

J/

ECV“
1
simplified problem: max, L = —52 x” CYF —I—Zﬂb
JINY%
oL

dient t with: — =1 - PH pH — — FP
gradient ascent wi oy 1 %: CPH (1 B )

in terms of weights: AW Z (1— E°)¢rSP

the same as in (A) !!!
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university of classical algorithm: ADALINE

groningen

Adaptive Linear Neuron (Widrow and Hoff, 1960)
Adaline algorithm: w(t) = w(it—-1)+n (1 — Eﬂ(t)> gr(t) grit)

sequence (1) () = aht—1) + n (1 _ Eu(t))
of examples
iteration of weights / embedding strengths

more general: training of a linear unit with continuous output

minimize f = = Z with W € R, u=1,2...,P
lL[,:
1 P 2
_ T . _
f = 52_: &) with ¢ = bt SH

gradient based learning for linear regression (MSE)
frequent strategy: regression as a proxy for classification
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hardware realization “Science in action” ca. 1960

youtube video “science in action” with Bernard Widrow

http://www.youtube.com/watch?v=IEFRtz68m-8



Ey university of
ﬁ,ﬁé groningen

Introduction:
« supervised learning, clasification, regression
« machine learning “vs.” statistical modeling

Early (important!) approaches:
« linear threshold classifier, Rosenblatt’s Perceptron
« adaptive linear neuron, Widrow and Hoff’s Adaline

From Perceptron to Support Vector Machine
« large margin classification
« beyond linear separability

Distance-based systems
« prototypes: K-means and Vector Quantization
« from K-Neares_Neighbors to Learning Vector Quantization
« adaptive distance measures and relevance learning
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Optimal stability by quadratic optimization

I : . : . P
minimize §W2 subject to inequality constraints {E“ = w ! gH Shp >1 }le

1
Note: the solution Wpnaz of the problem yields stability ~Kmaz =

| Wimazx |




Notation:

correlation matrix C' € R"*" (outputs incorporated)

1 | al
with elements = TG’;:} (’E §M-§ = N G’i'f ‘75 Ej'r ‘Ef

4 a J:I_

= 1.2 pyT P 1 g2 Py T P

P-vectors: T = (:r N ) eR", L= (!-: N D ) ) e IR
inequalities a>biff o >V forallp=12...P
“one-vector”: [ =(11.... )" eRF

P P
3 | I _
F = C7  with components E" = E CH ot = ('\' E a"€"SE | - €' Sh

pr=1 =1

r

_ _ ., P
2 1 =T 1 = . 2 1 [ il 1 By L
WS = ?;r: C'7 >0 quadratic foorm w° = — E Y = T E [l G

(C is positive semi-definite)

p=1 pr=1



Optimal stability by quadratic optimization

1 P
minimize §W2 subject to inequality constraints {E“ = w ! gH Shp >1 }le

1
Note: the solution Wpnaz of the problem yields stability ~Kmaz =

| Wimazx |

We can formulate optimal stability completely in terms of embedding strengths:

—

minimize 7 Cr subject to linear constraints E = C'7 > 1
T

b | b=

This is a special case of a standard problem in Quadratic Programming:
minimize a nonlinear function under linear inequality constraints




Optimization theory: Kuhn-Tucker theorem

see, e.g., R. Fletcher, Practical Methods of Optimization (Wiley, 1987)
or http://wikipedia.org “Karush-Kuhn-Tucker-conditions” for a quick start
necessary conditions for a local solution of a general

non-linear optimization problem with equality and inequality constraints




Max. stability: Kuhn—Tucker theorem for a special non-linear optimization problem

1 .
minimize: 5 AROT subject to C'¥ > 1

— ]_ — —
Lagrange function: L(Z,\) = -z' Cx — X' (Cx 1)

Any solution can be represented by a Kuhn-Tucker (KT) point T with:

|

T >

el

(7* #0) non-negative embedding strengths
Cr > 1 linear separability
™ (1=][C7F*)=0 forall 4 complementarity

imp“eS also: ;FT a— .F*T E* = THT]_

straightforward to show:

— all KT-points yield the same unique perceptron weight vector

— any local solution is globally optimal



Duality, theory of Lagrange multipliers — equivalent formulation (Wolfe dual):

~ 1 . .
maximize f = —=37 C% + &7 1 absent in the

7 2 Adaline problem
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Duality, theory of Lagrange multipliers — equivalent formulation (Wolfe dual):

- 1 . _
maximize f = 3 or+ 7l subjectto ¥ > 0

X

AdaTron algorithm: (Adaptive PercepTron) [Anlauf and Biehl, 1989]

— sequential presentation of examples ID = { &, S*}

— gradient ascent w.r.t. f, projected onto >0
z# — max {0, 2"+ n(1—[CZ*)} (0<n<?2)
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Duality, theory of Lagrange multipliers — equivalent formulation (Wolfe dual):

~ 1 5 ]
maximize f = 3 or+ 7l subjectto ¥ > 0
AdaTron algorithm: (Adaptive PercepTron) [Anlauf and Biehl, 1989]

— sequential presentation of examples ID = { &%, S*}

— gradient ascent w.r.t. f, projected onto 7 >0
z* — max {0,z + n(1-[CZ*)} (0<n<?2)

for the proof of convergence one can show:

~ ~

e for an arbitrary 7 > 0 and a KT point z*:  f(&*) > f()

~

e f(z)is bounded from abovein Z >0

~

e f(z) increases in every cycle through ID, unless a KT point has been reached



Support Vectors
complementarity condition:

. Et = 1
.e. either { #> 0 }
examples ... have to be embedded

O o o
() support vectors

£°0

IAC Winter School November 2018, La Laguna

or

et (1—FE*) = 0forall p

"

E“>1}

¢ = 0

... are stabilized “automatically”

the weights woc ) | ot £"SH
depend (explicitly) only on a subset of ID

if these support vectors were known
in advance, training could be restricted
to the subset

(unfortunately they are not...)



university of

groningen learning in version space ?

... (including max. stability) is only possible if
« the data set is linearly separable

. even then, it only makes sense if
« the unknown rule is a linearly separable function
« the data set is reliable ( noise-free)

@ ) @
O @ ® ® O ®
@ ® @ @
@ ) @
__!-_‘_' 77 0N 7.
@ ® - ©® ® @
® - \e ®
) @
@ | @
1

lin. separable nonlin. boundary noisy data (?)
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Classification beyond linear separability

assume D = {€",S"} is not linearly separable - what can we do?

potential reasons: noisy data, more complex problem

® accept an approximation by a linearly separable function

large margins with errors
admit disagreements w.r.t. training data, but keep basic idea of optimal stability

j=
1
minimizey, g §W2 + 7y Z p#  subject to E¥ >1—p*

H=t and p* >0 forall u

=0 < E* >1
slack variables
pr >0 < E* <1 includes errors with FE* <0




university of
groningen

rewritten in terms of embedding strengths (see above for notation)

minimize.

1 - - —
5 55T03‘3’+76-1 subject to CZ > 1—0

and 520

dual problem: (elimination of slack variables!)

1 o L
maximizes — —Z'or+1-7 subject to 0 <z <~1

positive and upper-bounded embedding strengths
parametery - limits the growth of x* for misclassified data points
- controls a compromise between aims of large margin and low error
- has to be chosen appropriately, e.g. by validation methods (later chapter)
note: even for lin. sep. data the optimum can include misclassifications!

— does not (in general) minimize the number of errors
IAC Winter School November 2018, La Laguna
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groningen

example algorithm:

AdaTron with errors (projected gradient ascent)

ot < x* + n (1 —[CF]") gradient step
TH — max {O, $~“} enforce non-negative embeddings

2" < min {v, 2"} limit embedding strenghts to z* <~

IAC Winter School November 2018, La Laguna



Classification beyond linear separability

assume D = {€",S"} is not linearly separable - what can we do?

potential reasons: noisy data, more complex problem

e accept an approximation by a linearly separable function

e construct more complex architectures from perceptron-like units.
e.g. multilayer networks (universal classificators, difficult training)

e consider ensembles of perceptrons
train several student perceptrons SU) = sign [W(J) : 5}

combine the SY into an ensemble classifier , e.g. by majority vote Sg = sign [ZJ S(j)}

_ , - each student should make a small number of errors
competing aims: _ o
- the perceptrons should differ significantly

see also: Decision Trees and Forests (lectures by Dalya Baron)



e employ a linear decision boundary, but after a non-linear transformation of the data
to an M-dim. feature space (M=N is possible, but not required)

Su(&) = sign[W - ¥(&)] with W e RY M-dim. weight vector
v(¢) e RY non-linear transformation
RY — RY

for a given, explicit transformation g(s) , perceptron training can be applied in RM



university of

groningen The Support VECtOr MaChine

« Perceptron of optimal stability: support vectors
« SVM: non-linear transformation to high-dim. feature space

« implicit kernel formulation, Mercer’s theorem

history: www.svms.org

Vapnik and Lerner (1963) introduce the Generalized Portrait algorithm

Aizerman, Braverman and Rozonoer (1964) introduced the geometrical interpretation of the kernels
Vapnik and Chervonenkis (1964) further develop the Generalized Portrait algorithm.

Vapnik (1982) wrote an English translation of his 1979 book.

e SVMs close to their current form were first introduced with a paper at the COLT 1992 conference
(Boser, Guyon and Vapnik 1992).

e In 1995 the soft margin classifier was introduced by Cortes and Vapnik (1995)
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basic idea:
employ a linear decision boundary, but after a non-linear transformation of the data

St = sign [W - ¥(&)], ¢e RN — U(¢) e RM  withweights W e RM
SVM: transformation with M>N to high-dim. feature space

An illustrative example (c/o R. Dietrich, PhD thesis)

consider original, two-dimensional data (1, x5)
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basic idea:
employ a linear decision boundary, but after a non-linear transformation of the data

St = sign [W - ¥(&)], ¢e RN — U(¢) e RM  withweights W e RM
SVM: transformation with M>N to high-dim. feature space

An illustrative example (c/o R. Dietrich, PhD thesis)

consider original, two-dimensional data (1, x5)
and the non-linear transformed data  W¥(x1,z2) = (sc%, V21, X9, xg) e R3

SH = sign (W - ¥(zq,20)) with W =(1,1,—1)

()
&

K
o0
XEA

X

%%H

-SG5 -@.5 -@.235 0 @.25 0.5 0.75 1

the non-separable classification in IR* becomes linearly separable in I?*



assume: transformation guarantees linear separability of { ¥ (&"), S* }
— avector W exists with S%, = sign (W - ¥(¢")) forall .

optimal stability:

E-E(E“)S“}

maximize (W) where k(W) = min {RM - | W |

w o %

Exact same structure as the original perceptron problem — all above results from
optimization theory apply accordingly



assume: transformation guarantees linear separability of { ¥ (&"), S* }
— avector W exists with S%, = sign (W - ¥(¢")) forall .

optimal stability:

E-E(E“)S“}

maximize k(W) where £(W) = min {RM - | W |

W o v

Exact same structure as the original perceptron problem — all above results from
optimization theory apply accordingly

re-formulate;:

1

minimize §XTFJZ subject to rx >1
X
here: 1 L |
W = — XH D (EH) GH THY — _— GQH(£M) . T (gY) S
W= 5y Y XS S W) (e S
5 1



Kernel formulation
consider the function K : RY x RY — IR with K(&",¢&") = L ¥ (&") - U(¢Y)

re-write in terms of this kernel function
e the classification scheme: Sy (&) = sign (W -¥(€))

= sign (Z XSt (EH) -xp(g)) = sign (Z X“S“K(E“,£)>

,u,:l ,u,:l



Kernel formulation
consider the function K : RY x RY — IR with K(¢",¢&") = L ¥(¢")

re-write in terms of this kernel function
e the classification scheme: Sy (&) = sign (W -¥(£))

= sign (Z XSt W(EH) -\IJ(&)) = sign (Z X“S“K(E“,E))

,u,:l M:l

e training algorithms for the embedding strengths, just one example:

- W(£Y)

P
Kernel AdaTron X" — max {O,X“ + 7 <1—S“Z SVX”K(€”,§V)> }

r=1



Kernel formulation
consider the function K : RY x RY — IR with K(&", &) = L ¥ (&) - ¥(¢Y)

re-write in terms of this kernel function
e the classification scheme: Sy (&) = sign (W - ¥(£))

= sign (Z X SHW(EH) -xp(g)) = sign (Z X“S“K(E“,£)>

p=1 p=1
e training algorithms for the embedding strengths, just one example:

P
Kernel AdaTron X" — max {O,X“ + 7 <1—S“Z SVX”K(€”,§V)> }

r=1

— no explicit use of the transformed feature vectors ¥ (&)

— only dot-products required, which can be expressed in terms of the kernel



so far: define non-linear ¥(¢) € IRM, find corresponding kernel function K (£, £")

now: as we will never use W (&) explicitly, why not start with defining a kernel
function in the first place?

for practical purposes, we need not know W nor its dimension M

Question: does a given kernel K correspond to some valid transformation W¥?



so far: define non-linear ¥(¢) € IRM, find corresponding kernel function K (¢, £")

now: as we will never use W (&) explicitly, why not start with defining a kernel
function in the first place?

for practical purposes, we need not know W nor its dimension M

Question: does a given kernel K correspond to some valid transformation ¥?

Mercer’s Theorem (sufficient condition)

a given kernel function K can be writtenas K(&",&") = W(g") - ¥(gY), if

//g(é“)[((g)g”)g(g”) d¥¢"dNe” >0 holds true

for all functions ¢ with finite norm /g(g)Qng < o0



popular classes of kernels (which satisfy Mercer’s conditon)

e polynomial kernels of degree (up to) g, e.g.

K(&". &) =(1+&"-£)" yields Sp(€§) = sign [Z XHest(1+ ¢ -5)1

linear kernel (¢ =1) i
K(€.€) = (1+ € -€) yields Sy(€) = sign [0+ X" s”e“os]

p=1
= perceptron with threshold in original space \
z.u. X'LLSH




popular classes of kernels (which satisfy Mercer’s conditon)

e polynomial kernels of degree (up to) g, e.g.

K(&". &) =(1+&"-£)" yields Sp(€§) = sign [Z XHest(1+ ¢ -5)1

linear kernel (¢ =1) i
K(g.€) = (1+ € -€) yields Su(£) = sign |0+ 3 x* s”e“os]

pn=1
= perceptron with threshold in original space \
Zu X'LLSH

quadratic kernel (q = 2)
K(g¢) = (1+¢" &) ==1+ 22&“ Sl el |G
1.k

-> perceptron with respect to feature vectors containing all single and products of 2 original features

(&1, &y oS EN, 161, E16o, oo o Enmiy, Enéy)T de. M =N+ N(N-1)/2



e Radial basis function (RBF) kernel

€ —£|2]
20

involves all powers of the features, “M — «”

K(€".€) = exp [

so much for the “curse of dimensionality” ©

attractive aspects of the SVM approach:
- optimization problem is uniquely solvable (no local minima)
- efficient training algorithms are known (“kernelized” max. stability algorithms)

- maximum stability facilitates good generalization ability

... if the kernel (its parameters) is (are) appropriately chosen

in practice:
- select simple kernels, allow for violations of some of the linear constraints
by means of slack variables (e.g. kernel-version of Adatron with errors, see above)
- choose kernel (kernel parameters) by means of cross-validation procedures
- use approximate schemes for huge amounts of data (many support vectors)



An Introduction to

 Neello Crivtianind
John Shawe Taytor

Support
Vector
Machines

and other kerel-based
learning methods

Learning with Kernels

Support Vector Machines, Regularization,

Optimization and Beyond

Bernhard Scholkopf and Alexande'r: me



