Support Vector Machine (streamlined)

Michael Biehl
Bernoulli Institute for Mathematics, Computer Science and Artificial Intelligence University of Groningen
www.cs.rug.nl/biehl

Solving the perceptron storage problem

re-write the problem ...
consider a given data set $\mathbb{D}=\left\{\boldsymbol{\xi}^{\mu}, S_{R}^{\mu}\right\}$
\ldots find a vector \mathbf{w} with $S_{H}^{\mu}=\operatorname{sign}\left(\mathbf{w} \cdot \boldsymbol{\xi}^{\mu}\right)=S_{R}^{\mu}$ for all μ

Note: $\operatorname{sign}\left(\mathbf{w} \cdot \boldsymbol{\xi}^{\mu}\right)=S_{R}^{\mu} \Leftrightarrow \operatorname{sign}\left(\mathbf{w} \cdot \boldsymbol{\xi}^{\mu} S_{R}^{\mu}\right)=1 \Leftrightarrow E^{\mu}=\mathbf{w} \cdot \boldsymbol{\xi}^{\mu} S_{R}^{\mu}>0$ (local potentials E^{μ})
equivalent problem: solve a set of linear inequalities (in w)
... find a vector wor with $E^{\mu}=\mathbf{w} \cdot \boldsymbol{\xi}^{\mu} S_{R}^{\mu} \geq c>0$ for all μ

Instead of inequalities, try to solve P equations for N unknowns:

$$
E^{\mu}=\sum_{j=1}^{N} w_{j} \xi_{j}^{\mu} S^{\mu}=1 \quad \text { for all } \mu=1,2, \ldots, P
$$

(A) if no solution exists, find approximation by least square dev.:
$\operatorname{minimize} f=\frac{1}{2} \sum_{\mu=1}^{P}\left(1-E^{\mu}\right)^{2}$
minimization, e.g. by means of gradient descent with

$$
\nabla_{w} f=-\sum_{\mu=1}^{P}\left(1-E^{\mu}\right) \boldsymbol{\xi}^{\mu} S^{\mu}
$$

(B) if the system is under-determined \rightarrow find a unique solution:
minimize $\frac{1}{2}|\mathbf{w}|^{2} \quad$ under constraints $\quad\left\{E^{\mu}=1\right\}_{\mu=1}^{P}$
Lagrange function $\quad L=\frac{1}{2}|\mathbf{w}|^{2}+\sum_{\mu=1}^{P} \lambda^{\mu}\left(1-E^{\mu}\right)$
necessary conditions for optimum: $\quad \frac{\partial L}{\partial \lambda^{\mu}}=\left(1-E^{\mu}\right) \stackrel{!}{=} 0$

$$
\nabla_{w} L=\mathbf{w}-\sum_{\mu=1}^{P} \lambda^{\mu} \boldsymbol{\xi}^{\mu} S^{\mu} \stackrel{!}{=} 0 \quad \Rightarrow \mathbf{w}=\sum_{\mu=1}^{P} \lambda^{\mu} \boldsymbol{\xi}^{\mu} S^{\mu}
$$

Lagrange parameters ~embedding strengths λ^{μ} (rescaled with N) solution is a linear combination of the data
eliminate weights:

$$
E^{\nu}=\sum_{\mu=1}^{P} \underbrace{\frac{1}{N} \sum_{k=1}^{N}\left(\xi_{k}^{\mu} S^{\mu}\right)\left(\xi_{k}^{\nu} S^{\nu}\right)}_{\equiv C^{\nu \mu}} \lambda^{\mu} \quad \sum_{j=1}^{N} w_{j}^{2} \propto \sum_{\mu, \nu} \lambda^{\nu} C^{\nu \mu} \lambda^{\mu}
$$

simplified problem: $\max _{\lambda} L=-\frac{1}{2} \sum_{\mu, \nu} \lambda^{\nu} C^{\nu \mu} \lambda^{\mu}+\sum_{\mu} \lambda^{\mu}$
gradient ascent with: $\quad \frac{\partial L}{\partial \lambda^{\rho}}=1-\sum_{\mu} C^{\rho \mu} \lambda^{\mu}=\left(1-E^{\rho}\right)$
$\begin{array}{ll}\text { in terms of weights: } & \Delta \mathbf{w} \propto \sum_{\rho}\left(1-E^{\rho}\right) \boldsymbol{\xi}^{\rho} S^{\rho} \\ \text { the same as in (A) !!! }\end{array}$

solving equations?

rename the Lagrange parameters, re-writing the problem:

$$
E^{\nu}=\sum_{\mu=1}^{P} \underbrace{\frac{1}{N} \sum_{k=1}^{N}\left(\xi_{k}^{\mu} S^{\mu}\right)\left(\xi_{k}^{\nu} S^{\nu}\right)} x^{\mu} \sum_{j=1}^{N} w_{j}^{2} \propto \sum_{\mu, \nu} x^{\nu} C^{\nu \mu} x^{\mu}
$$

simplified problem:

$$
\max _{x} L=-\frac{1}{2} \sum_{\mu, \nu} x^{\nu} C^{\nu \mu} x^{\mu}+\sum_{\mu} x^{\mu}
$$

gradient ascent with: $\quad \frac{\partial L}{\partial x^{\rho}}=1-\sum_{\mu} C^{\rho \mu} x^{\mu}=\left(1-E^{\rho}\right)$
in terms of weights:

$$
\Delta \mathbf{w} \propto \sum_{\rho}\left(1-E^{\rho}\right) \boldsymbol{\xi}^{\rho} S^{\rho}
$$

classical algorithm: ADALINE

Adaptive Linear Neuron (Widrow and Hoff, 1960)
Adaline algorithm:

$$
\begin{aligned}
\mathbf{w}(t) & =\mathbf{w}(t-1)+\eta\left(1-E^{\mu(t)}\right) \xi^{\mu(t)} S^{\mu(t)} \\
x^{\mu}(t) & =x^{\mu}(t-1)+\eta\left(1-E^{\mu(t)}\right)
\end{aligned}
$$

sequence $\mu(t)$ of examples
iteration of weights / embedding strengths
more general: training of a linear unit with continuous output

$$
\begin{aligned}
\operatorname{minimize} f & =\frac{1}{2} \sum_{\mu=1}^{P}\left(h^{\mu}-E^{\mu}\right)^{2} \quad \text { with } h^{\mu} \in \mathbb{R}, \mu=1,2 \ldots, P \\
f & =\frac{1}{2} \sum_{\mu=1}^{P}\left(y^{\mu}-\mathbf{w}^{\top} \boldsymbol{\xi}^{\mu}\right)^{2} \quad \text { with } y^{\mu}=h^{\mu} S^{\mu}
\end{aligned}
$$

gradient based learning for linear regression (MSE) frequent strategy: regression as a proxy for classification
youtube video "science in action" with Bernard Widrow
http: / /www.youtube.com/watch?v=IEFRtz68m-8

Introduction:

- supervised learning, clasification, regression
- machine learning "vs." statistical modeling

Early (important!) approaches:

- linear threshold classifier, Rosenblatt's Perceptron
- adaptive linear neuron, Widrow and Hoff's Adaline

From Perceptron to Support Vector Machine

- large margin classification
- beyond linear separability

Distance-based systems

- prototypes: K-means and Vector Quantization
- from K-Neares_Neighbors to Learning Vector Quantization
- adaptive distance measures and relevance learning

Optimal stability by quadratic optimization

minimize $\frac{1}{2} \mathbf{w}^{2} \quad$ subject to inequality constraints $\quad\left\{E^{\mu}=\mathbf{w}^{\top} \boldsymbol{\xi}^{\mu} S_{R}^{\mu} \geq 1\right\}_{\mu=1}^{P}$

Note: the solution $\quad \mathbf{w}_{\max }$ of the problem yields stability $\quad \kappa_{\max }=\frac{1}{\left|\mathbf{w}_{\max }\right|}$

Notation:

correlation matrix $C \in \mathbb{R}^{P \times P} \quad$ (outputs incorporated)
with elements $\quad C^{\mu \nu}=\frac{1}{N} S_{R}^{\mu} S_{R}^{\nu} \boldsymbol{\xi}^{\mu} \cdot \boldsymbol{\xi}^{\nu}=\frac{1}{N} S_{R}^{\mu} S_{R}^{\nu} \sum_{j=1}^{N} \xi_{j}^{\mu} \xi_{j}^{\nu}$
P-vectors: $\quad \vec{x}=\left(x^{1}, x^{2}, \ldots x^{P}\right)^{\top} \in \mathbb{R}^{P}, \quad \vec{E}=\left(E^{1}, E^{2}, \ldots E^{P}\right)^{\top} \in \mathbb{R}^{P}$
inequalities
"one-vector": $\quad \overrightarrow{1}=(1,1, \ldots, 1)^{\top} \in \mathbb{R}^{P}$

$$
\begin{aligned}
& \vec{E}=C \vec{x} \quad \text { with components } E^{\mu}=\sum_{\nu=1}^{P} C^{\mu \nu} x^{\nu}=\left(\frac{1}{N} \sum_{\nu=1}^{P} x^{\nu} \boldsymbol{\xi}^{\nu} S_{R}^{\nu}\right) \cdot \xi^{\mu} S_{R}^{\mu} \\
& \mathbf{w}^{2}=\frac{1}{N} \vec{x}^{\top} C \vec{x} \geq 0 \quad \text { quadratic form } \quad \mathbf{w}^{2}=\frac{1}{N} \sum_{\mu=1}^{P} x^{\mu} E^{\mu}=\frac{1}{N} \sum_{\mu, \nu=1}^{P} x^{\mu} C^{\mu \nu} x^{\nu}
\end{aligned}
$$

(C is positive semi-definite)

Optimal stability by quadratic optimization

$$
\text { minimize } \frac{1}{2} \mathbf{w}^{2} \text { subject to inequality constraints }\left\{E^{\mu}=\mathbf{w}^{\top} \boldsymbol{\xi}^{\mu} S_{R}^{\mu} \geq 1\right\}_{\mu=1}^{P}
$$

Note: the solution $\quad \mathbf{w}_{\max }$ of the problem yields stability $\quad \kappa_{\max }=\frac{1}{\left|\mathbf{w}_{\max }\right|}$

We can formulate optimal stability completely in terms of embedding strengths:

$$
\underset{\vec{x}}{\operatorname{minimize}} \quad \frac{1}{2} \vec{x}^{\top} C \vec{x} \quad \text { subject to linear constraints } \quad \vec{E}=C \vec{x} \geq \overrightarrow{1}
$$

This is a special case of a standard problem in Quadratic Programming: minimize a nonlinear function under linear inequality constraints

Optimization theory: Kuhn-Tucker theorem
see, e.g., R. Fletcher, Practical Methods of Optimization (Wiley, 1987) or http://wikipedia.org "Karush-Kuhn-Tucker-conditions" for a quick start necessary conditions for a local solution of a general non-linear optimization problem with equality and inequality constraints

Max. stability: Kuhn-Tucker theorem for a special non-linear optimization problem

$$
\operatorname{minimize}_{\vec{x}} \frac{1}{2} \vec{x}^{\top} C \vec{x} \text { subject to } C \vec{x} \geq \overrightarrow{1}
$$

Lagrange function: $\quad \mathcal{L}(\vec{x}, \vec{\lambda})=\frac{1}{2} \vec{x}^{\top} C \vec{x}-\vec{\lambda}^{\top}(C \vec{x}-\overrightarrow{1})$
Any solution can be represented by a Kuhn-Tucker (KT) point \vec{x}^{*} with:
$\vec{x}^{*} \geq \overrightarrow{0} \quad\left(\vec{x}^{*} \neq \overrightarrow{0}\right)$
$C \vec{x}^{*} \geq \overrightarrow{1}$
$x^{* \mu}\left(1-\left[C \vec{x}^{*}\right]^{\mu}\right)=0$ for all μ complementarity
implies also: $\vec{x}^{* T} C \vec{x}^{*}=\vec{x}^{* T} \vec{E}^{*}=\vec{x}^{* T} \overrightarrow{1}$
straightforward to show:
\rightarrow all KT-points yield the same unique perceptron weight vector
\rightarrow any local solution is globally optimal

Duality, theory of Lagrange multipliers \rightarrow equivalent formulation (Wolfe dual):

$$
\underset{\vec{x}}{\operatorname{maximize}} \tilde{f}=-\frac{1}{2} \vec{x}^{T} C \vec{x}+\vec{x}^{T} \overrightarrow{1}
$$

absent in the Adaline problem

Duality, theory of Lagrange multipliers \rightarrow equivalent formulation (Wolfe dual):

$$
\underset{\vec{x}}{\operatorname{maximize}} \tilde{f}=-\frac{1}{2} \vec{x}^{T} C \vec{x}+\vec{x}^{T} \overrightarrow{1} \quad \text { subject to } \quad \vec{x} \geq 0
$$

AdaTron algorithm: (Adaptive PercepTron)

- sequential presentation of examples $\mathbb{D}=\left\{\boldsymbol{\xi}^{\mu}, S^{\mu}\right\}$
- gradient ascent w.r.t. \tilde{f}, projected onto $\vec{x} \geq 0$

$$
x^{\mu} \rightarrow \max \left\{0, x^{\mu}+\eta\left(1-[C \vec{x}]^{\mu}\right)\right\} \quad(0<\eta<2)
$$

Duality, theory of Lagrange multipliers \rightarrow equivalent formulation (Wolfe dual):

$$
\underset{\vec{x}}{\operatorname{maximize}} \tilde{f}=-\frac{1}{2} \vec{x}^{T} C \vec{x}+\vec{x}^{T} \overrightarrow{1} \quad \text { subject to } \quad \vec{x} \geq 0
$$

AdaTron algorithm: (Adaptive PercepTron)

- sequential presentation of examples $\mathbb{D}=\left\{\boldsymbol{\xi}^{\mu}, S^{\mu}\right\}$
- gradient ascent w.r.t. \tilde{f}, projected onto $\vec{x} \geq 0$

$$
x^{\mu} \rightarrow \max \left\{0, x^{\mu}+\eta\left(1-[C \vec{x}]^{\mu}\right)\right\} \quad(0<\eta<2)
$$

for the proof of convergence one can show:

- for an arbitrary $\vec{x} \geq 0$ and a KT point $\vec{x}^{*}: \quad \tilde{f}\left(\vec{x}^{*}\right) \geq \tilde{f}(\vec{x})$
- $\tilde{f}(x)$ is bounded from above in $\vec{x} \geq 0$
- $\tilde{f}(x)$ increases in every cycle through \mathbb{D}, unless a KT point has been reached

Support Vectors

complementarity condition: $x^{\mu}\left(1-E^{\mu}\right)=0$ for all μ
i.e. either $\left\{\begin{array}{l}E^{\mu}=1 \\ x^{\mu} \geq 0\end{array}\right\} \quad$ or $\quad\left\{\begin{array}{l}E^{\mu}>1 \\ x^{\mu}=0\end{array}\right\}$
examples ... have to be embedded or ... are stabilized "automatically"

... (including max. stability) is only possible if

- the data set is linearly separable
... even then, it only makes sense if
- the unknown rule is a linearly separable function
- the data set is reliable (noise-free)

lin. separable

nonlin. boundary

noisy data (?)

Classification beyond linear separability

assume $\quad I D=\left\{\boldsymbol{\xi}^{\mu}, S^{\mu}\right\}$ is not linearly separable - what can we do? potential reasons: noisy data, more complex problem

- accept an approximation by a linearly separable function
- large margins with errors
admit disagreements w.r.t. training data, but keep basic idea of optimal stability

$$
\begin{array}{r}
\operatorname{minimize}_{\mathbf{w}, \beta} \quad \frac{1}{2} \mathbf{w}^{2}+\gamma \sum_{\mu=1}^{P} \beta^{\mu} \quad \text { subject to } E^{\mu} \geq 1-\beta^{\mu} \\
\text { and } \beta^{\mu} \geq 0 \text { for all } \mu
\end{array}
$$

slack variables $\left\{\begin{array}{l}\beta^{\mu}=0 \leftrightarrow E^{\mu} \geq 1 \\ \beta^{\mu}>0 \leftrightarrow E^{\mu}<1 \quad \text { includes errors with } E^{\mu}<0\end{array}\right.$
rewritten in terms of embedding strengths (see above for notation)

$$
\begin{array}{r}
\operatorname{minimize}_{\vec{x}, \vec{\beta}} \quad \frac{1}{2} \vec{x}^{\top} C \vec{x}+\gamma \vec{\beta} \cdot \overrightarrow{1} \quad \text { subject to } C \vec{x} \geq \overrightarrow{1}-\vec{\beta} \\
\text { and } \vec{\beta} \geq 0
\end{array}
$$

dual problem: (elimination of slack variables!)

$$
\operatorname{maximize}_{\vec{x}} \quad-\frac{1}{2} \vec{x}^{\top} C \vec{x}+\overrightarrow{1} \cdot \vec{x} \quad \text { subject to } 0 \leq \vec{x} \leq \gamma \overrightarrow{1}
$$

positive and upper-bounded embedding strengths
parameter y - limits the growth of x^{μ} for misclassified data points

- controls a compromise between aims of large margin and low error
- has to be chosen appropriately, e.g. by validation methods (later chapter) note: even for lin. sep. data the optimum can include misclassifications!
- does not (in general) minimize the number of errors
university of groningen
example algorithm:
AdaTron with errors (projected gradient ascent)
$\tilde{x^{\mu}} \leftarrow x^{\mu}+\eta\left(1-[C \vec{x}]^{\mu}\right) \quad$ gradient step
$\hat{x^{\mu}} \leftarrow \max \left\{0, \tilde{x^{\mu}}\right\} \quad$ enforce non-negative embeddings
$x^{\mu} \leftarrow \min \left\{\gamma, \hat{x^{\mu}}\right\} \quad$ limit embedding strenghts to $x^{\mu} \leq \gamma$

Classification beyond linear separability

assume $\quad \mathbb{D}=\left\{\boldsymbol{\xi}^{\mu}, S^{\mu}\right\}$ is not linearly separable - what can we do?
potential reasons: noisy data, more complex problem

- accept an approximation by a linearly separable function
- construct more complex architectures from perceptron-like units. e.g. multilayer networks (universal classificators, difficult training)
- consider ensembles of perceptrons train several student perceptrons

$$
S^{(j)}=\operatorname{sign}\left[\mathbf{w}^{(j)} \cdot \boldsymbol{\xi}\right]
$$

combine the $S^{(j)}$ into an ensemble classifier, e.g. by majority vote $S_{H}=\operatorname{sign}\left[\sum_{j} S^{(j)}\right]$
competing aims:

- each student should make a small number of errors
- the perceptrons should differ significantly
- employ a linear decision boundary, but after a non-linear transformation of the data to an M-dim. feature space ($M=N$ is possible, but not required)

$$
\begin{array}{rr}
S_{H}(\boldsymbol{\xi})=\operatorname{sign}[\underline{W} \cdot \underline{\Psi}(\boldsymbol{\xi})] \quad \text { with } \underline{W} \in \mathbb{R}^{M} & \text { M-dim. weight vector } \\
\underline{\Psi}(\boldsymbol{\xi}) \in \mathbb{R}^{M} & \text { non-linear transformation } \\
\mathbb{R}^{N} \rightarrow \mathbb{R}^{M}
\end{array}
$$

for a given, explicit transformation $\underline{\Psi}(\boldsymbol{\xi})$, perceptron training can be applied in \mathbb{R}^{M}

The Support Vector Machine

- Perceptron of optimal stability: support vectors
- SVM: non-linear transformation to high-dim. feature space
- implicit kernel formulation, Mercer's theorem
history: www.svms.org
- Vapnik and Lerner (1963) introduce the Generalized Portrait algorithm
- Aizerman, Braverman and Rozonoer (1964) introduced the geometrical interpretation of the kernels
- Vapnik and Chervonenkis (1964) further develop the Generalized Portrait algorithm.
- Vapnik (1982) wrote an English translation of his 1979 book.
- SVMs close to their current form were first introduced with a paper at the COLT 1992 conference (Boser, Guyon and Vapnik 1992).
- In 1995 the soft margin classifier was introduced by Cortes and Vapnik (1995)
basic idea:
employ a linear decision boundary, but after a non-linear transformation of the data $S_{H}^{\mu}=\operatorname{sign}\left[\underline{W} \cdot \underline{\Psi}\left(\boldsymbol{\xi}^{\mu}\right)\right], \quad \boldsymbol{\xi} \in \mathbb{R}^{N} \rightarrow \underline{\Psi}(\boldsymbol{\xi}) \in \mathbb{R}^{M} \quad$ with weights $\underline{W} \in \mathbb{R}^{M}$

SVM: transformation with $\mathrm{M}>\mathrm{N}$ to high-dim. feature space
An illustrative example (c/o R. Dietrich, PhD thesis)
consider original, two-dimensional data $\left(x_{1}, x_{2}\right)$

basic idea:
employ a linear decision boundary, but after a non-linear transformation of the data $S_{H}^{\mu}=\operatorname{sign}\left[\underline{W} \cdot \underline{\Psi}\left(\boldsymbol{\xi}^{\mu}\right)\right], \quad \boldsymbol{\xi} \in \mathbb{R}^{N} \rightarrow \underline{\Psi}(\boldsymbol{\xi}) \in \mathbb{R}^{M} \quad$ with weights $\underline{W} \in \mathbb{R}^{M}$

SVM: transformation with $\mathrm{M}>\mathrm{N}$ to high-dim. feature space
An illustrative example (c/o R. Dietrich, PhD thesis)
consider original, two-dimensional data $\left(x_{1}, x_{2}\right)$
and the non-linear transformed data $\quad \underline{\Psi}\left(x_{1}, x_{2}\right)=\left(x_{1}^{2}, \sqrt{2} x_{1} x_{2}, x_{2}\right) \in \mathbb{R}^{3}$

basic idea:
employ a linear decision boundary, but after a non-linear transformation of the data $S_{H}^{\mu}=\operatorname{sign}\left[\underline{W} \cdot \underline{\Psi}\left(\boldsymbol{\xi}^{\mu}\right)\right], \quad \boldsymbol{\xi} \in \mathbb{R}^{N} \rightarrow \underline{\Psi}(\boldsymbol{\xi}) \in \mathbb{R}^{M} \quad$ with weights $\underline{W} \in \mathbb{R}^{M}$

SVM: transformation with $\mathrm{M}>\mathrm{N}$ to high-dim. feature space
An illustrative example (c/o R. Dietrich, PhD thesis)
consider original, two-dimensional data $\left(x_{1}, x_{2}\right)$ and the non-linear transformed data $\quad \underline{\Psi}\left(x_{1}, x_{2}\right)=\left(x_{1}^{2}, \sqrt{2} x_{1} x_{2}, x_{2}\right) \in \mathbb{R}^{3}$

$$
S^{\mu}=\operatorname{sign}\left(\underline{W} \cdot \underline{\Psi}\left(x_{1}, x_{2}\right)\right) \quad \text { with } \quad \vec{W}=(1,1,-1)
$$

the non-separable classification in \mathbb{R}^{2} becomes linearly separable in \mathbb{R}^{3}
assume: transformation guarantees linear separability of $\quad\left\{\underline{\Psi}\left(\xi^{\mu}\right), S^{\mu}\right\}$
\rightarrow a vector \underline{W} exists with $S_{H}^{\mu}=\operatorname{sign}\left(\underline{W} \cdot \underline{\Psi}\left(\xi^{\mu}\right)\right)$ for all μ.
optimal stability:

$$
\underset{\underline{W}}{\operatorname{maximize}} \kappa(\underline{W}) \quad \text { where } \quad \kappa(\underline{W})=\min _{\mu}\left\{\kappa^{\mu}=\frac{\underline{W} \cdot \underline{\Psi}\left(\xi^{\mu}\right) S^{\mu}}{|\underline{W}|}\right\}
$$

Exact same structure as the original perceptron problem - all above results from optimization theory apply accordingly
assume: transformation guarantees linear separability of $\left\{\underline{\Psi}\left(\xi^{\mu}\right), S^{\mu}\right\}$
\rightarrow a vector \underline{W} exists with $S_{H}^{\mu}=\operatorname{sign}\left(\underline{W} \cdot \underline{\Psi}\left(\xi^{\mu}\right)\right)$ for all μ.
optimal stability:
$\underset{\underline{W}}{\operatorname{maximize}} \kappa(\underline{W}) \quad$ where $\quad \kappa(\underline{W})=\min _{\mu}\left\{\kappa^{\mu}=\frac{\underline{W} \cdot \underline{\Psi}\left(\boldsymbol{\xi}^{\mu}\right) S^{\mu}}{|\underline{W}|}\right\}$

Exact same structure as the original perceptron problem - all above results from optimization theory apply accordingly
re-formulate:

$$
\underset{\vec{X}}{\operatorname{minimize}} \frac{1}{2} \vec{X}^{T} \Gamma \vec{X} \quad \text { subject to } \quad \Gamma \vec{X} \geq \overrightarrow{1}
$$

here:

$$
\begin{aligned}
& \underline{W}=\frac{1}{M} \sum_{\mu=1}^{P} X^{\mu} \underline{\Psi}\left(\xi^{\mu}\right) S^{\mu} \quad \Gamma^{\mu \nu}=\frac{1}{M} S^{\mu} \underline{\Psi}\left(\xi^{\mu}\right) \cdot \underline{\Psi}\left(\xi^{\nu}\right) S^{\nu} \\
& \underline{W}^{2}=\frac{1}{M} \vec{X}^{T} \Gamma \vec{X}
\end{aligned}
$$

Kernel formulation

consider the function $K: \mathbb{R}^{N} \times \mathbb{R}^{N} \rightarrow \mathbb{R}$ with $K\left(\xi^{\mu}, \xi^{\nu}\right)=\frac{1}{M} \underline{\Psi}\left(\xi^{\mu}\right) \cdot \underline{\Psi}\left(\xi^{\nu}\right)$
re-write in terms of this kernel function

- the classification scheme: $\quad S_{H}(\boldsymbol{\xi})=\operatorname{sign}(\underline{W} \cdot \underline{\Psi}(\boldsymbol{\xi}))$

$$
=\operatorname{sign}\left(\sum_{\mu=1}^{P} X^{\mu} S^{\mu} \underline{\Psi}\left(\boldsymbol{\xi}^{\mu}\right) \cdot \underline{\Psi}(\boldsymbol{\xi})\right)=\operatorname{sign}\left(\sum_{\mu=1}^{P} X^{\mu} S^{\mu} K\left(\boldsymbol{\xi}^{\mu}, \boldsymbol{\xi}\right)\right)
$$

Kernel formulation

consider the function $K: \mathbb{R}^{N} \times \mathbb{R}^{N} \rightarrow \mathbb{R}$ with $K\left(\xi^{\mu}, \xi^{\nu}\right)=\frac{1}{M} \underline{\Psi}\left(\xi^{\mu}\right) \cdot \underline{\Psi}\left(\xi^{\nu}\right)$
re-write in terms of this kernel function

- the classification scheme: $\quad S_{H}(\boldsymbol{\xi})=\operatorname{sign}(\underline{W} \cdot \underline{\Psi}(\boldsymbol{\xi}))$

$$
=\operatorname{sign}\left(\sum_{\mu=1}^{P} X^{\mu} S^{\mu} \underline{\Psi}\left(\boldsymbol{\xi}^{\mu}\right) \cdot \underline{\Psi}(\boldsymbol{\xi})\right)=\operatorname{sign}\left(\sum_{\mu=1}^{P} X^{\mu} S^{\mu} K\left(\boldsymbol{\xi}^{\mu}, \boldsymbol{\xi}\right)\right)
$$

- training algorithms for the embedding strengths, just one example:

Kernel AdaTron $\quad X^{\mu} \rightarrow \max \left\{0, X^{\mu}+\eta\left(1-S^{\mu} \sum_{\nu=1}^{P} S^{\nu} X^{\nu} K\left(\boldsymbol{\xi}^{\mu}, \boldsymbol{\xi}^{\nu}\right)\right)\right\}$

Kernel formulation

consider the function $K: \mathbb{R}^{N} \times \mathbb{R}^{N} \rightarrow \mathbb{R}$ with $K\left(\boldsymbol{\xi}^{\mu}, \boldsymbol{\xi}^{\nu}\right)=\frac{1}{M} \underline{\Psi}\left(\boldsymbol{\xi}^{\mu}\right) \cdot \underline{\Psi}\left(\boldsymbol{\xi}^{\nu}\right)$
re-write in terms of this kernel function

- the classification scheme: $\quad S_{H}(\boldsymbol{\xi})=\operatorname{sign}(\underline{W} \cdot \underline{\Psi}(\boldsymbol{\xi}))$

$$
=\operatorname{sign}\left(\sum_{\mu=1}^{P} X^{\mu} S^{\mu} \underline{\Psi}\left(\boldsymbol{\xi}^{\mu}\right) \cdot \underline{\Psi}(\boldsymbol{\xi})\right)=\operatorname{sign}\left(\sum_{\mu=1}^{P} X^{\mu} S^{\mu} K\left(\boldsymbol{\xi}^{\mu}, \boldsymbol{\xi}\right)\right)
$$

- training algorithms for the embedding strengths, just one example:

Kernel AdaTron $\quad X^{\mu} \rightarrow \max \left\{0, X^{\mu}+\eta\left(1-S^{\mu} \sum_{\nu=1}^{P} S^{\nu} X^{\nu} K\left(\boldsymbol{\xi}^{\mu}, \boldsymbol{\xi}^{\nu}\right)\right)\right\}$

- no explicit use of the transformed feature vectors $\underline{\Psi}(\boldsymbol{\xi})$
- only dot-products required, which can be expressed in terms of the kernel
so far: define non-linear $\underline{\Psi}(\boldsymbol{\xi}) \in \mathbb{R}^{M}$, find corresponding kernel function $K\left(\boldsymbol{\xi}^{\mu}, \boldsymbol{\xi}^{\nu}\right)$
now: as we will never use $\underline{\Psi}(\boldsymbol{\xi})$ explicitly, why not start with defining a kernel function in the first place?
for practical purposes, we need not know $\underline{\Psi}$ nor its dimension M
Question: does a given kernel K correspond to some valid transformation $\underline{\Psi}$?
so far: define non-linear $\underline{\Psi}(\boldsymbol{\xi}) \in \mathbb{R}^{M}$, find corresponding kernel function $K\left(\boldsymbol{\xi}^{\mu}, \boldsymbol{\xi}^{\nu}\right)$
now: as we will never use $\underline{\Psi}(\boldsymbol{\xi})$ explicitly, why not start with defining a kernel function in the first place?
for practical purposes, we need not know $\underline{\Psi}$ nor its dimension M
Question: does a given kernel K correspond to some valid transformation Ψ ?

Mercer's Theorem (sufficient condition)
a given kernel function K can be written as $K\left(\boldsymbol{\xi}^{\mu}, \boldsymbol{\xi}^{\nu}\right)=\underline{\Psi}\left(\boldsymbol{\xi}^{\mu}\right) \cdot \underline{\Psi}\left(\boldsymbol{\xi}^{\nu}\right)$, if $\iint g\left(\boldsymbol{\xi}^{\mu}\right) K\left(\boldsymbol{\xi}^{\mu}, \boldsymbol{\xi}^{\nu}\right) g\left(\boldsymbol{\xi}^{\nu}\right) d^{N} \xi^{\mu} d^{N} \xi^{\nu} \geq 0 \quad$ holds true for all functions g with finite norm $\int g(\boldsymbol{\xi})^{2} d^{N} \boldsymbol{\xi}<\infty$
popular classes of kernels (which satisfy Mercer's conditon)

- polynomial kernels of degree (up to) q, e.g.

$$
K\left(\boldsymbol{\xi}^{\mu}, \boldsymbol{\xi}\right)=\left(1+\boldsymbol{\xi}^{\mu} \cdot \boldsymbol{\xi}\right)^{q} \quad \text { yields } \quad S_{H}(\boldsymbol{\xi})=\operatorname{sign}\left[\sum_{\mu=1}^{P} X^{\mu} S^{\mu}\left(1+\boldsymbol{\xi}^{\mu} \cdot \boldsymbol{\xi}\right)^{q}\right]
$$

linear kernel $(q=1)$
$\begin{array}{ll}K\left(\boldsymbol{\xi}^{\mu}, \boldsymbol{\xi}\right)=\left(1+\boldsymbol{\xi}^{\mu} \cdot \boldsymbol{\xi}\right) \quad \text { yields } & S_{H}(\boldsymbol{\xi})=\operatorname{sign}\left[\begin{array}{c}\left.\Theta+\sum_{\mu=1}^{P} X^{\mu} S^{\mu} \boldsymbol{\xi}^{\mu} \cdot \boldsymbol{\xi}\right] \\ =\text { perceptron with threshold in original space }\end{array}\right] \\ \sum_{\mu} X^{\mu} S^{\mu}\end{array}$
popular classes of kernels (which satisfy Mercer's conditon)

- polynomial kernels of degree (up to) q, e.g.

$$
K\left(\boldsymbol{\xi}^{\mu}, \boldsymbol{\xi}\right)=\left(1+\boldsymbol{\xi}^{\mu} \cdot \boldsymbol{\xi}\right)^{q} \quad \text { yields } \quad S_{H}(\boldsymbol{\xi})=\operatorname{sign}\left[\sum_{\mu=1}^{P} X^{\mu} S^{\mu}\left(1+\boldsymbol{\xi}^{\mu} \cdot \boldsymbol{\xi}\right)^{q}\right]
$$

linear kernel $(q=1)$
$K\left(\boldsymbol{\xi}^{\mu}, \boldsymbol{\xi}\right)=\left(1+\boldsymbol{\xi}^{\mu} \cdot \boldsymbol{\xi}\right) \quad$ yields $\quad S_{H}(\boldsymbol{\xi})=\operatorname{sign}\left[\underset{\uparrow}{\Theta}+\sum_{\mu=1}^{P} X^{\mu} S^{\mu} \boldsymbol{\xi}^{\mu} \cdot \boldsymbol{\xi}\right]$
$=$ perceptron with threshold in original space

$$
\sum_{\mu} X^{\mu} S^{\mu}
$$

quadratic kernel $\quad(q=2)$
$K\left(\boldsymbol{\xi}^{\mu}, \boldsymbol{\xi}\right)=\left(1+\boldsymbol{\xi}^{\mu} \cdot \boldsymbol{\xi}\right)^{2}==1+2 \sum_{j} \xi_{j}^{\mu} \xi_{j}+\sum_{j, k} \xi_{j}^{\mu} \xi_{k}^{\mu} \xi_{j} \xi_{k}$
-> perceptron with respect to feature vectors containing all single and products of 2 original features

$$
\left.\left(\xi_{1}, \xi_{2}, \ldots, \xi_{N}, \xi_{1} \xi_{1}, \xi_{1} \xi_{2}, \ldots, \ldots, \xi_{N=1} \xi_{N}, \xi_{N} \xi_{N}\right)^{T} \quad \text { i.e. } \quad M=N+N-1\right) / 2
$$

- Radial basis function (RBF) kernel

$$
K\left(\boldsymbol{\xi}^{\mu}, \boldsymbol{\xi}\right)=\exp \left[-\frac{\left|\boldsymbol{\xi}^{\mu}-\boldsymbol{\xi}\right|^{2}}{2 \sigma}\right]
$$

involves all powers of the features, " $M \rightarrow \infty$ " so much for the "curse of dimensionality"
attractive aspects of the SVM approach:

- optimization problem is uniquely solvable (no local minima)
- efficient training algorithms are known ("kernelized" max. stability algorithms)
- maximum stability facilitates good generalization ability
... if the kernel (its parameters) is (are) appropriately chosen
in practice:
- select simple kernels, allow for violations of some of the linear constraints by means of slack variables (e.g. kernel-version of Adatron with errors, see above)
- choose kernel (kernel parameters) by means of cross-validation procedures
- use approximate schemes for huge amounts of data (many support vectors)

Learning with Kernels

Support Vector Machines, Regularization,
Optimization and Beyond

Bernhard Schölkopf and Alexander Smola

学
*
*
*

