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background: Statistical Physics, Computational Physics 
                    Neural Networks, Stat. Phys. of Learning 
                    Monte Carlo simulations of non-equilibrium processes 

“recent”:       Machine Learning: theory, algorithm development 
                    mostly in supervised learning, classification 
                    application areas: biomedical data ...  
                                                astroinformatics (very recently)  
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Here, emphasis on:  
•  theoretical background  
•  mathematical foundations 
•  basic classical algorithms  
    and methods 
•  how and why do they work? 
•  pitfalls and challenges 
•  tutorials: implementation, 
    hands-on experiments 

                                   machine learning  

unfortunate, risky tendency:  
•  “blind” application of very  
     complex tools  (SVM, DNN,...) 
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last slide:  take home messages  

Start simple!   

Start simple:  
            - e.g. K-NN classifier, linear regression, PCA, k-means 
            - compare to baseline algorithms 
            - increase level of sophistication if necessary / promising 
            - the latest trend is not necessarily the best for your problem 

Accuracy is not enough:  
           - try to obtain insight  
           - employ interpretable models/systems, vsualization 
           - proper testing/validation with respect to suitable measures 
           - beware of artefacts, biased data sets ...  
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Introduction: 
•  supervised learning, clasification, regression 
•  machine learning “vs.” statistical modeling  
•  K-means and Vector Quantization 

 
Early algorithms (yet still important) 

•  linear threshold classifier,  Rosenblatt’s Perceptron  
•  adaptive linear neuron, Widrow and Hoff’s Adaline  

 
From Perceptron to Support Vector Machine 

•  large margin classification 
•  beyond linear separability  

 Distance-based systems 
•  prototypes: K-means and Vector Quantization 
•  from K-Nearest_Neighbors to Learning Vector Quantization  
•  adaptive distance measures and relevance learning 

 

                            supervised learning  
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                            supervised learning  

classification / regression  

frequent workflow:  
example data                  model 
                  

training 

linear regression 
         machine learning vs. statistical modelling 
linear threshold classifiers 
         from the perceptron to support vector machines  
prototypes and distance-based classifiers 
         from K-means to Learning Vector Quantization 
non-linear regression  
         (shallow) neural networks  
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                            supervised learning  

classification / regression 

frequent workflow:  
example data                  model                     apply to novel data 
                                                                     generalization 
 
      
                  

training working 

validation  
      estimation of expected performance 
      avoid over-fitting, facilitate model selection 
      cope with bias and variance dilemma 
 



IAC Winter School November 2018, La Laguna 8 

 ‘4’ 

 A 

’13’ 

 B 

‘6’ 

 A 

’11’ 

 B 

 ‘8’ 

 A 

input  
(data) 

output 
(class label)  

’7’ 

 ? 

classification 

question 

answer  

consistent hypotheses: 

odd         →    B 

   <=10      →    A  



IAC Winter School November 2018, La Laguna 9 

 ‘4’ 

 A 

’13’ 

 B 

‘6’ 

 A 

’11’ 

 B 

 ‘8’ 

 A 

input  
(data) 
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space of consistent hypotheses shrinks with increasing # of examples 
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input  
(data) 

output 
(class label)  

 apple 

representation/features 

question 

answer 

selected features: 

pear apple apple pear apple 

~ color  
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input  
(data) 

output 
(class label)  

pear 

question 

answer 

selected features: 

pear apple apple pear apple 

~ shape 

apple 

representation/features 

selection of possible features 
for the representation of data  
    - is an important step in model design 
    - can be part of the training process  
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        classification problems 

- character/digit/speech recognition 
- medical diagnosis 
- pixel-wise segmentation in image processing 
- object recognition/scene analysis 
- galaxy classification  
- .... 

machine  learning  approach: 
extract information from example data  
parameterized in a learning system (neural network, LVQ, SVM...) 
working phase: application to novel data 

assign an observation (data) to one of C classes/categories 
here, we consider exclusively numerical, ‘vectorial’ data 
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regression 

912 kg        617 kg               489 kg            820  kg              591 kg 

“input”  (example data: images, measured quantites, numerical features) 

“output” (weight) 

prediction of weight ?  explicit mathematical/statistical model 
e.g. 
 
 
 
with adaptive parameters α,β,γ 
inferred from example data (= learning)  

a 
b m = �

�
a↵ · b�

�

a, b [inch], m [lb] ↵ = 1,� = 2, � = 1/300
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theory: expanding universe 
velocity of far away galaxies 
is proportional to their 
distance: 

v

D

[Edwin Hubble, PNAS 15(3): 168-73 1929] 

Hubble constant 

H
o

= 73.52(±1.62)
km/s

Mpc

1929:  

2018: 

H
o

= 500
km/s

Mpc

v = H
o

D

linear regression: historical example 

more general problem:       N-dimensional arguments 
multiple linear regression               real valued targets y 2 IR

(more & better data)  

⇠ 2 IRN
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“Machine Learning vs. Statistical Modeling”  

“The short answer is that there is no difference” 

“Whatever machine learning will look like in ten years, I’m sure    
 statisticians will be whining that they did it earlier and better” 

“ML is simply statistics, the rest is marketing” 

“Machine learning is the new statistics” 

“Statistics is only for small data sets, ML is for big data” 

“Statistical modeling has led to irrelevant theory and  
 questionable conclusions”  

“All ML systems are heuristic black-boxes” 
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Machine Learning and Statistical Modeling 
 -  extract information from data/observations 
-  formalize/parameterize the obtained information  
-  create and fit ‘models’ 
-  often employ closely related methods from different perspectives 

Statistical Modeling Machine Learning 

emphasis: inference 
- explain/understand data  
   in terms of explicit models  
- verify assumptions/hypotheses, 
   significance/confidence  

emphasis: prediction 
- discover patterns in the data 
   with no/few explicit assumptions 
- achieve good performance  
   w.r.t. novel data 

- can be used for prediction 
   e.g. in Bayesian classification 

- may also aim at understanding 
   e.g. in relevance learning 

“Machine Learning vs. Statistical Modeling”  
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             linear regression  (machine learning) 

given.:  hypothesis: (approx.) linear relation 

heuristics, direct treatment:  
coefficients with minimal  
quadratic deviation (Mean Square Error) 

yµ 2 IR

(no explicit model of the deviations)  

remark: constant term formally via ‘clamped input component’, e.g.  

⇠µ2IRN fH(x) = w

>⇠ w, ⇠ 2 IRN

E =
1

2

PX

µ=1


w>⇠µ � yµ

�2

ID = {⇠µ, yµ}Pµ=1

w̃ = (w1, w2, . . . , wN , ✓)> 2 IRN+1

⇠̃
µ
= (⇠µ1 , ⇠

µ
2 , . . . , ⇠

µ
N ,�1)> 2 IRN+1

) w̃>⇠̃ = w>⇠ � ✓
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             linear regression  (machine learning) 

explicit, formal solution 

= X> (Xw � Y )Y = [y1, y2, . . ., yP ]>

(Moore-Penrose) pseudo-inverse 
of rectangular matrix X 

2 IRP

if            exists 

(necessary condition:  P ≥ N ) 

= 0  ?  

E =
1

2

PX

µ=1


w>⇠µ � yµ

�2
rwE =

PX

µ=1


w>⇠µ � yµ

�
⇠µ

X = [⇠1, ⇠2, . . ., ⇠P ]>

w⇤ = [X>X]�1 X> Y

[X>X]�1

(P ⇥N)

NxN NxP 
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if                      exists 

regularization (machine learning) 

modification for singular matrices  
(e.g. too few data points and/or dependencies/correlations)  

N-dimensional identity I 

� > 0 guarantees existence of the inverse, 
resulting  w* corresponds to the minimum of  

penalty for large  
norm of weights 

an example of regularization  - a general concept in supervised ML 
limiting the flexibility of an ML system can be beneficial  

E� =
1

2

PX

µ=1


w>⇠µ � yµ

�2
+

1

2
�w2

w⇤ = [X>X]�1 X> Y [X>X]�1

w⇤ = [X>X + �I ]�1 X> Y

X>X
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model: explain observed data as (independently) generated by  

log-likelihood of the observed data, ...  

available set of data  

⌘µ N (0,�2)deviations       according to  i.e. 

             linear regression (statistical modeling) 

ID = {⇠µ, yµ}Pµ=1

p(y | ⇠,w) = N (y | w>⇠,�2) / exp


� 1

2�2

�
y �w>⇠

�2
�

yµ = w>⇠µ + ⌘µ

p(ID | w) =
PY

µ=1

p(yµ | ⇠µ,w)
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log-likelihood of the observed data ...  

Maximum Likelihood estimate corresponds to MSE solution! 

             linear regression (statistical modeling) 

... is maximized when E is minimized w.r.t. the weight vector 

model: explain observed data as (independently) generated by  

available set of data  

⌘µ N (0,�2)deviations       according to  i.e. 

ID = {⇠µ, yµ}Pµ=1

p(y | ⇠,w) = N (y | w>⇠,�2) / exp


� 1

2�2

�
y �w>⇠

�2
�

yµ = w>⇠µ + ⌘µ

log p(ID |w) =

PX

µ=1

log p(yµ |⇠µ,w) = �P

2

log(2⇡�2
)� 1

�2

PX

µ=1

E(w)
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prior probability of weights, e.g. 

expresses belief/knowledge  that large |w| are less likely 

maximum a posteriori (MAP) solution 
corresponds to weight decay  (Tikhonov-, L2-regularization, ....  )  
                           

             regularization (statistical modeling)  

posterior probability  (given data):  

with appropriate λ   

p
o

(w) / exp


� 1

2⌧2
w2

�

p(w|ID) / p(ID|w) p
o

(w)

log [p(w|ID)] ⇠ �E(w)� 1

2

�w2
+ const.

w⇤ = [X>X + �I ]�1 X> Y
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             Bayesian inference 

instead of one specific solution (Max. Likelihood, MAP ), consider all:  

probabilistic 
response 

model data           prior 
likelihood 

all possible 
settings 

frequent practices:  
-  convenient choices (e.g. prior) in order to achieve simple schemes 

-  restrict optimization to subset of parameters, e.g. w for fixed σ   
-   approximations often yield (heuristic) machine learning methods           
-  incremental inference schemes for sequence of observations 

p(y|⇠, ID) =

Z
p(y|⇠,w,�2) p(w,�2|ID)| {z }

p(ID|w,�2) p(w,�2)

dNw d[�2]
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24 

             Intermezzo: unsupervised learning 

-  was planned as introduction to ‘prototype-based learning’ 
-  links to Dalya Baron’s lectures on unsupervised learning 
-  provides another example for the relation of 
    ‘heuristic’ machine learning and statistical modelling  

Vector Quantization and density estimation 

Possible aims of unsupervised learning:  
  - represent a large data set by a few prototypes 
  - identify structures (e.g. clusters) in a given data set 
  - estimate an underlying probability density of data 
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based on dis-similarity/distance measure 

assignment to prototypes:  

given vector xµ , determine winner  

→ assign  xµ  to prototype w* 

one popular example: (squared) Euclidean distance   

             Unsupervised Vector Quantization (VQ) 

VQ system:    set of prototypes 
data:       set of feature vectors  

w1,w2, . . . ,wK wk 2 IRN

d(w,x) � 0

d(w,x) =
NX

n=1

(wn � xn)
2

x

1,x2, . . . ,xP
x

µ 2 IRN

w

⇤ = argminj
�
d(wj ,xµ)

 

Vector Quantization: identify (few) typical representatives of data 
                                 which capture essential properties 

(sorry, slight change of notation...) 
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quantization error 

here:  
Euclidean distance 

optimization of quantization error:    
•  K-means algorithm  
•  unsupervised competitive learning  

 - assign each data point to closest prototype  
 - measure the corresponding (squared) distance  

( )
 1  for   x  0

Θ  =  
0  else           

x
≥⎧

⎨
⎩

HV Q =
KX

j=1

PX

µ=1

�
x

µ �w

j
�2

| {z }
dµ
j

KY

k 6=j

⇥
�
dµk � dµj

�

| {z }
wj is the winner!

quantization error  (sum over all data points)    
      measures the quality of the representation 

defines a (one)  criterion to evaluate / compare  
the quality of different  prototype configurations 
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There is nothing objective about objective functions 
Jay McClelland 

quantization error 



IAC Winter School 2018, La Laguna 28 

, random sequence of single data:  

… the winner takes it all:  

initially:  randomized  wk  

                        unsupervised competitive learning 

competition for updates  
learning rate / step size  η <1  ⌘ (xµ �w

⇤)

w

⇤ ! w

⇤ + ⌘ (xµ �w

⇤)

η   (<1):   learning rate, step size 

repeated presentation of available data:  
-   sequential presentation of single data points 
-  e.g. random selection from the given set (with replacement) 
-  sweeps through data sets (“epochs”)   

update along the negative gradient of HVQ   (contribution of a 
                                                                             single data point)    
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K-means (Lloyd’s algorithm) 

(0) initialization, for instance:  
     place vectors  wk(t=0)  at randomly selected data points 

(2) re-compute the centers as means over the assigned data:  
           

kµ with

✓
wkµ

(t)� x

µ

◆2


✓
wj(t)� x

µ

◆2

for all j

(1) assignment of each data point to nearest prototype/center   

wj(t+ 1) =
PX

µ=1

�j,kµ
x

µ

,
PX

µ=1

�j,kµ
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Vector Quantization 

comparison: 
  K-means:    updates all prototypes, considers all data at a time  
                     ( batch- or offline-optimization )  
  VQ-alg.  :    updates only the winner, random sequential presen- 
                     tation of single examples (stochastic gradient descent)  
 
  both find (local) minimum of the quantization error 
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Machine Learning vs. Statistical Modelling 

  Gaussian mixture model:     
•  explain observed data as a set of independently generated vectors,  
    drawn from a superposition of Gaussian densities: 
 
                                                                                

      

✓ = {wk,�k, pk}Kk=1parameters:  

•  centers of Gaussian contributions 
•  width of the Gaussians (here: isotropic)  
•  weight of Gaussians in the mixture 

Maximum Likelihood approach to determine single, best model fit  

P (x|✓) =
KX

k=1

pk(2⇡�
2
k)

�N/2
exp


� 1

2�2
k

(x�wk)
2
�



IAC Winter School 2018, La Laguna 32 

Gaussian mixture model 

observed data mixture of 6 Gaussians 
initial configuration 

EM result 

L(✓) =
PY

µ=1

P (x

µ|✓) =
PY

µ=1

 
X

k

pk(2⇡)
�N/2��N

k exp


� 1

2�2
k

(x

µ �wk)
2
�!

•  maximize (log-) Likelihood of observed data w.r.t. θ 
                                                                                

      

•  Expectation-Maximization (EM) scheme    Dempster et al. 1977]                                                                                

l(✓) = logL(✓) =
PX

µ=1

ln

 
X

k

pk�
�N
k exp


� 1

2�2
k

(x

µ �wk)
2
�!

+ const.
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wk(t+ 1) =
PX

µ=1

 
Qµ

k(t)PP
⌫=1 Q

⌫
k(t)

!
x

µ

pk(t+ 1) =
1

P

PX

µ=1

Qµ
k(t)

Qµ
k(t) =

pk(t) exp
h
� 1

2�2 (x
µ �wk(t))

2
i

P
l pl(t) exp

h
� 1

2�2 (x
µ �wl(t))

2
i

EM-Iteration:     �k = �

�   probabilistic assign- 
    ment of data points 
    to current centers: 

�  re-compute 
    centers (weighted means) 
 
      
    total weight of k-th Gaussian 

lim

�!0
Qµ

k =

⇢
1 if (x

µ �wk)
2  (x

µ �wj)
2
for all j

0 else

limiting case: deterministic assignment to closest center 

simplified model: equal, constant width  

K-means algorithm recovered!  
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 VQ and clustering 

ideal clustering 
scenario: 
well-separate, 
‘spherical’ clusters 

in general: 
representation 
of observations 
in feature space 

sensitive to 
cluster shape, 
coordinate  
transformations 
(even linear)  

small clusters 
irrelevant with  
respect to quan- 
tization error 

Remark 1: VQ ≠ clustering                              ( “K-means clustering”  ?)  
minimal quantization error (Euclidean distance)  
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VQ and clustering 

Remark 2:  clustering is an ill-defined problem  

“obviously three clusters”  “well, maybe only two?”  

    our criterion:   lower HVQ                              higher HVQ        

→ “ better clustering ” ???  
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→ “ the best clustering ” ?  

HVQ  = 0   

K=1 

the simplest clustering  …   

HVQ   (and similar criteria) allow only to compare  VQ with the same K !  

K=60 

more general:  heuristic compromise  between  “error” and “simplicity”  

 VQ and clustering 
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popular heuristics: elbow method 
-  run VQ for different K to convergence 
-  determine quantization error as a function of K 
-  identify “elbow” or other characteristic value of K  
 

© http://sebastianraschka.com   Machine Learning Blog 

suggests:  
3 clusters  

qu
al

ity
 m

ea
su

re
 

 VQ and clustering 

suggestive example:  (in practice usually less pronounced)  
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data 

initial  
prototypes  

practical issues of VQ training:  

possible solution:   rank-based updates   (winner, second, third,… )  

dead 
units 

  WTA training 

in general:  local minima  of the quantization error,  
                   initialization-dependent outcome of training  

                                              competitive learning 

favorable initialization: k-means++  [Arthur & Vassilvitskii, 2007] 
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Neural Gas (NG) 

 introduce rank-based neighborhood cooperativeness: 

upon presentation of  xµ : 
•  determine the rank (w.r.t. distance) of the prototypes  

•  update all prototypes:  
 
     with neighborhood function 
     and range λ  in terms of rank (independent of overall scale) 

•  potential annealing of  λ from large to smaller values with time   

[Martinetz, Berkovich, Schulten, IEEE Trans. Neural Netw. 1993]  

h�(kj) = exp (�kj/�)

    many prototypes (gas) to represent the density of observed data 

kj
⇣
x

µ, {wk}Kj=1

⌘
=

KX

l=1

⇥ [d(wj ,x
µ)� d(wl,x

µ)]

wj ! wj + ⌘ h�(kj) (x
µ �wj)
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                           take home message 

Machine Learning and Statistical Modeling 

are similar / closely related as they ... 
      - often yield very similar /  identical methods 
      - ML methods limits or approximations of stat. mod. 
      - frequently can be used interchangeably 

are different / complementary as they ... 
      - start from different formal perspectives 
      - emphasize different goals 

•   it is useful to know and take advantage of both worlds  
•   don’t be religious about making choices 
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Springer Series in Statistics

Trevor Hastie
Robert Tibshirani
Jerome Friedman

Springer Series in Statistics

The Elements of
Statistical Learning
Data Mining, Inference, and Prediction

The Elem
ents of Statistical Learning

During the past decade there has been an explosion in computation and information tech-
nology. With it have come vast amounts of data in a variety of fields such as medicine, biolo-
gy, finance, and marketing. The challenge of understanding these data has led to the devel-
opment of new tools in the field of statistics, and spawned new areas such as data mining,
machine learning, and bioinformatics. Many of these tools have common underpinnings but
are often expressed with different terminology. This book describes the important ideas in
these areas in a common conceptual framework. While the approach is statistical, the
emphasis is on concepts rather than mathematics. Many examples are given, with a liberal
use of color graphics. It should be a valuable resource for statisticians and anyone interested
in data mining in science or industry. The book’s coverage is broad, from supervised learning
(prediction) to unsupervised learning. The many topics include neural networks, support
vector machines, classification trees and boosting—the first comprehensive treatment of this
topic in any book.

This major new edition features many topics not covered in the original, including graphical
models, random forests, ensemble methods, least angle regression & path algorithms for the
lasso, non-negative matrix factorization, and spectral clustering. There is also a chapter on
methods for “wide” data (p bigger than n), including multiple testing and false discovery rates.

Trevor Hastie, Robert Tibshirani, and Jerome Friedman are professors of statistics at
Stanford University. They are prominent researchers in this area: Hastie and Tibshirani
developed generalized additive models and wrote a popular book of that title. Hastie co-
developed much of the statistical modeling software and environment in R/S-PLUS and
invented principal curves and surfaces. Tibshirani proposed the lasso and is co-author of the
very successful An Introduction to the Bootstrap. Friedman is the co-inventor of many data-
mining tools including CART, MARS, projection pursuit and gradient boosting.

› springer.com

S T A T I S T I C S

ISBN 978-0-387-84857-0

Trevor Hastie • Robert Tibshirani • Jerome Friedman
The Elements of Statictical Learning

Hastie • Tibshirani • Friedm
an

Second Edition
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Introduction: 
•  supervised learning, clasification, regression 
•  machine learning “vs.” statistical modeling  

 
Early (important!) approaches:           

•  linear threshold classifier,  Rosenblatt’s Perceptron  
•  adaptive linear neuron, Widrow and Hoff’s Adaline  

 
From Perceptron to Support Vector Machine 

•  large margin classication 
•  beyond linear separability  

 Distance-based systems 
•  prototypes: K-means and Vector Quantization 
•  from K-Neares_Neighbors to Learning Vector Quantization  
•  adaptive distance measures and relevance learning 
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The	New	York	Times:		

“The	embrio	of	an	electronic		
		computer	that	...	will	be	able	to	walk,		
		talk,	see,	write,	reproduce	itself		
		and	be	conscious	of	its	existence.”	

The	percepton			(1957)	

The Perceptron 

2018 ?  
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The	New	York	Times:	

“The	embrio	of	an	electronic	
	computer	that	...	will	be	able	to	walk,	
	talk,	see,	write,	reproduce	itself		
	and	be	conscious	of	its	existence.”	

Mark	1	perceptron:		
sensors:		400	photocells	
weights:		poten?ometers	

	changed	by	electric	motors	

The	percepton			(1957)	

Frank	RosenblaC	
Cornell	Aeronau?cal	Laboratory	
&	Office	of	Naval	Research		

The Perceptron 
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http://www.youtube.com/watch?v=cNxadbrN_aI 

youtube video on the Perceptron (historical document J )  
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Mark I Perceptron 
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Perceptrons 
An introduction to computational 
geometry  (1969)  

•  an excellent mathematical  
    analysis of the perceptron 
 
•  pointed out limitations  
    and restrictions 
 
•  essentially stalled the field of 
    machine learning 
    (perceived as only negative)  
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The Perceptron architecture
building block and simple feed-forward ”network”:

⇠ N -dimensional inputs

w (adaptive) weights

S = sign(w · ⇠ � ✓) = ±1 (threshold unit)

Perceptron Convergence Theorem: Rosenblatt (1958)
Capacity: Winder (1963), Cover (1965), Schläfli (1852)
Perceptrons, Minsky and Papert (1969)
Statistical physics theory of perceptron weights: Gardner (1988)
Support Vector Machines: Vapnik (1995)
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geometrical interpetation:

w defines a hyperplane in IRN

✓ is the off-set from the origin (e.g. |w | = 1)

linearly separable (l.s.) classification

of all possible inputs
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geometrical interpetation:

w defines a hyperplane in IRN

✓ is the off-set from the origin (e.g. |w | = 1)

linearly separable (l.s.) classification

of all possible inputs

A function S(⇠) is called

• homogeneously l.s. if a vector w 2 IRN exists with sign(w · ⇠) = S(⇠) for all ⇠

• inhomogeneously l.s. if a pair w 2 IRN , ✓ 2 IR exists with sign(w · ⇠ � ✓) = S(⇠)

formally:
e

⇠ = (⇠
1

, ⇠
2

, . . . , ⇠N , ⇠N+1

= �1)

T 2 IRN+1 (clamped extra�input�dimension)
ew = (w

1

, w
2

, . . . , wN , wN+1

= ✓)T 2 IRN+1 (extra weight)

ew · e⇠ = w · ⇠ � ✓ ! S(⇠) inhom. l.s. in IRN , S(

e

⇠) hom. l.s. in IRN+1
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The perceptron (storage) problem

given a dichotomy of data DP
N =

�

⇠

µ 2 IRN , Sµ 2 {�1, +1} 
µ=1,2,...P

find a vector w 2 IRN , such that sign (w · ⇠µ
) = Sµ for all µ.

Questions:

• When is a given dichotomy linearly separable (l.s.)?

• How many l.s. DP
N exist? (The capacity of a hyperplane)

• If it exists, how can we find a perceptron vector w?

• If there are several/many solutions, which is best?

• What can we do for non-separable DP
N?���������������������
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Solving the perceptron storage problem
re-write the problem ...
consider a given data set ID = {⇠µ, Sµ

R}

... find a vector w with Sµ
H = sign(w · ⇠µ

) = Sµ
R for all µ

Note: sign(w · ⇠µ
) = Sµ

R , sign(w · ⇠µ Sµ
R) = 1 , Eµ

= w · ⇠µ Sµ
R > 0

( local potentials Eµ)

equivalent problem: solve a set of linear inequalities (in w)

... find a vector w with Eµ
= w · ⇠µ Sµ

R � c > 0 for all µ

Note that the actual value of c > 0 is irrelevant:

⇣

w
1

satisfies {Eµ
1

� c}P
µ=1

⌘

,
⇣

w
2

= �w
1

satisfies {Eµ
2

� � c}P
µ=1

⌘
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consider iterative algorithms

• sequential presentation of data
n

⇠

µ(t), S
µ(t)
R

o

, e.g.

learning steps (time) t = 0, 1, 2, 3, . . .

number of example ⌫(t) =

1, 2, 3, . . . , P, 1, 2, 3, . . .

• update of vectors (w(0) = 0) E⌫(t)
= w(t) · ⇠⌫(t) S

⌫(t)
R

w(t+1) = w(t) +

1

N
f(E⌫(t)

) ⇠

⌫(t) S
⌫(t)
R (f defines the actual algorithm)

w accumulates Hebbian terms ⇠

µSµ
R (input ⇥ output)

• ! general form of the result w(t) =

P
X

µ=1

xµ
(t) ⇠

µ Sµ
R

xµ is called the embedding strength of example µ
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N
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µSµ
R (input ⇥ output)

• ! general form of the result w(t) =

P
X

µ=1

xµ
(t) ⇠

µ Sµ
R

xµ is called the embedding strength of example µ

=
1

N
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Rosenblatt’s perceptron algorithm (Rosenblatt, 1958)

w(t+1) = w(t) +

1

N
⇥

h

c� E⌫(t)
i

⇠

⌫(t) S
⌫(t)
R (initial weights w(0) = 0)

learning from mistakes f(Eµ
) = ⇥[c� Eµ

] =

(

1 if Eµ < c

0 if Eµ � c

integer embedding strengths 0  xµ
(t+1) =

(

xµ
(t)+1 if Eµ < c

xµ
(t) if Eµ � c

(for µ = ⌫(t))

Proof of convergence

• assume a vector w⇤ exists with {Eµ⇤
= w⇤ · ⇠µ Sµ

R � c > 0}P

µ=1

���8
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solution found!  (here: in the first epoch already) 
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• note that for any vector w: 0  (w⇤ · w)

2

|w⇤|2 |w|2 = cos

2 \(w,w⇤
)  1

• weight vector after t learning steps w(t) =

1

N

P
X

µ=1

xµ
(t) ⇠

µ Sµ
R

xµ
(t) number of non-zero learning steps for example µ

M(t) =

P
X

µ=1

xµ
(t) total number of non-zero steps

• projection R(t) = w⇤ ·w(t)

R(t) =

1

N

P
X

µ=1

xµ
(t) (w⇤ · ⇠µ

) Sµ
R =

1

N

P
X

µ=1

xµ
(t) Eµ⇤

|{z}

� c
� 1

N
c M(t)

9

w
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N
⇥

h

c� E⌫(t)
i

⇠

⌫(t) S
⌫(t)
R (initial weights w(0) = 0)

learning from mistakes f(Eµ
) = ⇥[c� Eµ

] =

(

1 if Eµ < c

0 if Eµ � c

integer embedding strengths 0  xµ
(t+1) =

(

xµ
(t)+1 if Eµ < c

xµ
(t) if Eµ � c

(for µ = ⌫(t))

Proof of convergence

• assume a vector w⇤ exists with {Eµ⇤
= w⇤ · ⇠µ Sµ

R � c > 0}P

µ=1

���8

skip  
proof 
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• norm of the weight vector

- among all inputs, one has the largest norm:

- non-zero learning step:

- zero learning step:

- note:

we replace E by c and 
obtain an upper bound: 

( M is the # of non-zero steps so far ) 

( Q(0)=0 )

Q(t+1)
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we have the bounds:                                                                                         

constants!                                                                                    

the total number of non-zero steps is limited:                                                                                  

in one epoch pres. all data                                                                                              
-  either M does not change at all          (all inputs classified correctly, done!) 
- either M increases at least by one       (at least one input was misclassified)                                                                                    

ĺ the total number of epochs is also limited 
     the algorithm converges in finite time!                                                                

Remark:  in the limit  c → 0,                        implies that  

the bound for M(t) remains finite   
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w⇤
exists with Q⇤ / c2
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Perceptron Convergence Theorem 

If the data set      is linearly separable, 

the Rosenblatt Perceptron algorithm converges and yields a weight vector  

Remarks: 

- this is one of the most fundamental results in the field 

- we have assumed the existence of a solution 

- it is difficult to decide wether a given data set is linearly separable 

- the required number of steps is finite, but may be large, even if a solution exists 
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Learning a linearly separable rule from reliable examples
storage of a data set is not the primary goal of perceptron training

• assume: unknown lin. sep. function or rule SR(⇠) = sign(w⇤ · ⇠)

defines the correct classification for every possible input

(the teacher perceptron w⇤ 2 IRN parameterizes the rule)

• only available information: example data

ID = {⇠µ, Sµ
R = SR(⇠

µ
)}P

µ=1

(correct labels Sµ
R provided by the teacher, absence of noise etc.)

• training: choice of student weights w (w/o loss of generality: w ·w = 1)

parameterizes a hypothesis SH(⇠) = sign(w · ⇠)

extreme strategy: zero training error , learning in version space,
accept only hypotheses which are perfectly consistent with ID

21
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Learning in version space
dual geometrical interpretation:

each ⇠, Sµ defines a hyperplane in IRN

which separates the w with SH(⇠) right/wrong
each example defines a correct half-space

set of data ID ! version space

VID =

n

w
�

�

�

{sign(w · ⇠µ
) = SR(⇠

µ
)}P

µ=1

o

schematic example: P = 4, orientations Sµ not shown

the dichotomy D4

N corresponding to VID

is non-ambiguous [ambiguous] w.r.t. ⇠

5 [⇠6]
22
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new data point         non-informative example: 
                                only one label possible 
                                informative example: 
                                version space shrinks!  

⇠6

⇠5⇠5

VID
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upper hemisphere:  
correct weight vectors 

lower hemisphere: 
incorrect weight vectors 

illustration: version space 

consider set of example data, normalized perceptron weight vectors 



80 

version space 

a set  of linearly separable examples defines “version space” 
volume  of all correct weight vectors 
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version space 

a “non-informative” example (non-ambiguous case) 
does not shrink version space, only one label consistent with linear separability 
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an “informative” example (ambiguous case) 
does shrink version space according to its label  
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Learning a linearly separable rule: generalization

• the unknown teacher w⇤ define the (hom.) lin. sep. rule SR(⇠) = sign[w⇤ · ⇠]

• training process based on ID = {⇠µ, Sµ
R = SR(⇠

µ
)} yields a student

SH(⇠) = sign(w · ⇠) with w 2 IRN

consider a novel random input ⇠ 2 IRN

generated with equal probability anywhere on the
N–sphere with ⇠

2

= � (normalization)

probability for disagreement:

generalization error

"g =

2 �

2 ⇡
=

1

⇡
arccos



w ·w⇤

|w | |w⇤ |
�

(valid in arbitrary dimenions N )
30
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learning in version space (consistent hypotheses, e.g. by Rosenblatt Perceptron)  
growing number of examples   
 

as        becomes parallel to 
for normalized        :  version space      shrinks to a point           

zero generalization error  

empirical observation, theory:  typical behavior for learning in version space  
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The perceptron (storage) problem

given a dichotomy of data DP
N =

{
ξµ ∈ IRN , Sµ ∈ {−1,+1}

}
µ=1,2,...P

find a vector w ∈ IRN , such that sign (w · ξµ) = Sµ for all µ.

Questions:

• When is a given dichotomy linearly separable (l.s.)?

• How many l.s. DP
N exist? (The capacity of a hyperplane)

• If it exists, how can we find a perceptron vector w?

• If there are several/many solutions, which is best?

• What can we do for non-separable DP
N?

33



87 

The perceptron of maximal stability

stability of example µ: µ
=

Eµ

|w| =

w · ⇠µ Sµ
R

|w|
measures the distance from the decision plane

stability of the perceptron (w) = min
µ

{

µ}

perceptron of maximal stability: w
max

= argmax

V
(w):

• realize large separating gap between the two classes (w
max

) = 
max

• classification is insensitive to small variations of ⇠

µ e.g. due to noise
• corresponds to weight vector close to the center of version space in a l.s. rule

• yields (typically) good generalization ability
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selected  
hypothesis: 

“teacher” unknown rule, 
w/o additional knowledge: anywhere 
 in       with equal probability  

distance  

small for large                  ,  small                                       

version space: 
normalized vectors  

weight        in the center (of mass) of version space: 
lowest expectation value of distance  d , best generalization error 
on average over all possible positions of  



90 

selected  
hypothesis: 

“teacher” unknown rule, 
w/o additional knowledge: anywhere 
 in       with equal probability  

distance  

small for large                  ,  small                                       

version space: 
normalized vectors  

weight        in the center (of mass) of version space: 
lowest expectation value of distance  d , best generalization error 
on average over all possible positions of  



91 

the restriction to w 2 V with

stability (w) �  favors

vectors in the center of version space

shaded area shrinks to a point (w
max

) as ! 
max

The minover algorithm [Krauth and Mezard, 1989]

• iterative procedure, time steps t = 0, 1, 2, 3, . . . w(0) = 0

• given w(t), determine the example with lowest stability (minimal overlap)

µ(t) with µ(t)
= min

⌫

⇢

⌫
(t) =

w(t)⇠⌫ S⌫
R

|w(t) |
�

• update of the weight vector: w(t + 1) = w(t) +

1

N
⇠

µ(t) S
µ(t)
R

36

(not quite the center of mass...) 
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without proof:  
 

If                                  is linearly separable, the minover  algorithm 
converges and yields the perceptron weight vector              of maximal stability 

we show (only):   
embedding strengths                           exist with   

consider two perceptrons:                                              and 

with 

0 

0 

can be written as (#), 
can be found by iterative 
training algorithms, potentially 
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Solving the perceptron storage problem
re-write the problem ...
consider a given data set ID = {⇠µ, Sµ

R}

... find a vector w with Sµ
H = sign(w · ⇠µ

) = Sµ
R for all µ

Note: sign(w · ⇠µ
) = Sµ

R , sign(w · ⇠µ Sµ
R) = 1 , Eµ

= w · ⇠µ Sµ
R > 0

( local potentials Eµ)

equivalent problem: solve a set of linear inequalities (in w)

... find a vector w with Eµ
= w · ⇠µ Sµ

R � c > 0 for all µ

Note that the actual value of c > 0 is irrelevant:

⇣

w
1

satisfies {Eµ
1

� c}P
µ=1

⌘

,
⇣

w
2

= �w
1

satisfies {Eµ
2

� � c}P
µ=1

⌘

 the storage problem revisited 
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 solving equations ?  

Instead of inequalities, try to solve P equations for N unknowns:  

(A)  if no solution exists,  find approximation by least square dev.: 

Eµ
=

NX

j=1

wj⇠
µ
j Sµ

= 1 for all µ = 1, 2, . . . , P

minimization, e.g. by means of gradient descent with 

minimize f =
1

2

PX

µ=1

(1� Eµ)2

rwf = �
PX

µ=1

(1� Eµ) ⇠µ Sµ
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 solving equations ?  

(B)  system can be under-determined  →  find a unique solution:  

minimize

1

2

| w |2 under constraints {Eµ
= 1}Pµ=1

Lagrange function  

necessary conditions for optimum:  
@L

@�µ
= (1� Eµ)

!
= 0

rwL = w �
PX

µ=1

�µ ⇠µ Sµ !
= 0 ) w =

PX

µ=1

�µ ⇠µ Sµ

Lagrange parameters ~ embedding strengths  λµ  (rescaled with N) 

L =
1

2
| w |2 +

PX

µ=1

�µ (1� Eµ)
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eliminate weights:  

in terms of weights:  
the same as in (A) !!!   

simplified problem:  max� L = �1

2

X

µ,⌫

�⌫ C⌫µ �µ
+

X

µ

�µ

E⌫ =
PX

µ=1

1

N

NX

k=1

(⇠µkS
µ) (⇠⌫kS

⌫)

| {z }
⌘C⌫µ

�µ

@L

@�⇢
= 1�

X

µ

C⇢µ�µ = (1� E⇢)gradient ascent with:  

�w /
X

⇢

(1� E⇢) ⇠⇢ S⇢

 solving equations ?  

NX

j=1

w2
j /

X

µ,⌫

�⌫ C⌫µ �µ
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classical algorithm: ADALINE   

 Adaline algorithm:  

Adaptive Linear Neuron     (Widrow and Hoff,  1960) 

gradient based learning for linear regression (MSE) 
frequent strategy: regression as a proxy for classification 

more general:   training of a linear unit with continuous output   

iteration of weights / embedding strengths    

w(t) = w(t� 1) + ⌘

⇣
1� E

µ(t)
⌘
⇠

µ(t)
S

µ(t)

x

µ(t) = x

µ(t� 1) + ⌘

⇣
1� E

µ(t)
⌘

sequence µ(t) 
of examples  

minimize f =
1

2

PX

µ=1

(hµ � Eµ)2 with hµ 2 IR, µ = 1, 2 . . . , P

f =
1

2

PX

µ=1

�
yµ � w>⇠µ

�2
with yµ = hµ Sµ
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“Science in action” ca. 1960 

http://www.youtube.com/watch?v=IEFRtz68m-8 

 youtube video “science in action” with Bernard Widrow 
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Introduction: 
•  supervised learning, clasification, regression 
•  machine learning “vs.” statistical modeling  

 
Early (important!) approaches:           

•  linear threshold classifier,  Rosenblatt’s Perceptron  
•  adaptive linear neuron, Widrow and Hoff’s Adaline  

 
From Perceptron to Support Vector Machine 

•  large margin classification 
•  beyond linear separability  

 Distance-based systems 
•  prototypes: K-means and Vector Quantization 
•  from K-Neares_Neighbors to Learning Vector Quantization  
•  adaptive distance measures and relevance learning 

 



 Optimal stability by quadratic optimization 

 storage problem:  find       such that                                   for a given  

 optimal stability:                          

alternative formulation:  

Note: the solution                of the problem yields stability    

w ID = {⇠⌫ , S⌫
R}sign

�
w>⇠µ

�
= Sµ

R

maximize (w) where (w) = min

µ

⇢
µ

=

w>⇠µSµ
R

| w |

�

w

minimize

1

2

w2
subject to inequality constraints

�
Eµ

= w>⇠µ Sµ
R � 1

 P

µ=1

w
max


max

=
1

| w
max

|



we know:     search can be restricted to        of the form    

Notation: 

correlation matrix                             (outputs incorporated) 
                             

with elements  

P-vectors: 

inequalities 

“one-vector”:  



We can formulate optimal stability completely in terms of embedding strengths: 

    minimize                   subject to linear constraints  

This is a special case of a standard problem in  Quadratic Programming: 
minimize a nonlinear function under linear inequality constraints 

(C is positive semi-definite) 



Optimization theory:  Kuhn–Tucker theorem  
   see, e.g., R. Fletcher, Practical Methods of Optimization (Wiley, 1987) 
   or  http://wikipedia.org  “Karush-Kuhn-Tucker-conditions” for a quick start 

necessary conditions for a local solution   of a general 
non-linear optimization problem with equality and inequality constraints 
here: only inequality constraints   (see literature for the mixed case)    

inequality constraints 

complementarity 

minimize

~x

f(~x) subject to c

i

(~x) � 0 for i=1,2,. . . k

L(~x,�1,�2, . . .�k) = f(~x) �
kX

i=1

�i ci(~x)Lagrange function:  

ci(~x) � 0

�i � 0 non-negative Lagrange parameters 

�i ci(~x) = 0

(i = 1, 2, . . . k)

necessary conditions for solutions: 

r
~x

L = 0 stationarity (zero gradient)  



Lagrange function:  

minimize

~x

1

2

~x

>
C ~x subject to C~x � ~

1

L(~x,~�) =
1

2
~x

>
C ~x � ~

�

> (C~x�~1)

linear separability!  

complementarity  

non-negative Lagrange parameters 

necessary conditions for solution: 

C ~x � ~1

C ~x = C

~

�

stationarity            note:    
r

~x

(~x>
C~x) = 2C~x

r
~x

(~�>
C~x) = ~

�

>
C = C

~

�

Max. stability:  Kuhn–Tucker theorem  for a special non-linear optimization problem 

C ~x = C

~

�

does not necessarily imply   ~x = ~

�

but:       satisfies also all conditions, so we can  replace     by 
(and rename it to     )  

~� ~x

~�
~x

�

µ ([C~x]µ � 1) = 0 (µ = 1, 2, . . . P )

~� � 0



here:  any solution can be represented by a Kuhn-Tucker (KT) point          with:  

non-negative embedding strengths  (←minover) 

linear separability 

complementarity 

implies also:   



consider two KT-points   

→   all KT-points yield the same unique perceptron weight vector  

→   any local solution is globally optimal  



IAC Winter School November 2018, La Laguna 

Duality, theory of Lagrange multipliers ! equivalent formulation (Wolfe dual):

maximize

~x

e
f = �1

2

~x

T
C ~x + ~x

T
~

1 subject to ~x � 0

AdaTron algorithm:

– sequential presentation of examples ID = { ⇠

µ
, S

µ }

– gradient ascent w.r.t. e
f , projected onto ~x � 0

x

µ ! max { 0, x

µ
+ ⌘ ( 1� [C~x]

µ
) } (0 < ⌘ < 2)

for the proof of convergence one can show:

• for an arbitrary ~x � 0 and a KT point ~x⇤: e
f(~x

⇤
) � e

f(~x)

• e
f(x) is bounded from above in ~x � 0

• e
f(x) increases in every cycle through ID, unless a KT point has been reached

5

max� L = �1

2

X

µ,⌫

�⌫ C⌫µ �µ
+

X

µ

�µAdaline:                                                               (unconstrained)  
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Duality, theory of Lagrange multipliers ! equivalent formulation (Wolfe dual):

maximize

~x

e
f = �1

2

~x

T
C ~x + ~x

T
~

1 subject to ~x � 0

AdaTron algorithm:

– sequential presentation of examples ID = { ⇠

µ
, S

µ }

– gradient ascent w.r.t. e
f , projected onto ~x � 0

x

µ ! max { 0, x

µ
+ ⌘ ( 1� [C~x]

µ
) } (0 < ⌘ < 2)

for the proof of convergence one can show:

• for an arbitrary ~x � 0 and a KT point ~x⇤: e
f(~x

⇤
) � e

f(~x)

• e
f(x) is bounded from above in ~x � 0

• e
f(x) increases in every cycle through ID, unless a KT point has been reached

5

z }| {
⌘
h
r

~x

ef
i
µ

(Adaptive PercepTron) [Anlauf and Biehl, 1989] 
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for the proof of convergence one can show:

• for an arbitrary ~x � 0 and a KT point ~x⇤: e
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⇤
) � e

f(~x)

• e
f(x) is bounded from above in ~x � 0

• e
f(x) increases in every cycle through ID, unless a KT point has been reached

5

[Anlauf and Biehl, 1989] (Adaptive PercepTron) 



IAC Winter School November 2018, La Laguna 

Support Vectors
complementarity condition: x

µ
( 1� E

µ
) = 0 for all µ

i.e. either
⇢

E

µ
= 1

x

µ � 0

�
or

⇢
E

µ
> 1

x

µ
= 0

�

examples ... have to be embedded or ... are stabilized “automatically”

P
µthe�weights� Z/ x

µ
⇠

µ
S

µ

depend (explicitly) only on a subset of ID

if these support vectors were known
in advance, training could be restricted
to the subset

6

(unfortunately they are not...) 
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learning in version space ?  

...  even then, it only makes sense if  
•  the unknown rule is a linearly separable function 
•  the data set is reliable ( noise-free )  

...  is only possible if  
•  the data set is linearly separable  

? 

lin. separable  nonlin. boundary  noisy data (?)  



. &lassiIication beyond linear separability 
assume    is not linearly separable  - what can we do? 

● accept an approximation by a linearly separable function → see “pocket algorithm”
and �large margin with errors� 

● construct more complex architectures from perceptron-like units.
  e.g. multilayer networks  (universal classificators, difficult training) 

→ see “committee and 
  parity-machine” 

● consider  ensembles of perceptrons
  train several student perceptrons  

- each student should make a small number of errors 
- the perceptrons should differ significantly  

combine the     into an ensemble classifier , e.g. by majority vote 

competing aims:    

potential reasons: noisy data, more complex problem



. &lassiIication beyond linear separability 
assume    is not linearly separable  - what can we do? 

● accept an approximation by a linearly separable function → see “pocket algorithm”
and �large margin with errors� 

● construct more complex architectures from perceptron-like units.
  e.g. multilayer networks  (universal classificators, difficult training) 

→ see “committee and 
  parity-machine” 

● consider  ensembles of perceptrons
  train several student perceptrons  

- each student should make a small number of errors 
- the perceptrons should differ significantly  

combine the     into an ensemble classifier , e.g. by majority vote 

competing aims:    

potential reasons: noisy data, more complex problem

see also: Decision Trees and Forests (lectures by Dalya Baron)  



● employ a linear decision boundary, but after a non-linear transformation of the data
to an M-dim. feature space  (M=N is possible, but not required)

M-dim. weight vector 

non-linear transformation 

for a given, explicit transformation   , perceptron training can be applied in 

important examples: 

-  Rosenblatt’s perceptron with masks, transformed features 

-  Support Vector Machines:     M > N     transformation to higher-dim. space 

  is defined only implicitly (kernel-trick)  

  perceptron of optimal stability in M dimensions 

● most frequent approach: approximate classification by continuous regression



● employ a linear decision boundary, but after a non-linear transformation of the data
to an M-dim. feature space  (M=N is possible, but not required)

M-dim. weight vector 

non-linear transformation 

for a given, explicit transformation   , perceptron training can be applied in 

important examples: 

-  Rosenblatt’s perceptron with masks, transformed features 

-  Support Vector Machines:     M > N     transformation to higher-dim. space 

  is defined only implicitly (kernel-trick)  

  perceptron of optimal stability in M dimensions 

● most frequent approach: approximate classification by continuous regression
�   very frequent approach (e.g. multilayered feed-forward neural networks): 
    replace classification by regression in the training phase 



 

!   large margins with errors 
admit disagreements w.r.t. training data, but keep basic idea of optimal stability 

minimizew,�
1

2

w2
+ �

PX

µ=1

�µ
subject to Eµ � 1� �µ

for all µ

and �µ � 0 for all µ

slack variables 

(
�µ

= 0 $ Eµ � 1

�µ > 0 $ Eµ < 1 includes errors with Eµ < 0

minimize

~x,

~

�

1

2

~x

>
C ~x + �

~

� ·~1 subject to C ~x � ~

1� ~

�

and

~

� � 0

rewritten in terms of embedding strengths (see above for notation) 

approximation: linearly separable function, accept errors, e.g. 



 

!   large margins with errors 
admit disagreements w.r.t. training data, but keep basic idea of optimal stability 

minimizew,�
1

2

w2
+ �

PX

µ=1

�µ
subject to Eµ � 1� �µ

for all µ

and �µ � 0 for all µ

slack variables 

(
�µ

= 0 $ Eµ � 1

�µ > 0 $ Eµ < 1 includes errors with Eµ < 0

minimize

~x,

~

�

1

2

~x

>
C ~x + �

~

� ·~1 subject to C ~x � ~

1� ~

�

and

~

� � 0

rewritten in terms of embedding strengths (see above for notation) 



 

  dual problem:   (elimination of slack variables!) 

maximize

~x

� 1

2

~x

>
C ~x +

~

1 · ~x subject to 0  ~x  �

~

1

  positive and upper-bounded embedding strengths 
  parameter γ   -  limits the growth of xµ for misclassified data points 
                        -  controls a compromise between aims of large margin and low error 
                                    -  has to be chosen appropriately, e.g. by validation methods (later chapter) 
                           note: even for lin. sep. data the optimum can include misclassifications!  

AdaTron with errors   (projected gradient ascent)   

˜

x

µ  x

µ
+ ⌘ (1� [C~x]

µ
) gradient step

ˆ

x

µ  max

�
0,

˜

x

µ
 

enforce non-negative embeddings

x

µ  min

�
�,

ˆ

x

µ
 

limit embedding strenghts to x

µ  �



 

  dual problem:   (elimination of slack variables!) 

maximize

~x

� 1

2

~x

>
C ~x +

~

1 · ~x subject to 0  ~x  �

~

1

  positive and upper-bounded embedding strengths 
  parameter γ   -  limits the growth of xµ for misclassified data points 
                        -  controls a compromise between aims of large margin and low error 
                                    -  has to be chosen appropriately, e.g. by validation methods (later chapter) 
                           note: even for lin. sep. data the optimum can include misclassifications!  

AdaTron with errors   (projected gradient ascent)   

˜

x

µ  x

µ
+ ⌘ (1� [C~x]

µ
) gradient step

ˆ

x

µ  max

�
0,

˜

x

µ
 

enforce non-negative embeddings

x

µ  min

�
�,

ˆ

x

µ
 

limit embedding strenghts to x

µ  �

Example algorithm:  
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The Support Vector Machine 

•  Perceptron of optimal stability: support vectors 
•  SVM: non-linear transformation to high-dim. feature space 
•  implicit kernel formulation, Mercer’s theorem  

history: www.svms.org 



Support Vectors  (linear separable case) 
complementarity condition: x

µ
( 1� E

µ
) = 0 for all µ

i.e. either
⇢

E

µ
= 1

x

µ � 0

�
or

⇢
E

µ
> 1

x

µ
= 0

�

examples ... have to be embedded or ... are stabilized “automatically”

the weights ~w /
P

µ x

µ
⇠

µ
S

µ

depend (explicitly) only on a subset of ID

if these support vectors were known
in advance, training could be restricted
to the subset

60



The Support Vector Machine
assume ID = { ⇠

µ
, S

µ } is not linearly separable — what can we do?

• accept an approximation by a linearly separable function

(limited flexibility and usefulness)

• construct more complex architectures from perceptron units,

e.g. multilayer networks (universal approximators, difficult training)

• generate a non-linear decision surface for the original data

S

µ
H = sign [ f(⇠

µ
) ], ⇠ 2 IR

N ! f(⇠) 2 IR

• employ a linear decision boundary, but after a non-linear transformation of the data

S

µ
H = sign [ W ·  (⇠

µ
) ], ⇠ 2 IR

N !  (⇠) 2 IR

M with weights W 2 IR

M

in general M 6= N , mostly M > N

61

SVM: transformation with M>N to high-dim. feature space 

An illustrative example (c/o R. Dietrich, PhD thesis)

consider original, two-dimensional data (x

1

, x

2

)

and the non-linear transformed data  (x

1

, x

2

) =

⇣
x

2

1

,

p
2 x

1

x

2

, x

2

⌘
2 IR

3

linearly separable classification in IR

3:

S

µ
= sign ( W ·  (x

1

, x

2

) ) with ~

W = (1, 1,�1)

the non-separable classification in IR2 becomes linearl\ separable in IR3
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An illustrative example (c/o R. Dietrich, PhD thesis)
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⌘
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µ
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W = (1, 1,�1)

the non-separable classification in IR2 becomes linearl\ separable in IR3
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basic idea:  
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assume: transformation guarantees linear separability of { (⇠

µ
), S

µ }
! a vector W exists with S

µ
H = sign ( W ·  (⇠

µ
) ) for all µ.

optimal stability:

maximize

W
(W ) where (W ) = min

µ

⇢


µ
=

W · (⇠

µ
) S

µ

|W |

�

Exact same structure as the original perceptron problem – all above results from
optimization theory apply accordingly

re-formulate:

minimize

~X

1

2

~

X

T
�

~
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assume: transformation guarantees linear separability of { (⇠
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Kernel formulation
consider the function K : IR

N ⇥ IR

N ! IR with K(⇠

µ
, ⇠

⌫
) =

1

M  (⇠

µ
) ·  (⇠

⌫
)

re-write in terms of this kernel function
• the classification scheme: SH(⇠) = sign ( W · (⇠) )

= sign

0

@
PX

µ=1

X

µ
S

µ
 (⇠

µ
) ·  (⇠)

1

A
= sign

0

@
PX

µ=1

X

µ
S

µ
K(⇠

µ
, ⇠)

1

A

• training algorithms for the embedding strengths, just one example:

Kernel AdaTron X

µ ! max

(
0, X

µ
+ ⌘

 
1� S

µ
PX

⌫=1

S

⌫
X

⌫
K(⇠

µ
, ⇠

⌫
)

!)

– no explicit use of the transformed feature vectors  (⇠)

– only dot-products required, which can be expressed in terms of the kernel
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so far: define non-linear  (⇠) 2 IR

M , find corresponding kernel function K(⇠

µ
, ⇠

⌫
)

now: as we will never use  (⇠) explicitly, why not start with defining a kernel
function in the first place?

for practical purposes, we need not know  nor its dimension M

Question: does a given kernel K correspond to some valid transformation  ?

Mercer’s Theorem (sufficient condition)

a given kernel function K can be written as K(⇠

µ
, ⇠

⌫
) =  (⇠

µ
) · (⇠

⌫
), if

Z Z
g(⇠

µ
) K(⇠

µ
, ⇠

⌫
) g(⇠

⌫
) d

N
⇠

µ
d

N
⇠

⌫ � 0 holds true

for all functions g with finite norm
Z

g(⇠)

2

d

N
⇠ < 1
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popular classes of kernels    (which satisfy Mercer’s conditon) 

● polynomial kernels of degree (up to) q,  e.g.

linear kernel 

= perceptron with threshold in original space 

quadratic kernel 

->  perceptron with respect to feature vectors containing all single  and products of 2 original features 
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● Radial basis function (RBF) kernel

involves all powers of the features, “M → ∞” 

attractive aspects of the SVM approach: 
- optimization problem is uniquely solvable (no local minima)
- efficient training algorithms are known
- maximum stability facilitates good generalization ability

… if the kernel (its parameters) is (are) appropriately chosen

in practice: 
- select simple kernels, allow for violations of some of the linear constraints
by means of slack variables (e.g. kernel-version of Adatron with errors, see above)

- choose kernel (kernel parameters) by means of cross-validation procedures
- use approximate schemes for huge amounts of data (many support vectors) 
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