
Michael Biehl
Bernoulli Institute for Mathematics,
Computer Science and Artificial Intelligence
University of Groningen

www.cs.rug.nl/biehl

Supervised Learning

IAC Winter School November 2018, La Laguna 2

background: Statistical Physics, Computational Physics
 Neural Networks, Stat. Phys. of Learning
 Monte Carlo simulations of non-equilibrium processes

“recent”: Machine Learning: theory, algorithm development
 mostly in supervised learning, classification
 application areas: biomedical data ...
 astroinformatics (very recently)

IAC Winter School November 2018, La Laguna 3

Here, emphasis on:
•  theoretical background
•  mathematical foundations
•  basic classical algorithms
 and methods
•  how and why do they work?
•  pitfalls and challenges
•  tutorials: implementation,
 hands-on experiments

 machine learning

unfortunate, risky tendency:
•  “blind” application of very
 complex tools (SVM, DNN,...)

IAC Winter School November 2018, La Laguna 4

last slide: take home messages

Start simple!

Start simple:
 - e.g. K-NN classifier, linear regression, PCA, k-means
 - compare to baseline algorithms
 - increase level of sophistication if necessary / promising
 - the latest trend is not necessarily the best for your problem

Accuracy is not enough:
 - try to obtain insight
 - employ interpretable models/systems, vsualization
 - proper testing/validation with respect to suitable measures
 - beware of artefacts, biased data sets ...

IAC Winter School November 2018, La Laguna 5

Introduction:
•  supervised learning, clasification, regression
•  machine learning “vs.” statistical modeling
•  K-means and Vector Quantization

Early algorithms (yet still important)

•  linear threshold classifier, Rosenblatt’s Perceptron
•  adaptive linear neuron, Widrow and Hoff’s Adaline

From Perceptron to Support Vector Machine

•  large margin classification
•  beyond linear separability

 Distance-based systems
•  prototypes: K-means and Vector Quantization
•  from K-Nearest_Neighbors to Learning Vector Quantization
•  adaptive distance measures and relevance learning

 supervised learning

IAC Winter School November 2018, La Laguna 6

 supervised learning

classification / regression

frequent workflow:
example data model

training

linear regression
 machine learning vs. statistical modelling
linear threshold classifiers
 from the perceptron to support vector machines
prototypes and distance-based classifiers
 from K-means to Learning Vector Quantization
non-linear regression
 (shallow) neural networks

IAC Winter School November 2018, La Laguna 7

 supervised learning

classification / regression

frequent workflow:
example data model apply to novel data
 generalization

training working

validation
 estimation of expected performance
 avoid over-fitting, facilitate model selection
 cope with bias and variance dilemma

IAC Winter School November 2018, La Laguna 8

 ‘4’

 A

’13’

 B

‘6’

 A

’11’

 B

 ‘8’

 A

input
(data)

output
(class label)

’7’

 ?

classification

question

answer

consistent hypotheses:

odd → B

 <=10 → A

IAC Winter School November 2018, La Laguna 9

 ‘4’

 A

’13’

 B

‘6’

 A

’11’

 B

 ‘8’

 A

input
(data)

output
(class label)

’7’

 ?

question

answer

consistent hypotheses:

 ‘2’

 B

space of consistent hypotheses shrinks with increasing # of examples

classification

 prime → B

odd → B

 <=10 → A

IAC Winter School November 2018, La Laguna 10

input
(data)

output
(class label)

 apple

representation/features

question

answer

selected features:

pear apple apple pear apple

~ color

IAC Winter School November 2018, La Laguna 11

input
(data)

output
(class label)

pear

question

answer

selected features:

pear apple apple pear apple

~ shape

apple

representation/features

selection of possible features
for the representation of data
 - is an important step in model design
 - can be part of the training process

IAC Winter School November 2018, La Laguna 12

 classification problems

- character/digit/speech recognition
- medical diagnosis
- pixel-wise segmentation in image processing
- object recognition/scene analysis
- galaxy classification
-

machine learning approach:
extract information from example data
parameterized in a learning system (neural network, LVQ, SVM...)
working phase: application to novel data

assign an observation (data) to one of C classes/categories
here, we consider exclusively numerical, ‘vectorial’ data

IAC Winter School November 2018, La Laguna 13

regression

912 kg 617 kg 489 kg 820 kg 591 kg

“input” (example data: images, measured quantites, numerical features)

“output” (weight)

prediction of weight ? explicit mathematical/statistical model
e.g.

with adaptive parameters α,β,γ
inferred from example data (= learning)

a
b m = �

�
a↵ · b�

�

a, b [inch], m [lb] ↵ = 1,� = 2, � = 1/300

IAC Winter School November 2018, La Laguna

theory: expanding universe
velocity of far away galaxies
is proportional to their
distance:

v

D

[Edwin Hubble, PNAS 15(3): 168-73 1929]

Hubble constant

H
o

= 73.52(±1.62)
km/s

Mpc

1929:

2018:

H
o

= 500
km/s

Mpc

v = H
o

D

linear regression: historical example

more general problem: N-dimensional arguments
multiple linear regression real valued targets y 2 IR

(more & better data)

⇠ 2 IRN

IAC Winter School November 2018, La Laguna

“Machine Learning vs. Statistical Modeling”

“The short answer is that there is no difference”

“Whatever machine learning will look like in ten years, I’m sure
 statisticians will be whining that they did it earlier and better”

“ML is simply statistics, the rest is marketing”

“Machine learning is the new statistics”

“Statistics is only for small data sets, ML is for big data”

“Statistical modeling has led to irrelevant theory and
 questionable conclusions”

“All ML systems are heuristic black-boxes”

IAC Winter School November 2018, La Laguna

Machine Learning and Statistical Modeling
 -  extract information from data/observations
-  formalize/parameterize the obtained information
-  create and fit ‘models’
-  often employ closely related methods from different perspectives

Statistical Modeling Machine Learning

emphasis: inference
- explain/understand data
 in terms of explicit models
- verify assumptions/hypotheses,
 significance/confidence

emphasis: prediction
- discover patterns in the data
 with no/few explicit assumptions
- achieve good performance
 w.r.t. novel data

- can be used for prediction
 e.g. in Bayesian classification

- may also aim at understanding
 e.g. in relevance learning

“Machine Learning vs. Statistical Modeling”

IAC Winter School November 2018, La Laguna

 linear regression (machine learning)

given.: hypothesis: (approx.) linear relation

heuristics, direct treatment:
coefficients with minimal
quadratic deviation (Mean Square Error)

yµ 2 IR

(no explicit model of the deviations)

remark: constant term formally via ‘clamped input component’, e.g.

⇠µ2IRN fH(x) = w

>⇠ w, ⇠ 2 IRN

E =
1

2

PX

µ=1


w>⇠µ � yµ

�2

ID = {⇠µ, yµ}Pµ=1

w̃ = (w1, w2, . . . , wN , ✓)> 2 IRN+1

⇠̃
µ
= (⇠µ1 , ⇠

µ
2 , . . . , ⇠

µ
N ,�1)> 2 IRN+1

) w̃>⇠̃ = w>⇠ � ✓

IAC Winter School November 2018, La Laguna

 linear regression (machine learning)

explicit, formal solution

= X> (Xw � Y)Y = [y1, y2, . . ., yP]>

(Moore-Penrose) pseudo-inverse
of rectangular matrix X

2 IRP

if exists

(necessary condition: P ≥ N)

= 0 ?

E =
1

2

PX

µ=1


w>⇠µ � yµ

�2
rwE =

PX

µ=1


w>⇠µ � yµ

�
⇠µ

X = [⇠1, ⇠2, . . ., ⇠P]>

w⇤ = [X>X]�1 X> Y

[X>X]�1

(P ⇥N)

NxN NxP

IAC Winter School November 2018, La Laguna

if exists

regularization (machine learning)

modification for singular matrices
(e.g. too few data points and/or dependencies/correlations)

N-dimensional identity I

� > 0 guarantees existence of the inverse,
resulting w* corresponds to the minimum of

penalty for large
norm of weights

an example of regularization - a general concept in supervised ML
limiting the flexibility of an ML system can be beneficial

E� =
1

2

PX

µ=1


w>⇠µ � yµ

�2
+

1

2
�w2

w⇤ = [X>X]�1 X> Y [X>X]�1

w⇤ = [X>X + �I]�1 X> Y

X>X

IAC Winter School November 2018, La Laguna

model: explain observed data as (independently) generated by

log-likelihood of the observed data, ...

available set of data

⌘µ N (0,�2)deviations according to i.e.

 linear regression (statistical modeling)

ID = {⇠µ, yµ}Pµ=1

p(y | ⇠,w) = N (y | w>⇠,�2) / exp


� 1

2�2

�
y �w>⇠

�2
�

yµ = w>⇠µ + ⌘µ

p(ID | w) =
PY

µ=1

p(yµ | ⇠µ,w)

IAC Winter School November 2018, La Laguna

log-likelihood of the observed data ...

Maximum Likelihood estimate corresponds to MSE solution!

 linear regression (statistical modeling)

... is maximized when E is minimized w.r.t. the weight vector

model: explain observed data as (independently) generated by

available set of data

⌘µ N (0,�2)deviations according to i.e.

ID = {⇠µ, yµ}Pµ=1

p(y | ⇠,w) = N (y | w>⇠,�2) / exp


� 1

2�2

�
y �w>⇠

�2
�

yµ = w>⇠µ + ⌘µ

log p(ID |w) =

PX

µ=1

log p(yµ |⇠µ,w) = �P

2

log(2⇡�2
)� 1

�2

PX

µ=1

E(w)

IAC Winter School November 2018, La Laguna

prior probability of weights, e.g.

expresses belief/knowledge that large |w| are less likely

maximum a posteriori (MAP) solution
corresponds to weight decay (Tikhonov-, L2-regularization,)

 regularization (statistical modeling)

posterior probability (given data):

with appropriate λ

p
o

(w) / exp


� 1

2⌧2
w2

�

p(w|ID) / p(ID|w) p
o

(w)

log [p(w|ID)] ⇠ �E(w)� 1

2

�w2
+ const.

w⇤ = [X>X + �I]�1 X> Y

IAC Winter School November 2018, La Laguna

 Bayesian inference

instead of one specific solution (Max. Likelihood, MAP), consider all:

probabilistic
response

model data prior
likelihood

all possible
settings

frequent practices:
-  convenient choices (e.g. prior) in order to achieve simple schemes

-  restrict optimization to subset of parameters, e.g. w for fixed σ
- approximations often yield (heuristic) machine learning methods
-  incremental inference schemes for sequence of observations

p(y|⇠, ID) =

Z
p(y|⇠,w,�2) p(w,�2|ID)| {z }

p(ID|w,�2) p(w,�2)

dNw d[�2]

IAC Winter School 2018, La Laguna

24

 Intermezzo: unsupervised learning

-  was planned as introduction to ‘prototype-based learning’
-  links to Dalya Baron’s lectures on unsupervised learning
-  provides another example for the relation of
 ‘heuristic’ machine learning and statistical modelling

Vector Quantization and density estimation

Possible aims of unsupervised learning:
 - represent a large data set by a few prototypes
 - identify structures (e.g. clusters) in a given data set
 - estimate an underlying probability density of data

IAC Winter School 2018, La Laguna

25

based on dis-similarity/distance measure

assignment to prototypes:

given vector xµ , determine winner

→ assign xµ to prototype w*

one popular example: (squared) Euclidean distance

 Unsupervised Vector Quantization (VQ)

VQ system: set of prototypes
data: set of feature vectors

w1,w2, . . . ,wK wk 2 IRN

d(w,x) � 0

d(w,x) =
NX

n=1

(wn � xn)
2

x

1,x2, . . . ,xP
x

µ 2 IRN

w

⇤ = argminj
�
d(wj ,xµ)

Vector Quantization: identify (few) typical representatives of data
 which capture essential properties

(sorry, slight change of notation...)

IAC Winter School 2018, La Laguna 26

quantization error

here:
Euclidean distance

optimization of quantization error:
•  K-means algorithm
•  unsupervised competitive learning

 - assign each data point to closest prototype
 - measure the corresponding (squared) distance

()
 1 for x 0

Θ =
0 else

x
≥⎧

⎨
⎩

HV Q =
KX

j=1

PX

µ=1

�
x

µ �w

j
�2

| {z }
dµ
j

KY

k 6=j

⇥
�
dµk � dµj

�

| {z }
wj is the winner!

quantization error (sum over all data points)
 measures the quality of the representation

defines a (one) criterion to evaluate / compare
the quality of different prototype configurations

IAC Winter School 2018, La Laguna

There is nothing objective about objective functions
Jay McClelland

quantization error

IAC Winter School 2018, La Laguna 28

, random sequence of single data:

… the winner takes it all:

initially: randomized wk

 unsupervised competitive learning

competition for updates
learning rate / step size η <1 ⌘ (xµ �w

⇤)

w

⇤ ! w

⇤ + ⌘ (xµ �w

⇤)

η (<1): learning rate, step size

repeated presentation of available data:
- sequential presentation of single data points
-  e.g. random selection from the given set (with replacement)
-  sweeps through data sets (“epochs”)

update along the negative gradient of HVQ (contribution of a
 single data point)

IAC Winter School 2018, La Laguna 29

K-means (Lloyd’s algorithm)

(0) initialization, for instance:
 place vectors wk(t=0) at randomly selected data points

(2) re-compute the centers as means over the assigned data:

kµ with

✓
wkµ

(t)� x

µ

◆2


✓
wj(t)� x

µ

◆2

for all j

(1) assignment of each data point to nearest prototype/center

wj(t+ 1) =
PX

µ=1

�j,kµ
x

µ

,
PX

µ=1

�j,kµ

IAC Winter School 2018, La Laguna 30

Vector Quantization

comparison:
 K-means: updates all prototypes, considers all data at a time
 (batch- or offline-optimization)
 VQ-alg. : updates only the winner, random sequential presen-
 tation of single examples (stochastic gradient descent)

 both find (local) minimum of the quantization error

IAC Winter School 2018, La Laguna 31

Machine Learning vs. Statistical Modelling

 Gaussian mixture model:
•  explain observed data as a set of independently generated vectors,
 drawn from a superposition of Gaussian densities:

✓ = {wk,�k, pk}Kk=1parameters:

•  centers of Gaussian contributions
•  width of the Gaussians (here: isotropic)
•  weight of Gaussians in the mixture

Maximum Likelihood approach to determine single, best model fit

P (x|✓) =
KX

k=1

pk(2⇡�
2
k)

�N/2
exp


� 1

2�2
k

(x�wk)
2
�

IAC Winter School 2018, La Laguna 32

Gaussian mixture model

observed data mixture of 6 Gaussians
initial configuration

EM result

L(✓) =
PY

µ=1

P (x

µ|✓) =
PY

µ=1

X

k

pk(2⇡)
�N/2��N

k exp


� 1

2�2
k

(x

µ �wk)
2
�!

•  maximize (log-) Likelihood of observed data w.r.t. θ

•  Expectation-Maximization (EM) scheme Dempster et al. 1977]

l(✓) = logL(✓) =
PX

µ=1

ln

X

k

pk�
�N
k exp


� 1

2�2
k

(x

µ �wk)
2
�!

+ const.

IAC Winter School 2018, La Laguna 33

wk(t+ 1) =
PX

µ=1

Qµ

k(t)PP
⌫=1 Q

⌫
k(t)

!
x

µ

pk(t+ 1) =
1

P

PX

µ=1

Qµ
k(t)

Qµ
k(t) =

pk(t) exp
h
� 1

2�2 (x
µ �wk(t))

2
i

P
l pl(t) exp

h
� 1

2�2 (x
µ �wl(t))

2
i

EM-Iteration: �k = �

� probabilistic assign-
 ment of data points
 to current centers:

�  re-compute
 centers (weighted means)

 total weight of k-th Gaussian

lim

�!0
Qµ

k =

⇢
1 if (x

µ �wk)
2  (x

µ �wj)
2
for all j

0 else

limiting case: deterministic assignment to closest center

simplified model: equal, constant width

K-means algorithm recovered!

IAC Winter School 2018, La Laguna 34

 VQ and clustering

ideal clustering
scenario:
well-separate,
‘spherical’ clusters

in general:
representation
of observations
in feature space

sensitive to
cluster shape,
coordinate
transformations
(even linear)

small clusters
irrelevant with
respect to quan-
tization error

Remark 1: VQ ≠ clustering (“K-means clustering” ?)
minimal quantization error (Euclidean distance)

IAC Winter School 2018, La Laguna 35

VQ and clustering

Remark 2: clustering is an ill-defined problem

“obviously three clusters” “well, maybe only two?”

 our criterion: lower HVQ higher HVQ

→ “ better clustering ” ???

IAC Winter School 2018, La Laguna 36

→ “ the best clustering ” ?

HVQ = 0

K=1

the simplest clustering …

HVQ (and similar criteria) allow only to compare VQ with the same K !

K=60

more general: heuristic compromise between “error” and “simplicity”

 VQ and clustering

IAC Winter School 2018, La Laguna 37

popular heuristics: elbow method
- run VQ for different K to convergence
-  determine quantization error as a function of K
-  identify “elbow” or other characteristic value of K

© http://sebastianraschka.com Machine Learning Blog

suggests:
3 clusters

qu
al

ity
 m

ea
su

re

 VQ and clustering

suggestive example: (in practice usually less pronounced)

IAC Winter School 2018, La Laguna 38

data

initial
prototypes

practical issues of VQ training:

possible solution: rank-based updates (winner, second, third,…)

dead
units

 WTA training

in general: local minima of the quantization error,
 initialization-dependent outcome of training

 competitive learning

favorable initialization: k-means++ [Arthur & Vassilvitskii, 2007]

IAC Winter School 2018, La Laguna 39

Neural Gas (NG)

 introduce rank-based neighborhood cooperativeness:

upon presentation of xµ :
•  determine the rank (w.r.t. distance) of the prototypes

•  update all prototypes:

 with neighborhood function
 and range λ in terms of rank (independent of overall scale)

•  potential annealing of λ from large to smaller values with time

[Martinetz, Berkovich, Schulten, IEEE Trans. Neural Netw. 1993]

h�(kj) = exp (�kj/�)

 many prototypes (gas) to represent the density of observed data

kj
⇣
x

µ, {wk}Kj=1

⌘
=

KX

l=1

⇥ [d(wj ,x
µ)� d(wl,x

µ)]

wj ! wj + ⌘ h�(kj) (x
µ �wj)

IAC Winter School November 2018, La Laguna

 take home message

Machine Learning and Statistical Modeling

are similar / closely related as they ...
 - often yield very similar / identical methods
 - ML methods limits or approximations of stat. mod.
 - frequently can be used interchangeably

are different / complementary as they ...
 - start from different formal perspectives
 - emphasize different goals

•  it is useful to know and take advantage of both worlds
•  don’t be religious about making choices

IAC Winter School November 2018, La Laguna 41

Springer Series in Statistics

Trevor Hastie
Robert Tibshirani
Jerome Friedman

Springer Series in Statistics

The Elements of
Statistical Learning
Data Mining, Inference, and Prediction

The Elem
ents of Statistical Learning

During the past decade there has been an explosion in computation and information tech-
nology. With it have come vast amounts of data in a variety of fields such as medicine, biolo-
gy, finance, and marketing. The challenge of understanding these data has led to the devel-
opment of new tools in the field of statistics, and spawned new areas such as data mining,
machine learning, and bioinformatics. Many of these tools have common underpinnings but
are often expressed with different terminology. This book describes the important ideas in
these areas in a common conceptual framework. While the approach is statistical, the
emphasis is on concepts rather than mathematics. Many examples are given, with a liberal
use of color graphics. It should be a valuable resource for statisticians and anyone interested
in data mining in science or industry. The book’s coverage is broad, from supervised learning
(prediction) to unsupervised learning. The many topics include neural networks, support
vector machines, classification trees and boosting—the first comprehensive treatment of this
topic in any book.

This major new edition features many topics not covered in the original, including graphical
models, random forests, ensemble methods, least angle regression & path algorithms for the
lasso, non-negative matrix factorization, and spectral clustering. There is also a chapter on
methods for “wide” data (p bigger than n), including multiple testing and false discovery rates.

Trevor Hastie, Robert Tibshirani, and Jerome Friedman are professors of statistics at
Stanford University. They are prominent researchers in this area: Hastie and Tibshirani
developed generalized additive models and wrote a popular book of that title. Hastie co-
developed much of the statistical modeling software and environment in R/S-PLUS and
invented principal curves and surfaces. Tibshirani proposed the lasso and is co-author of the
very successful An Introduction to the Bootstrap. Friedman is the co-inventor of many data-
mining tools including CART, MARS, projection pursuit and gradient boosting.

› springer.com

S T A T I S T I C S

ISBN 978-0-387-84857-0

Trevor Hastie • Robert Tibshirani • Jerome Friedman
The Elements of Statictical Learning

Hastie • Tibshirani • Friedm
an

Second Edition

IAC Winter School November 2018, La Laguna 42

Introduction:
•  supervised learning, clasification, regression
•  machine learning “vs.” statistical modeling

Early (important!) approaches:

•  linear threshold classifier, Rosenblatt’s Perceptron
•  adaptive linear neuron, Widrow and Hoff’s Adaline

From Perceptron to Support Vector Machine

•  large margin classication
•  beyond linear separability

 Distance-based systems
•  prototypes: K-means and Vector Quantization
•  from K-Neares_Neighbors to Learning Vector Quantization
•  adaptive distance measures and relevance learning

IAC Winter School November 2018, La Laguna 43

The	New	York	Times:		

“The	embrio	of	an	electronic		
		computer	that	...	will	be	able	to	walk,		
		talk,	see,	write,	reproduce	itself		
		and	be	conscious	of	its	existence.”	

The	percepton			(1957)	

The Perceptron

2018 ?

IAC Winter School November 2018, La Laguna 44

The	New	York	Times:	

“The	embrio	of	an	electronic	
	computer	that	...	will	be	able	to	walk,	
	talk,	see,	write,	reproduce	itself		
	and	be	conscious	of	its	existence.”	

Mark	1	perceptron:		
sensors:		400	photocells	
weights:		poten?ometers	

	changed	by	electric	motors	

The	percepton			(1957)	

Frank	RosenblaC	
Cornell	Aeronau?cal	Laboratory	
&	Office	of	Naval	Research		

The Perceptron

45

http://www.youtube.com/watch?v=cNxadbrN_aI

youtube video on the Perceptron (historical document J)

IAC Winter School November 2018, La Laguna 46

Mark I Perceptron

IAC Winter School November 2018, La Laguna 47

Perceptrons
An introduction to computational
geometry (1969)

•  an excellent mathematical
 analysis of the perceptron

•  pointed out limitations
 and restrictions

•  essentially stalled the field of
 machine learning
 (perceived as only negative)

48

The Perceptron architecture
building block and simple feed-forward ”network”:

⇠ N -dimensional inputs

w (adaptive) weights

S = sign(w · ⇠ � ✓) = ±1 (threshold unit)

Perceptron Convergence Theorem: Rosenblatt (1958)
Capacity: Winder (1963), Cover (1965), Schläfli (1852)
Perceptrons, Minsky and Papert (1969)
Statistical physics theory of perceptron weights: Gardner (1988)
Support Vector Machines: Vapnik (1995)

49

geometrical interpetation:

w defines a hyperplane in IRN

✓ is the off-set from the origin (e.g. |w | = 1)

linearly separable (l.s.) classification

of all possible inputs

50

geometrical interpetation:

w defines a hyperplane in IRN

✓ is the off-set from the origin (e.g. |w | = 1)

linearly separable (l.s.) classification

of all possible inputs

A function S(⇠) is called

• homogeneously l.s. if a vector w 2 IRN exists with sign(w · ⇠) = S(⇠) for all ⇠

• inhomogeneously l.s. if a pair w 2 IRN , ✓ 2 IR exists with sign(w · ⇠ � ✓) = S(⇠)

formally:
e

⇠ = (⇠
1

, ⇠
2

, . . . , ⇠N , ⇠N+1

= �1)

T 2 IRN+1 (clamped extra�input�dimension)
ew = (w

1

, w
2

, . . . , wN , wN+1

= ✓)T 2 IRN+1 (extra weight)

ew · e⇠ = w · ⇠ � ✓ ! S(⇠) inhom. l.s. in IRN , S(

e

⇠) hom. l.s. in IRN+1

51

The perceptron (storage) problem

given a dichotomy of data DP
N =

�

⇠

µ 2 IRN , Sµ 2 {�1, +1}
µ=1,2,...P

find a vector w 2 IRN , such that sign (w · ⇠µ
) = Sµ for all µ.

Questions:

• When is a given dichotomy linearly separable (l.s.)?

• How many l.s. DP
N exist? (The capacity of a hyperplane)

• If it exists, how can we find a perceptron vector w?

• If there are several/many solutions, which is best?

• What can we do for non-separable DP
N?���������������������

52

Solving the perceptron storage problem
re-write the problem ...
consider a given data set ID = {⇠µ, Sµ

R}

... find a vector w with Sµ
H = sign(w · ⇠µ

) = Sµ
R for all µ

Note: sign(w · ⇠µ
) = Sµ

R , sign(w · ⇠µ Sµ
R) = 1 , Eµ

= w · ⇠µ Sµ
R > 0

(local potentials Eµ)

equivalent problem: solve a set of linear inequalities (in w)

... find a vector w with Eµ
= w · ⇠µ Sµ

R � c > 0 for all µ

Note that the actual value of c > 0 is irrelevant:

⇣

w
1

satisfies {Eµ
1

� c}P
µ=1

⌘

,
⇣

w
2

= �w
1

satisfies {Eµ
2

� � c}P
µ=1

⌘

IAC Winter School November 2018, La Laguna 53

Solving the perceptron storage problem
re-write the problem ...
consider a given data set ID = {⇠µ, Sµ

R}

... find a vector w with Sµ
H = sign(w · ⇠µ

) = Sµ
R for all µ

Note: sign(w · ⇠µ
) = Sµ

R , sign(w · ⇠µ Sµ
R) = 1 , Eµ

= w · ⇠µ Sµ
R > 0

(local potentials Eµ)

equivalent problem: solve a set of linear inequalities (in w)

... find a vector w with Eµ
= w · ⇠µ Sµ

R � c > 0 for all µ

Note that the actual value of c > 0 is irrelevant:

⇣

w
1

satisfies {Eµ
1

� c}P
µ=1

⌘

,
⇣

w
2

= �w
1

satisfies {Eµ
2

� � c}P
µ=1

⌘

54

consider iterative algorithms

• sequential presentation of data
n

⇠

µ(t), S
µ(t)
R

o

, e.g.

learning steps (time) t = 0, 1, 2, 3, . . .

number of example ⌫(t) =

1, 2, 3, . . . , P, 1, 2, 3, . . .

• update of vectors (w(0) = 0) E⌫(t)
= w(t) · ⇠⌫(t) S

⌫(t)
R

w(t+1) = w(t) +

1

N
f(E⌫(t)

) ⇠

⌫(t) S
⌫(t)
R (f defines the actual algorithm)

w accumulates Hebbian terms ⇠

µSµ
R (input ⇥ output)

• ! general form of the result w(t) =

P
X

µ=1

xµ
(t) ⇠

µ Sµ
R

xµ is called the embedding strength of example µ

55

consider iterative algorithms

• sequential presentation of data
n

⇠

µ(t), S
µ(t)
R

o

, e.g.

learning steps (time) t = 0, 1, 2, 3, . . .

number of example ⌫(t) =

1, 2, 3, . . . , P, 1, 2, 3, . . .

• update of vectors (w(0) = 0) E⌫(t)
= w(t) · ⇠⌫(t) S

⌫(t)
R

w(t+1) = w(t) +

1

N
f(E⌫(t)

) ⇠

⌫(t) S
⌫(t)
R (f defines the actual algorithm)

w accumulates Hebbian terms ⇠

µSµ
R (input ⇥ output)

• ! general form of the result w(t) =

P
X

µ=1

xµ
(t) ⇠

µ Sµ
R

xµ is called the embedding strength of example µ

=
1

N

56

Rosenblatt’s perceptron algorithm (Rosenblatt, 1958)

w(t+1) = w(t) +

1

N
⇥

h

c� E⌫(t)
i

⇠

⌫(t) S
⌫(t)
R (initial weights w(0) = 0)

learning from mistakes f(Eµ
) = ⇥[c� Eµ

] =

(

1 if Eµ < c

0 if Eµ � c

integer embedding strengths 0  xµ
(t+1) =

(

xµ
(t)+1 if Eµ < c

xµ
(t) if Eµ � c

(for µ = ⌫(t))

Proof of convergence

• assume a vector w⇤ exists with {Eµ⇤
= w⇤ · ⇠µ Sµ

R � c > 0}P

µ=1

���8

1

2

3

4

5

6

o

 1 0

 2 0

 3 0

 4 0

 5 0

 6 0

µ xµ

1

2

3

4

5

6

o

 1 1

 2 0

 3 0

 4 0

 5 0

 6 0

µ xµ

1

2

3

4

5

6

o

 1 1

 2 0

 3 0

 4 0

 5 0

 6 0

µ xµ

1

2

3

4

5

6

o

 1 1

 2 0

 3 0

 4 0

 5 0

 6 0

µ xµ

1

2

3

4

5

6

o

 1 1

 2 0

 3 1

 4 0

 5 0

 6 0

µ xµ

1

2

3

4

5

6

o

 1 1

 2 0

 3 1

 4 0

 5 0

 6 0

µ xµ

1

2

3

4

5

6

o

 1 1

 2 0

 3 1

 4 0

 5 0

 6 0

µ xµ

1

2

3

4

5

6

o

 1 1

 2 0

 3 1

 4 0

 5 1

 6 0

µ xµ

solution found! (here: in the first epoch already)

65

• note that for any vector w: 0  (w⇤ · w)

2

|w⇤|2 |w|2 = cos

2 \(w,w⇤
)  1

• weight vector after t learning steps w(t) =

1

N

P
X

µ=1

xµ
(t) ⇠

µ Sµ
R

xµ
(t) number of non-zero learning steps for example µ

M(t) =

P
X

µ=1

xµ
(t) total number of non-zero steps

• projection R(t) = w⇤ ·w(t)

R(t) =

1

N

P
X

µ=1

xµ
(t) (w⇤ · ⇠µ

) Sµ
R =

1

N

P
X

µ=1

xµ
(t) Eµ⇤

|{z}

� c
� 1

N
c M(t)

9

w

Rosenblatt’s perceptron algorithm (Rosenblatt, 1958)

w(t+1) = w(t) +

1

N
⇥

h

c� E⌫(t)
i

⇠

⌫(t) S
⌫(t)
R (initial weights w(0) = 0)

learning from mistakes f(Eµ
) = ⇥[c� Eµ

] =

(

1 if Eµ < c

0 if Eµ � c

integer embedding strengths 0  xµ
(t+1) =

(

xµ
(t)+1 if Eµ < c

xµ
(t) if Eµ � c

(for µ = ⌫(t))

Proof of convergence

• assume a vector w⇤ exists with {Eµ⇤
= w⇤ · ⇠µ Sµ

R � c > 0}P

µ=1

���8

skip
proof

66

• note that for any vector w: 0  (w⇤ · w)

2

|w⇤|2 |w|2 = cos

2 \(w,w⇤
)  1

• weight vector after t learning steps w(t) =

1

N

P
X

µ=1

xµ
(t) ⇠

µ Sµ
R

xµ
(t) number of non-zero learning steps for example µ

M(t) =

P
X

µ=1

xµ
(t) total number of non-zero steps

• projection R(t) = w⇤ ·w(t)

R(t) =

1

N

P
X

µ=1

xµ
(t) (w⇤ · ⇠µ

) Sµ
R =

1

N

P
X

µ=1

xµ
(t) Eµ⇤

|{z}

� c
� 1

N
c M(t)

9

w

Rosenblatt’s perceptron algorithm (Rosenblatt, 1958)

w(t+1) = w(t) +

1

N
⇥

h

c� E⌫(t)
i

⇠

⌫(t) S
⌫(t)
R (initial weights w(0) = 0)

learning from mistakes f(Eµ
) = ⇥[c� Eµ

] =

(

1 if Eµ < c

0 if Eµ � c

integer embedding strengths 0  xµ
(t+1) =

(

xµ
(t)+1 if Eµ < c

xµ
(t) if Eµ � c

(for µ = ⌫(t))

Proof of convergence

• assume a vector w⇤ exists with {Eµ⇤
= w⇤ · ⇠µ Sµ

R � c > 0}P

µ=1

���8

67

• note that for any vector w: 0  (w⇤ · w)

2

|w⇤|2 |w|2 = cos

2 \(w,w⇤
)  1

• weight vector after t learning steps w(t) =

1

N

P
X

µ=1

xµ
(t) ⇠

µ Sµ
R

xµ
(t) number of non-zero learning steps for example µ

M(t) =

P
X

µ=1

xµ
(t) total number of non-zero steps

• projection R(t) = w⇤ ·w(t)

R(t) =

1

N

P
X

µ=1

xµ
(t) (w⇤ · ⇠µ

) Sµ
R =

1

N

P
X

µ=1

xµ
(t) Eµ⇤

|{z}

� c
� 1

N
c M(t)

9

w

Rosenblatt’s perceptron algorithm (Rosenblatt, 1958)

w(t+1) = w(t) +

1

N
⇥

h

c� E⌫(t)
i

⇠

⌫(t) S
⌫(t)
R (initial weights w(0) = 0)

learning from mistakes f(Eµ
) = ⇥[c� Eµ

] =

(

1 if Eµ < c

0 if Eµ � c

integer embedding strengths 0  xµ
(t+1) =

(

xµ
(t)+1 if Eµ < c

xµ
(t) if Eµ � c

(for µ = ⌫(t))

Proof of convergence

• assume a vector w⇤ exists with {Eµ⇤
= w⇤ · ⇠µ Sµ

R � c > 0}P

µ=1

���8

68

• norm of the weight vector

- among all inputs, one has the largest norm:

- non-zero learning step:

- zero learning step:

- note:

we replace E by c and
obtain an upper bound:

(M is the # of non-zero steps so far)

(Q(0)=0)

Q(t+1)

69

• norm of the weight vector

- among all inputs, one has the largest norm:

- non-zero learning step:

- zero learning step:

- note:

we replace E by c and
obtain an upper bound:

(M is the # of non-zero steps so far)

(Q(0)=0)

Q(t+1)

70

• norm of the weight vector

- among all inputs, one has the largest norm:

- non-zero learning step:

- zero learning step:

- note:

we replace E by c and
obtain an upper bound:

(M is the # of non-zero steps so far)

(Q(0)=0)

Q(t+1)

71

we have the bounds:

constants!

the total number of non-zero steps is limited:

in one epoch pres. all data
- either M does not change at all (all inputs classified correctly, done!)
- either M increases at least by one (at least one input was misclassified)

ĺ the total number of epochs is also limited
 the algorithm converges in finite time!

Remark: in the limit c → 0, implies that

the bound for M(t) remains finite

72

we have the bounds:

constants!

the total number of non-zero steps is limited:

in one epoch pres. all data
- either M does not change at all (all inputs classified correctly, done!)
- either M increases at least by one (at least one input was misclassified)

ĺ the total number of epochs is also limited
 the algorithm converges in finite time!

Remark: in the limit c → 0, implies that

the bound for M(t) remains finite

73

we have the bounds:

constants!

the total number of non-zero steps is limited:

in one epoch pres. all data
- either M does not change at all (all inputs classified correctly, done!)
- either M increases at least by one (at least one input was misclassified)

ĺ the total number of epochs is also limited
 the algorithm converges in finite time!

Remark: in the limit c → 0, implies that

the bound for M(t) remains finite

 or

74

we have the bounds:

constants!

the total number of non-zero steps is limited:

in one epoch pres. all data
- either M does not change at all (all inputs classified correctly, done!)
- either M increases at least by one (at least one input was misclassified)

ĺ the total number of epochs is also limited
 the algorithm converges in finite time!

Remark: in the limit c → 0, implies that

the bound for M(t) remains finite

 or

w⇤
exists with Q⇤ / c2

75

Perceptron Convergence Theorem

If the data set is linearly separable,

the Rosenblatt Perceptron algorithm converges and yields a weight vector

Remarks:

- this is one of the most fundamental results in the field

- we have assumed the existence of a solution

- it is difficult to decide wether a given data set is linearly separable

- the required number of steps is finite, but may be large, even if a solution exists

76

Learning a linearly separable rule from reliable examples
storage of a data set is not the primary goal of perceptron training

• assume: unknown lin. sep. function or rule SR(⇠) = sign(w⇤ · ⇠)

defines the correct classification for every possible input

(the teacher perceptron w⇤ 2 IRN parameterizes the rule)

• only available information: example data

ID = {⇠µ, Sµ
R = SR(⇠

µ
)}P

µ=1

(correct labels Sµ
R provided by the teacher, absence of noise etc.)

• training: choice of student weights w (w/o loss of generality: w ·w = 1)

parameterizes a hypothesis SH(⇠) = sign(w · ⇠)

extreme strategy: zero training error , learning in version space,
accept only hypotheses which are perfectly consistent with ID

21

Learning a linearly separable rule from reliable examples
storage of a data set is not the primary goal of perceptron training

• assume: unknown lin. sep. function or rule SR(⇠) = sign(w⇤ · ⇠)

defines the correct classification for every possible input

(the teacher perceptron w⇤ 2 IRN parameterizes the rule)

• only available information: example data

ID = {⇠µ, Sµ
R = SR(⇠

µ
)}P

µ=1

(correct labels Sµ
R provided by the teacher, absence of noise etc.)

• training: choice of student weights w (w/o loss of generality: w ·w = 1)

parameterizes a hypothesis SH(⇠) = sign(w · ⇠)

extreme strategy: zero training error , learning in version space,
accept only hypotheses which are perfectly consistent with ID

21

77

Learning in version space
dual geometrical interpretation:

each ⇠, Sµ defines a hyperplane in IRN

which separates the w with SH(⇠) right/wrong
each example defines a correct half-space

set of data ID ! version space

VID =

n

w
�

�

�

{sign(w · ⇠µ
) = SR(⇠

µ
)}P

µ=1

o

schematic example: P = 4, orientations Sµ not shown

the dichotomy D4

N corresponding to VID

is non-ambiguous [ambiguous] w.r.t. ⇠

5 [⇠6]
22

Learning in version space
dual geometrical interpretation:

each ⇠, Sµ defines a hyperplane in IRN

which separates the w with SH(⇠) right/wrong
each example defines a correct half-space

set of data ID ! version space

VID =

n

w
�

�

�

{sign(w · ⇠µ
) = SR(⇠

µ
)}P

µ=1

o

schematic example: P = 4, orientations Sµ not shown

the dichotomy D4

N corresponding to VID

is non-ambiguous [ambiguous] w.r.t. ⇠

5 [⇠6]
22

⇠6

78

new data point non-informative example:
 only one label possible
 informative example:
 version space shrinks!

⇠6

⇠5⇠5

VID

79

upper hemisphere:
correct weight vectors

lower hemisphere:
incorrect weight vectors

illustration: version space

consider set of example data, normalized perceptron weight vectors

80

version space

a set of linearly separable examples defines “version space”
volume of all correct weight vectors

81

version space

a “non-informative” example (non-ambiguous case)
does not shrink version space, only one label consistent with linear separability

82

an “informative” example (ambiguous case)
does shrink version space according to its label

83

Learning a linearly separable rule: generalization

• the unknown teacher w⇤ define the (hom.) lin. sep. rule SR(⇠) = sign[w⇤ · ⇠]

• training process based on ID = {⇠µ, Sµ
R = SR(⇠

µ
)} yields a student

SH(⇠) = sign(w · ⇠) with w 2 IRN

consider a novel random input ⇠ 2 IRN

generated with equal probability anywhere on the
N–sphere with ⇠

2

= � (normalization)

probability for disagreement:

generalization error

"g =

2 �

2 ⇡
=

1

⇡
arccos



w ·w⇤

|w | |w⇤ |
�

(valid in arbitrary dimenions N)
30

84

Learning a linearly separable rule: generalization

• the unknown teacher w⇤ define the (hom.) lin. sep. rule SR(⇠) = sign[w⇤ · ⇠]

• training process based on ID = {⇠µ, Sµ
R = SR(⇠

µ
)} yields a student

SH(⇠) = sign(w · ⇠) with w 2 IRN

consider a novel random input ⇠ 2 IRN

generated with equal probability anywhere on the
N–sphere with ⇠

2

= � (normalization)

probability for disagreement:

generalization error

"g =

2 �

2 ⇡
=

1

⇡
arccos



w ·w⇤

|w | |w⇤ |
�

(valid in arbitrary dimenions N)
30

85

learning in version space (consistent hypotheses, e.g. by Rosenblatt Perceptron)
growing number of examples

as becomes parallel to
for normalized : version space shrinks to a point

zero generalization error

empirical observation, theory: typical behavior for learning in version space

86

The perceptron (storage) problem

given a dichotomy of data DP
N =

{
ξµ ∈ IRN , Sµ ∈ {−1,+1}

}
µ=1,2,...P

find a vector w ∈ IRN , such that sign (w · ξµ) = Sµ for all µ.

Questions:

• When is a given dichotomy linearly separable (l.s.)?

• How many l.s. DP
N exist? (The capacity of a hyperplane)

• If it exists, how can we find a perceptron vector w?

• If there are several/many solutions, which is best?

• What can we do for non-separable DP
N?

33

87

The perceptron of maximal stability

stability of example µ: µ
=

Eµ

|w| =

w · ⇠µ Sµ
R

|w|
measures the distance from the decision plane

stability of the perceptron (w) = min
µ

{

µ}

perceptron of maximal stability: w
max

= argmax

V
(w):

• realize large separating gap between the two classes (w
max

) = 
max

• classification is insensitive to small variations of ⇠

µ e.g. due to noise
• corresponds to weight vector close to the center of version space in a l.s. rule

• yields (typically) good generalization ability

88

The perceptron of maximal stability

stability of example µ: µ
=

Eµ

|w| =

w · ⇠µ Sµ
R

|w|
measures the distance from the decision plane

stability of the perceptron (w) = min
µ

{

µ}

perceptron of maximal stability: w
max

= argmax

V
(w):

• realize large separating gap between the two classes (w
max

) = 
max

• classification is insensitive to small variations of ⇠

µ e.g. due to noise
• corresponds to weight vector close to the center of version space in a l.s. rule

• yields (typically) good generalization ability

89

selected
hypothesis:

“teacher” unknown rule,
w/o additional knowledge: anywhere
 in with equal probability

distance

small for large , small

version space:
normalized vectors

weight in the center (of mass) of version space:
lowest expectation value of distance d , best generalization error
on average over all possible positions of

90

selected
hypothesis:

“teacher” unknown rule,
w/o additional knowledge: anywhere
 in with equal probability

distance

small for large , small

version space:
normalized vectors

weight in the center (of mass) of version space:
lowest expectation value of distance d , best generalization error
on average over all possible positions of

91

the restriction to w 2 V with

stability (w) �  favors

vectors in the center of version space

shaded area shrinks to a point (w
max

) as ! 
max

The minover algorithm [Krauth and Mezard, 1989]

• iterative procedure, time steps t = 0, 1, 2, 3, . . . w(0) = 0

• given w(t), determine the example with lowest stability (minimal overlap)

µ(t) with µ(t)
= min

⌫

⇢

⌫
(t) =

w(t)⇠⌫ S⌫
R

|w(t) |
�

• update of the weight vector: w(t + 1) = w(t) +

1

N
⇠

µ(t) S
µ(t)
R

36

(not quite the center of mass...)

92

the restriction to w 2 V with

stability (w) �  favors

vectors in the center of version space

shaded area shrinks to a point (w
max

) as ! 
max

The minover algorithm [Krauth and Mezard, 1989]

• iterative procedure, time steps t = 0, 1, 2, 3, . . . w(0) = 0

• given w(t), determine the example with lowest stability (minimal overlap)

µ(t) with µ(t)
= min

⌫

⇢

⌫
(t) =

w(t)⇠⌫ S⌫
R

|w(t) |
�

• update of the weight vector: w(t + 1) = w(t) +

1

N
⇠

µ(t) S
µ(t)
R

36

(not quite the center of mass...)

93

without proof:

If is linearly separable, the minover algorithm
converges and yields the perceptron weight vector of maximal stability

we show (only):
embedding strengths exist with

consider two perceptrons: and

with

0

0

can be written as (#),
can be found by iterative
training algorithms, potentially

94

without proof:

If is linearly separable, the minover algorithm
converges and yields the perceptron weight vector of maximal stability

we show (only):
embedding strengths exist with

consider two perceptrons: and

with

0

0

can be written as (#),
can be found by iterative
training algorithms, potentially

95

without proof:

If is linearly separable, the minover algorithm
converges and yields the perceptron weight vector of maximal stability

we show (only):
embedding strengths exist with

consider two perceptrons: and

with

0

0

can be written as (#),
can be found by iterative
training algorithms, potentially

IAC Winter School November 2018, La Laguna 96

Solving the perceptron storage problem
re-write the problem ...
consider a given data set ID = {⇠µ, Sµ

R}

... find a vector w with Sµ
H = sign(w · ⇠µ

) = Sµ
R for all µ

Note: sign(w · ⇠µ
) = Sµ

R , sign(w · ⇠µ Sµ
R) = 1 , Eµ

= w · ⇠µ Sµ
R > 0

(local potentials Eµ)

equivalent problem: solve a set of linear inequalities (in w)

... find a vector w with Eµ
= w · ⇠µ Sµ

R � c > 0 for all µ

Note that the actual value of c > 0 is irrelevant:

⇣

w
1

satisfies {Eµ
1

� c}P
µ=1

⌘

,
⇣

w
2

= �w
1

satisfies {Eµ
2

� � c}P
µ=1

⌘

 the storage problem revisited

IAC Winter School November 2018, La Laguna 97

 solving equations ?

Instead of inequalities, try to solve P equations for N unknowns:

(A) if no solution exists, find approximation by least square dev.:

Eµ
=

NX

j=1

wj⇠
µ
j Sµ

= 1 for all µ = 1, 2, . . . , P

minimization, e.g. by means of gradient descent with

minimize f =
1

2

PX

µ=1

(1� Eµ)2

rwf = �
PX

µ=1

(1� Eµ) ⇠µ Sµ

IAC Winter School November 2018, La Laguna 98

 solving equations ?

(B) system can be under-determined → find a unique solution:

minimize

1

2

| w |2 under constraints {Eµ
= 1}Pµ=1

Lagrange function

necessary conditions for optimum:
@L

@�µ
= (1� Eµ)

!
= 0

rwL = w �
PX

µ=1

�µ ⇠µ Sµ !
= 0) w =

PX

µ=1

�µ ⇠µ Sµ

Lagrange parameters ~ embedding strengths λµ (rescaled with N)

L =
1

2
| w |2 +

PX

µ=1

�µ (1� Eµ)

IAC Winter School November 2018, La Laguna 99

eliminate weights:

in terms of weights:
the same as in (A) !!!

simplified problem: max� L = �1

2

X

µ,⌫

�⌫ C⌫µ �µ
+

X

µ

�µ

E⌫ =
PX

µ=1

1

N

NX

k=1

(⇠µkS
µ) (⇠⌫kS

⌫)

| {z }
⌘C⌫µ

�µ

@L

@�⇢
= 1�

X

µ

C⇢µ�µ = (1� E⇢)gradient ascent with:

�w /
X

⇢

(1� E⇢) ⇠⇢ S⇢

 solving equations ?

NX

j=1

w2
j /

X

µ,⌫

�⌫ C⌫µ �µ

IAC Winter School November 2018, La Laguna 100

classical algorithm: ADALINE

 Adaline algorithm:

Adaptive Linear Neuron (Widrow and Hoff, 1960)

gradient based learning for linear regression (MSE)
frequent strategy: regression as a proxy for classification

more general: training of a linear unit with continuous output

iteration of weights / embedding strengths

w(t) = w(t� 1) + ⌘

⇣
1� E

µ(t)
⌘
⇠

µ(t)
S

µ(t)

x

µ(t) = x

µ(t� 1) + ⌘

⇣
1� E

µ(t)
⌘

sequence µ(t)
of examples

minimize f =
1

2

PX

µ=1

(hµ � Eµ)2 with hµ 2 IR, µ = 1, 2 . . . , P

f =
1

2

PX

µ=1

�
yµ � w>⇠µ

�2
with yµ = hµ Sµ

101

“Science in action” ca. 1960

http://www.youtube.com/watch?v=IEFRtz68m-8

 youtube video “science in action” with Bernard Widrow

IAC Winter School November 2018, La Laguna 102

Introduction:
•  supervised learning, clasification, regression
•  machine learning “vs.” statistical modeling

Early (important!) approaches:

•  linear threshold classifier, Rosenblatt’s Perceptron
•  adaptive linear neuron, Widrow and Hoff’s Adaline

From Perceptron to Support Vector Machine

•  large margin classification
•  beyond linear separability

 Distance-based systems
•  prototypes: K-means and Vector Quantization
•  from K-Neares_Neighbors to Learning Vector Quantization
•  adaptive distance measures and relevance learning

 Optimal stability by quadratic optimization

 storage problem: find such that for a given

 optimal stability:

alternative formulation:

Note: the solution of the problem yields stability

w ID = {⇠⌫ , S⌫
R}sign

�
w>⇠µ

�
= Sµ

R

maximize (w) where (w) = min

µ

⇢
µ

=

w>⇠µSµ
R

| w |

�

w

minimize

1

2

w2
subject to inequality constraints

�
Eµ

= w>⇠µ Sµ
R � 1

 P

µ=1

w
max


max

=
1

| w
max

|

we know: search can be restricted to of the form

Notation:

correlation matrix (outputs incorporated)

with elements

P-vectors:

inequalities

“one-vector”:

We can formulate optimal stability completely in terms of embedding strengths:

 minimize subject to linear constraints

This is a special case of a standard problem in Quadratic Programming:
minimize a nonlinear function under linear inequality constraints

(C is positive semi-definite)

Optimization theory: Kuhn–Tucker theorem
 see, e.g., R. Fletcher, Practical Methods of Optimization (Wiley, 1987)
 or http://wikipedia.org “Karush-Kuhn-Tucker-conditions” for a quick start

necessary conditions for a local solution of a general
non-linear optimization problem with equality and inequality constraints
here: only inequality constraints (see literature for the mixed case)

inequality constraints

complementarity

minimize

~x

f(~x) subject to c

i

(~x) � 0 for i=1,2,. . . k

L(~x,�1,�2, . . .�k) = f(~x) �
kX

i=1

�i ci(~x)Lagrange function:

ci(~x) � 0

�i � 0 non-negative Lagrange parameters

�i ci(~x) = 0

(i = 1, 2, . . . k)

necessary conditions for solutions:

r
~x

L = 0 stationarity (zero gradient)

Lagrange function:

minimize

~x

1

2

~x

>
C ~x subject to C~x � ~

1

L(~x,~�) =
1

2
~x

>
C ~x � ~

�

> (C~x�~1)

linear separability!

complementarity

non-negative Lagrange parameters

necessary conditions for solution:

C ~x � ~1

C ~x = C

~

�

stationarity note:
r

~x

(~x>
C~x) = 2C~x

r
~x

(~�>
C~x) = ~

�

>
C = C

~

�

Max. stability: Kuhn–Tucker theorem for a special non-linear optimization problem

C ~x = C

~

�

does not necessarily imply ~x = ~

�

but: satisfies also all conditions, so we can replace by
(and rename it to)

~� ~x

~�
~x

�

µ ([C~x]µ � 1) = 0 (µ = 1, 2, . . . P)

~� � 0

here: any solution can be represented by a Kuhn-Tucker (KT) point with:

non-negative embedding strengths (←minover)

linear separability

complementarity

implies also:

consider two KT-points

→ all KT-points yield the same unique perceptron weight vector

→ any local solution is globally optimal

IAC Winter School November 2018, La Laguna

Duality, theory of Lagrange multipliers ! equivalent formulation (Wolfe dual):

maximize

~x

e
f = �1

2

~x

T
C ~x + ~x

T
~

1 subject to ~x � 0

AdaTron algorithm:

– sequential presentation of examples ID = { ⇠

µ
, S

µ }

– gradient ascent w.r.t. e
f , projected onto ~x � 0

x

µ ! max { 0, x

µ
+ ⌘ (1� [C~x]

µ
) } (0 < ⌘ < 2)

for the proof of convergence one can show:

• for an arbitrary ~x � 0 and a KT point ~x⇤: e
f(~x

⇤
) � e

f(~x)

• e
f(x) is bounded from above in ~x � 0

• e
f(x) increases in every cycle through ID, unless a KT point has been reached

5

max� L = �1

2

X

µ,⌫

�⌫ C⌫µ �µ
+

X

µ

�µAdaline: (unconstrained)

IAC Winter School November 2018, La Laguna

Duality, theory of Lagrange multipliers ! equivalent formulation (Wolfe dual):

maximize

~x

e
f = �1

2

~x

T
C ~x + ~x

T
~

1 subject to ~x � 0

AdaTron algorithm:

– sequential presentation of examples ID = { ⇠

µ
, S

µ }

– gradient ascent w.r.t. e
f , projected onto ~x � 0

x

µ ! max { 0, x

µ
+ ⌘ (1� [C~x]

µ
) } (0 < ⌘ < 2)

for the proof of convergence one can show:

• for an arbitrary ~x � 0 and a KT point ~x⇤: e
f(~x

⇤
) � e

f(~x)

• e
f(x) is bounded from above in ~x � 0

• e
f(x) increases in every cycle through ID, unless a KT point has been reached

5

z }| {
⌘
h
r

~x

ef
i
µ

(Adaptive PercepTron) [Anlauf and Biehl, 1989]

IAC Winter School November 2018, La Laguna

Duality, theory of Lagrange multipliers ! equivalent formulation (Wolfe dual):

maximize

~x

e
f = �1

2

~x

T
C ~x + ~x

T
~

1 subject to ~x � 0

AdaTron algorithm:

– sequential presentation of examples ID = { ⇠

µ
, S

µ }

– gradient ascent w.r.t. e
f , projected onto ~x � 0

x

µ ! max { 0, x

µ
+ ⌘ (1� [C~x]

µ
) } (0 < ⌘ < 2)

for the proof of convergence one can show:

• for an arbitrary ~x � 0 and a KT point ~x⇤: e
f(~x

⇤
) � e

f(~x)

• e
f(x) is bounded from above in ~x � 0

• e
f(x) increases in every cycle through ID, unless a KT point has been reached

5

[Anlauf and Biehl, 1989] (Adaptive PercepTron)

IAC Winter School November 2018, La Laguna

Support Vectors
complementarity condition: x

µ
(1� E

µ
) = 0 for all µ

i.e. either
⇢

E

µ
= 1

x

µ � 0

�
or

⇢
E

µ
> 1

x

µ
= 0

�

examples ... have to be embedded or ... are stabilized “automatically”

P
µthe�weights� Z/ x

µ
⇠

µ
S

µ

depend (explicitly) only on a subset of ID

if these support vectors were known
in advance, training could be restricted
to the subset

6

(unfortunately they are not...)

IAC Winter School November 2018, La Laguna 114

learning in version space ?

... even then, it only makes sense if
•  the unknown rule is a linearly separable function
•  the data set is reliable (noise-free)

... is only possible if
•  the data set is linearly separable

?

lin. separable nonlin. boundary noisy data (?)

. &lassiIication beyond linear separability
assume is not linearly separable - what can we do?

● accept an approximation by a linearly separable function → see “pocket algorithm”
and �large margin with errors�

● construct more complex architectures from perceptron-like units.
 e.g. multilayer networks (universal classificators, difficult training)

→ see “committee and
 parity-machine”

● consider ensembles of perceptrons
 train several student perceptrons

- each student should make a small number of errors
- the perceptrons should differ significantly

combine the into an ensemble classifier , e.g. by majority vote

competing aims:

potential reasons: noisy data, more complex problem

. &lassiIication beyond linear separability
assume is not linearly separable - what can we do?

● accept an approximation by a linearly separable function → see “pocket algorithm”
and �large margin with errors�

● construct more complex architectures from perceptron-like units.
 e.g. multilayer networks (universal classificators, difficult training)

→ see “committee and
 parity-machine”

● consider ensembles of perceptrons
 train several student perceptrons

- each student should make a small number of errors
- the perceptrons should differ significantly

combine the into an ensemble classifier , e.g. by majority vote

competing aims:

potential reasons: noisy data, more complex problem

see also: Decision Trees and Forests (lectures by Dalya Baron)

● employ a linear decision boundary, but after a non-linear transformation of the data
to an M-dim. feature space (M=N is possible, but not required)

M-dim. weight vector

non-linear transformation

for a given, explicit transformation , perceptron training can be applied in

important examples:

- Rosenblatt’s perceptron with masks, transformed features

- Support Vector Machines: M > N transformation to higher-dim. space

 is defined only implicitly (kernel-trick)

 perceptron of optimal stability in M dimensions

● most frequent approach: approximate classification by continuous regression

● employ a linear decision boundary, but after a non-linear transformation of the data
to an M-dim. feature space (M=N is possible, but not required)

M-dim. weight vector

non-linear transformation

for a given, explicit transformation , perceptron training can be applied in

important examples:

- Rosenblatt’s perceptron with masks, transformed features

- Support Vector Machines: M > N transformation to higher-dim. space

 is defined only implicitly (kernel-trick)

 perceptron of optimal stability in M dimensions

● most frequent approach: approximate classification by continuous regression
� very frequent approach (e.g. multilayered feed-forward neural networks):
 replace classification by regression in the training phase

!   large margins with errors
admit disagreements w.r.t. training data, but keep basic idea of optimal stability

minimizew,�
1

2

w2
+ �

PX

µ=1

�µ
subject to Eµ � 1� �µ

for all µ

and �µ � 0 for all µ

slack variables

(
�µ

= 0 $ Eµ � 1

�µ > 0 $ Eµ < 1 includes errors with Eµ < 0

minimize

~x,

~

�

1

2

~x

>
C ~x + �

~

� ·~1 subject to C ~x � ~

1� ~

�

and

~

� � 0

rewritten in terms of embedding strengths (see above for notation)

approximation: linearly separable function, accept errors, e.g.

!   large margins with errors
admit disagreements w.r.t. training data, but keep basic idea of optimal stability

minimizew,�
1

2

w2
+ �

PX

µ=1

�µ
subject to Eµ � 1� �µ

for all µ

and �µ � 0 for all µ

slack variables

(
�µ

= 0 $ Eµ � 1

�µ > 0 $ Eµ < 1 includes errors with Eµ < 0

minimize

~x,

~

�

1

2

~x

>
C ~x + �

~

� ·~1 subject to C ~x � ~

1� ~

�

and

~

� � 0

rewritten in terms of embedding strengths (see above for notation)

 dual problem: (elimination of slack variables!)

maximize

~x

� 1

2

~x

>
C ~x +

~

1 · ~x subject to 0  ~x  �

~

1

 positive and upper-bounded embedding strengths
 parameter γ - limits the growth of xµ for misclassified data points
 - controls a compromise between aims of large margin and low error
 - has to be chosen appropriately, e.g. by validation methods (later chapter)
 note: even for lin. sep. data the optimum can include misclassifications!

AdaTron with errors (projected gradient ascent)

˜

x

µ x

µ
+ ⌘ (1� [C~x]

µ
) gradient step

ˆ

x

µ max

�
0,

˜

x

µ

enforce non-negative embeddings

x

µ min

�
�,

ˆ

x

µ

limit embedding strenghts to x

µ  �

 dual problem: (elimination of slack variables!)

maximize

~x

� 1

2

~x

>
C ~x +

~

1 · ~x subject to 0  ~x  �

~

1

 positive and upper-bounded embedding strengths
 parameter γ - limits the growth of xµ for misclassified data points
 - controls a compromise between aims of large margin and low error
 - has to be chosen appropriately, e.g. by validation methods (later chapter)
 note: even for lin. sep. data the optimum can include misclassifications!

AdaTron with errors (projected gradient ascent)

˜

x

µ x

µ
+ ⌘ (1� [C~x]

µ
) gradient step

ˆ

x

µ max

�
0,

˜

x

µ

enforce non-negative embeddings

x

µ min

�
�,

ˆ

x

µ

limit embedding strenghts to x

µ  �

Example algorithm:

IAC Winter School November 2018, La Laguna

The Support Vector Machine

•  Perceptron of optimal stability: support vectors
•  SVM: non-linear transformation to high-dim. feature space
•  implicit kernel formulation, Mercer’s theorem

history: www.svms.org

Support Vectors (linear separable case)
complementarity condition: x

µ
(1� E

µ
) = 0 for all µ

i.e. either
⇢

E

µ
= 1

x

µ � 0

�
or

⇢
E

µ
> 1

x

µ
= 0

�

examples ... have to be embedded or ... are stabilized “automatically”

the weights ~w /
P

µ x

µ
⇠

µ
S

µ

depend (explicitly) only on a subset of ID

if these support vectors were known
in advance, training could be restricted
to the subset

60

The Support Vector Machine
assume ID = { ⇠

µ
, S

µ } is not linearly separable — what can we do?

• accept an approximation by a linearly separable function

(limited flexibility and usefulness)

• construct more complex architectures from perceptron units,

e.g. multilayer networks (universal approximators, difficult training)

• generate a non-linear decision surface for the original data

S

µ
H = sign [f(⇠

µ
)], ⇠ 2 IR

N ! f(⇠) 2 IR

• employ a linear decision boundary, but after a non-linear transformation of the data

S

µ
H = sign [W · (⇠

µ
)], ⇠ 2 IR

N ! (⇠) 2 IR

M with weights W 2 IR

M

in general M 6= N , mostly M > N

61

SVM: transformation with M>N to high-dim. feature space

An illustrative example (c/o R. Dietrich, PhD thesis)

consider original, two-dimensional data (x

1

, x

2

)

and the non-linear transformed data (x

1

, x

2

) =

⇣
x

2

1

,

p
2 x

1

x

2

, x

2

⌘
2 IR

3

linearly separable classification in IR

3:

S

µ
= sign (W · (x

1

, x

2

)) with ~

W = (1, 1,�1)

the non-separable classification in IR2 becomes linearl\ separable in IR3

62

An illustrative example (c/o R. Dietrich, PhD thesis)

consider original, two-dimensional data (x

1

, x

2

)

and the non-linear transformed data (x

1

, x

2

) =

⇣
x

2

1

,

p
2 x

1

x

2

, x

2

⌘
2 IR

3

linearly separable classification in IR

3:

S

µ
= sign (W · (x

1

, x

2

)) with ~

W = (1, 1,�1)

the non-separable classification in IR2 becomes linearl\ separable in IR3

62

basic idea:

The Support Vector Machine
assume ID = { ⇠

µ
, S

µ } is not linearly separable — what can we do?

• accept an approximation by a linearly separable function

(limited flexibility and usefulness)

• construct more complex architectures from perceptron units,

e.g. multilayer networks (universal approximators, difficult training)

• generate a non-linear decision surface for the original data

S

µ
H = sign [f(⇠

µ
)], ⇠ 2 IR

N ! f(⇠) 2 IR

• employ a linear decision boundary, but after a non-linear transformation of the data

S

µ
H = sign [W · (⇠

µ
)], ⇠ 2 IR

N ! (⇠) 2 IR

M with weights W 2 IR

M

in general M 6= N , mostly M > N

61

SVM: transformation with M>N to high-dim. feature space

An illustrative example (c/o R. Dietrich, PhD thesis)

consider original, two-dimensional data (x

1

, x

2

)

and the non-linear transformed data (x

1

, x

2

) =

⇣
x

2

1

,

p
2 x

1

x

2

, x

2

⌘
2 IR

3

linearly separable classification in IR

3:

S

µ
= sign (W · (x

1

, x

2

)) with ~

W = (1, 1,�1)

the non-separable classification in IR2 becomes linearl\ separable in IR3

62

An illustrative example (c/o R. Dietrich, PhD thesis)

consider original, two-dimensional data (x

1

, x

2

)

and the non-linear transformed data (x

1

, x

2

) =

⇣
x

2

1

,

p
2 x

1

x

2

, x

2

⌘
2 IR

3

linearly separable classification in IR

3:

S

µ
= sign (W · (x

1

, x

2

)) with ~

W = (1, 1,�1)

the non-separable classification in IR2 becomes linearl\ separable in IR3

62

basic idea:

The Support Vector Machine
assume ID = { ⇠

µ
, S

µ } is not linearly separable — what can we do?

• accept an approximation by a linearly separable function

(limited flexibility and usefulness)

• construct more complex architectures from perceptron units,

e.g. multilayer networks (universal approximators, difficult training)

• generate a non-linear decision surface for the original data

S

µ
H = sign [f(⇠

µ
)], ⇠ 2 IR

N ! f(⇠) 2 IR

• employ a linear decision boundary, but after a non-linear transformation of the data

S

µ
H = sign [W · (⇠

µ
)], ⇠ 2 IR

N ! (⇠) 2 IR

M with weights W 2 IR

M

in general M 6= N , mostly M > N

61

SVM: transformation with M>N to high-dim. feature space

An illustrative example (c/o R. Dietrich, PhD thesis)

consider original, two-dimensional data (x

1

, x

2

)

and the non-linear transformed data (x

1

, x

2

) =

⇣
x

2

1

,

p
2 x

1

x

2

, x

2

⌘
2 IR

3

linearly separable classification in IR

3:

S

µ
= sign (W · (x

1

, x

2

)) with ~

W = (1, 1,�1)

the non-separable classification in IR2 becomes linearl\ separable in IR3

62

An illustrative example (c/o R. Dietrich, PhD thesis)

consider original, two-dimensional data (x

1

, x

2

)

and the non-linear transformed data (x

1

, x

2

) =

⇣
x

2

1

,

p
2 x

1

x

2

, x

2

⌘
2 IR

3

linearly separable classification in IR

3:

S

µ
= sign (W · (x

1

, x

2

)) with ~

W = (1, 1,�1)

the non-separable classification in IR2 becomes linearl\ separable in IR3

62

An illustrative example (c/o R. Dietrich, PhD thesis)

consider original, two-dimensional data (x

1

, x

2

)

and the non-linear transformed data (x

1

, x

2

) =

⇣
x

2

1

,

p
2 x

1

x

2

, x

2

⌘
2 IR

3

linearly separable classification in IR

3:

S

µ
= sign (W · (x

1

, x

2

)) with ~

W = (1, 1,�1)

the non-separable classification in IR2 becomes linearl\ separable in IR3

62

basic idea:

assume: transformation guarantees linear separability of { (⇠

µ
), S

µ }
! a vector W exists with S

µ
H = sign (W · (⇠

µ
)) for all µ.

optimal stability:

maximize

W
(W) where (W) = min

µ

⇢


µ
=

W · (⇠

µ
) S

µ

|W |

�

Exact same structure as the original perceptron problem – all above results from
optimization theory apply accordingly

re-formulate:

minimize

~X

1

2

~

X

T
�

~

X subject to �

~

X � ~

1

here:
W =

1

M

PX

µ=1

X

µ
 (⇠

µ
) S

µ
�

µ⌫
=

1

M

S

µ
 (⇠

µ
) · (⇠

⌫
) S

⌫

W

2

=

1

M

~

X

T
�

~

X

63

assume: transformation guarantees linear separability of { (⇠

µ
), S

µ }
! a vector W exists with S

µ
H = sign (W · (⇠

µ
)) for all µ.

optimal stability:

maximize

W
(W) where (W) = min

µ

⇢


µ
=

W · (⇠

µ
) S

µ

|W |

�

Exact same structure as the original perceptron problem – all above results from
optimization theory apply accordingly

re-formulate:

minimize

~X

1

2

~

X

T
�

~

X subject to �

~

X � ~

1

here:
W =

1

M

PX

µ=1

X

µ
 (⇠

µ
) S

µ
�

µ⌫
=

1

M

S

µ
 (⇠

µ
) · (⇠

⌫
) S

⌫

W

2

=

1

M

~

X

T
�

~

X

63

Kernel formulation
consider the function K : IR

N ⇥ IR

N ! IR with K(⇠

µ
, ⇠

⌫
) =

1

M (⇠

µ
) · (⇠

⌫
)

re-write in terms of this kernel function
• the classification scheme: SH(⇠) = sign (W · (⇠))

= sign

0

@
PX

µ=1

X

µ
S

µ
 (⇠

µ
) · (⇠)

1

A
= sign

0

@
PX

µ=1

X

µ
S

µ
K(⇠

µ
, ⇠)

1

A

• training algorithms for the embedding strengths, just one example:

Kernel AdaTron X

µ ! max

(
0, X

µ
+ ⌘

1� S

µ
PX

⌫=1

S

⌫
X

⌫
K(⇠

µ
, ⇠

⌫
)

!)

– no explicit use of the transformed feature vectors (⇠)

– only dot-products required, which can be expressed in terms of the kernel
64

Kernel formulation
consider the function K : IR

N ⇥ IR

N ! IR with K(⇠

µ
, ⇠

⌫
) =

1

M (⇠

µ
) · (⇠

⌫
)

re-write in terms of this kernel function
• the classification scheme: SH(⇠) = sign (W · (⇠))

= sign

0

@
PX

µ=1

X

µ
S

µ
 (⇠

µ
) · (⇠)

1

A
= sign

0

@
PX

µ=1

X

µ
S

µ
K(⇠

µ
, ⇠)

1

A

• training algorithms for the embedding strengths, just one example:

Kernel AdaTron X

µ ! max

(
0, X

µ
+ ⌘

1� S

µ
PX

⌫=1

S

⌫
X

⌫
K(⇠

µ
, ⇠

⌫
)

!)

– no explicit use of the transformed feature vectors (⇠)

– only dot-products required, which can be expressed in terms of the kernel
64

Kernel formulation
consider the function K : IR

N ⇥ IR

N ! IR with K(⇠

µ
, ⇠

⌫
) =

1

M (⇠

µ
) · (⇠

⌫
)

re-write in terms of this kernel function
• the classification scheme: SH(⇠) = sign (W · (⇠))

= sign

0

@
PX

µ=1

X

µ
S

µ
 (⇠

µ
) · (⇠)

1

A
= sign

0

@
PX

µ=1

X

µ
S

µ
K(⇠

µ
, ⇠)

1

A

• training algorithms for the embedding strengths, just one example:

Kernel AdaTron X

µ ! max

(
0, X

µ
+ ⌘

1� S

µ
PX

⌫=1

S

⌫
X

⌫
K(⇠

µ
, ⇠

⌫
)

!)

– no explicit use of the transformed feature vectors (⇠)

– only dot-products required, which can be expressed in terms of the kernel
64

so far: define non-linear (⇠) 2 IR

M , find corresponding kernel function K(⇠

µ
, ⇠

⌫
)

now: as we will never use (⇠) explicitly, why not start with defining a kernel
function in the first place?

for practical purposes, we need not know nor its dimension M

Question: does a given kernel K correspond to some valid transformation ?

Mercer’s Theorem (sufficient condition)

a given kernel function K can be written as K(⇠

µ
, ⇠

⌫
) = (⇠

µ
) · (⇠

⌫
), if

Z Z
g(⇠

µ
) K(⇠

µ
, ⇠

⌫
) g(⇠

⌫
) d

N
⇠

µ
d

N
⇠

⌫ � 0 holds true

for all functions g with finite norm
Z

g(⇠)

2

d

N
⇠ < 1

65

so far: define non-linear (⇠) 2 IR

M , find corresponding kernel function K(⇠

µ
, ⇠

⌫
)

now: as we will never use (⇠) explicitly, why not start with defining a kernel
function in the first place?

for practical purposes, we need not know nor its dimension M

Question: does a given kernel K correspond to some valid transformation ?

Mercer’s Theorem (sufficient condition)

a given kernel function K can be written as K(⇠

µ
, ⇠

⌫
) = (⇠

µ
) · (⇠

⌫
), if

Z Z
g(⇠

µ
) K(⇠

µ
, ⇠

⌫
) g(⇠

⌫
) d

N
⇠

µ
d

N
⇠

⌫ � 0 holds true

for all functions g with finite norm
Z

g(⇠)

2

d

N
⇠ < 1

65

popular classes of kernels (which satisfy Mercer’s conditon)

● polynomial kernels of degree (up to) q, e.g.

linear kernel

= perceptron with threshold in original space

quadratic kernel

-> perceptron with respect to feature vectors containing all single and products of 2 original features

popular classes of kernels (which satisfy Mercer’s conditon)

● polynomial kernels of degree (up to) q, e.g.

linear kernel

= perceptron with threshold in original space

quadratic kernel

-> perceptron with respect to feature vectors containing all single and products of 2 original features

● Radial basis function (RBF) kernel

involves all powers of the features, “M → ∞”

attractive aspects of the SVM approach:
- optimization problem is uniquely solvable (no local minima)
- efficient training algorithms are known
- maximum stability facilitates good generalization ability

… if the kernel (its parameters) is (are) appropriately chosen

in practice:
- select simple kernels, allow for violations of some of the linear constraints
by means of slack variables (e.g. kernel-version of Adatron with errors, see above)

- choose kernel (kernel parameters) by means of cross-validation procedures
- use approximate schemes for huge amounts of data (many support vectors)

● Radial basis function (RBF) kernel

involves all powers of the features, “M → ∞”

attractive aspects of the SVM approach:
- optimization problem is uniquely solvable (no local minima)
- efficient training algorithms are known
- maximum stability facilitates good generalization ability

… if the kernel (its parameters) is (are) appropriately chosen

in practice:
- select simple kernels, allow for violations of some of the linear constraints
by means of slack variables (e.g. kernel-version of Adatron with errors, see above)

- choose kernel (kernel parameters) by means of cross-validation procedures
- use approximate schemes for huge amounts of data (many support vectors)

● Radial basis function (RBF) kernel

involves all powers of the features, “M → ∞”

attractive aspects of the SVM approach:
- optimization problem is uniquely solvable (no local minima)
- efficient training algorithms are known
- maximum stability facilitates good generalization ability

… if the kernel (its parameters) is (are) appropriately chosen

in practice:
- select simple kernels, allow for violations of some of the linear constraints
by means of slack variables (e.g. kernel-version of Adatron with errors, see above)

- choose kernel (kernel parameters) by means of cross-validation procedures
- use approximate schemes for huge amounts of data (many support vectors)

