
(C) Regression, layered neural networks

-  Networks of continuous units
-  Regression problems
-  Gradient descent, backpropagation of error
-  The role of the learning rate
-  Online learning, stochastic approximation

Neural Networks 2

Of Neurons and Networks

biological neurons (very brief)
 - single neurons
 - synapses and networks
 - synaptic plasticity and learning

simplified description
 - inspiration for artificial neural networks

artificial neural networks
 - architectures and types of networks:
 recurrent attractor neural networks (associative memory)
 feed-forward neural networks (classification/ regression)

Neural Networks

synaptic
cleft

post-synaptic pre-synaptic

axon
soma

axon
branches

dendrites

neurons:
highly specialized cells
•  cell body soma
•  incoming dendrites
•  branched axon

many neurons !
≳ 1012 in human cortex

highly connected !
 ≳ 1000 neighbors

Of Neurons and Networks

3

action potentials / spikes:

∙ travel along
 the axon

∙ cells generate
 electric pulses

Neural Networks

receptors

transmitter

synaptic
cleft

vesicles ∙ pre-synaptic pulse arriving at
 excitatory /inhibitory synapse
 triggers / hinders
 post-synaptic spike generation

pre-synaptic

post-synaptic

synapses:

4

 excitatory: increase
∙ incoming the postsynaptic
 pulse membrane potential
 inhibitory: decrease

∙ all or nothing response

potential exceeds threshold ⇨ postsynaptic neuron fires
potential is sub-threshold ⇨ postsynaptic neuron rests

Of Neurons and Networks

Neural Networks 5

simplified description of neural activity: firing rates

time [ms]

e.
g.

sp

ik
es

 /
 m

s
 mean activity

single spikes

S(t)

Of Neurons and Networks

Neural Networks 6

(mean) local potential at neuron i (with activity Si)

weighted sum of incoming activities

synaptic
weights

excitatory synapse

inhibitory synapse

j

i

X

j

wijSj

wij =

8
<

:

> 0
= 0
< 0

Of Neurons and Networks

Neural Networks 7

non-linear response:

∙ maximal activity h(x→+∞) ≡ 1
∙ monotonic increase h’(x) > 0

∙ minimal activity h(x→-∞) ≡ 0
important class of fcts.:
sigmoidal activation

just one example:

θ

gain parameter Υ
local threshold θ

0

1

Υ

Activation Function

Si = h
hP

j wijSj

i

xi =
X

j

wijSj

h(xi) =
1

2

⇣
1 + tanh [�(xi � ✓)]

⌘

Neural Networks 8

non-linear response:

∙ maximal activity g(x→+∞) ≡ 1
∙ monotonic increase g’(x) > 0

∙ minimal activity g(x→-∞) ≡ -1
sigmoidal activation

θ

gain parameter Υ
local threshold θ

-1

1

Υ

just one example:

Si = g
hP

j wijSj

i

xi =
X

j

wijSj

g(xi) = tanh [�(xi � ✓)]

Activation Function

Neural Networks 9

an extreme case: infinite gain

θ

local threshold θ

(don’t confuse θ with
 the all-or-nothing
 threshold in spiking
 neurons)

-1

1

McCulloch Pitts Neurons

McCulloch Pitts [1943]:
model neuron is either quiescent or maximally active
do not consider graded response

xi =
X

j

wijSj

g(xi) = tanh [�(xi � ✓)] ! sign [x� ✓] =

⇢
+1 for x � ✓

�1 for x < ✓

� ! 1

Neural Networks 10

Synaptic Plasticity

D. Hebb [1949]

consider - presynaptic neuron A
 - postsynaptic neuron B
 - excitatory synapse

A

B

Hypothesis: Hebbian Learning

If A and B (frequently) fire at the same time
the excitatory synaptic strength increases

→ memory-effect will favor joint activity in the future

wAB

wBA

change of synaptic strength �wBA / SASB

�1 SA, SB +1For symmetrized firing rates

pre-synaptic x post-synaptic activity

Neural Networks 11

Artificial Neural Networks

in the following:
 - assembled from simple firing rate neurons
 - connected by weights, real valued synaptic strenghts
 - various architectures and types of networks
 e.g.: attractor neural networks, recurrent networks

here: N=5 neurons
partial connectivity

wij Si(t)
Sj(t)

dynamical systems, e.g. Hopfield model:
network of McCulloch Pitts neurons,
can operate as Associative Memory
by learning of synaptic interactions

Neural Networks 12

feed-forward networks

layered architecture
(here: 6-3-4-1)

directed connections
(here: only to next layer)

input layer (external stimulus)

hidden units
(internal representation)

output unit(s)
(function of input vector)

↑ previous layer only

Si = g

0

@
X

j

wijSj

1

A

wij

Neural Networks 13

input units

weights

single output unit

output = “linear separable function” of input variables
parameterized by the weight vector and threshold θ

the perceptron revisited

⇠j 2 IR

wj 2 IR,w 2 IRN

S = sign

0

@
NX

j=1

wj⇠j � ✓

1

A

w

Neural Networks 14

input units

input to hidden weights

single output unit

hidden layer units

hidden to output weights

output = non-linear function of input variables:

parameterized by set of all weights (and threshold)

convergent two-layer architecture

⇠j 2 IR, ⇠ 2 IRN

w(k)
j

vk

Sk = g

0

@
X

j

w(k)
j ⇠j

1

A

�

� = g

KX

k=1

vkSk

!
= g

0

@
X

k

vk g

0

@
X

j

w(k)
j ⇠j

1

A

1

A

Neural Networks 15

networks of continuous nodes

continuous activation functions, e.g.
for all nodes in the network

given a network architecture, the weights (and thresholds)
parameterize a function (input/output relation):

(here: single output unit)

Learning as regression problem
set of examples with real-valued labels

training:
(approximately) implement

generalization:
application to novel data

g(x) = tanh (�x)

⇠ 2 IRN ! �(⇠) 2 IR

{⇠µ, ⌧µ = ⌧(⇠µ)}Pµ=1 {⇠µ, ⌧µ = ⌧(⇠µ)}Pµ=1

�(⇠µ) = ⌧(⇠µ) for all µ

�(⇠) ⇡ ⌧(⇠)

Neural Networks 16

error measure and training

training strategy: employ an error measure
 for comparison of student/teacher outputs

just one very popular and plausible choice:

quadratic deviation:

cost function:

-  defined for a given set of example data
-  guides the training process
-  is a differentiable function of weights and thresholds
-  training by gradient descent minimization of E

e(�, ⌧) =
1

2
(� � ⌧)2

E =
1

P

PX

µ=1

eµ =
1

P

PX

µ=1

1

2

⇣
�(⇠µ)� ⌧(⇠µ)

⌘2

Neural Networks 17

. . .

a single unit

⇠j 2 IR, ⇠ 2 IRN

w 2 IRN

� = g

0

@
NX

j=1

wj ⇠j

1

A

E(w) =
1

P

PX

µ=1

1

2

⇣
g(w · ⇠µ)� ⌧µ

⌘2

@E(w)

@wk
=

1

P

PX

µ=1

⇣
g(w · ⇠µ)� ⌧µ

⌘
g0(w · ⇠µ) ⇠µk

rwE(w) =
1

P

PX

µ=1

⇣
g(w · ⇠µ)� ⌧µ

⌘
g0(w · ⇠µ) ⇠µ

18

Backpropagation of Error

convenient calculation of the gradient in multilayer networks (chain rule)

example: continuous two-layer network with K hidden units

inputs ⇠ 2 IRN

weights w
k

2 IRN , k = 1, 2, . . . ,K

hidden units �
k

(⇠) = g(w
k

· ⇠)

output �(⇠) = h
⇣P

K

j=1 v
j

g(w
j

· ⇠)
⌘

Exercise: derive r w
k

E and @E

@v

k

the weigths w
k

and v
k

are used ...

– downward for the calculation of hidden states and output

– upward for the calculation of the gradient
75

Backpropagation of Error

convenient calculation of the gradient in multilayer networks (chain rule)

example: continuous two-layer network with K hidden units

inputs ⇠ 2 IRN

weights w
k

2 IRN , k = 1, 2, . . . ,K

hidden units �
k

(⇠) = g(w
k

· ⇠)

output �(⇠) = h
⇣P

K

j=1 v
j

g(w
j

· ⇠)
⌘

Exercise: derive r w
k

E and @E

@v

k

the weigths w
k

and v
k

are used ...

– downward for the calculation of hidden states and output

– upward for the calculation of the gradient
75

Backpropagation of Error

convenient calculation of the gradient in multilayer networks (chain rule)

example: continuous two-layer network with K hidden units

inputs ⇠ 2 IRN

weights w
k

2 IRN , k = 1, 2, . . . ,K

hidden units �
k

(⇠) = g(w
k

· ⇠)

output �(⇠) = h
⇣P

K

j=1 v
j

g(w
j

· ⇠)
⌘

Exercise: derive r w
k

E and @E

@v

k

the weigths w
k

and v
k

are used ...

– downward for the calculation of hidden states and output

– upward for the calculation of the gradient
75

Neural Networks 19

A.E. Bryson, Y.-C. Ho (1969)
Applied optimal control: optimization, estimation and control.
Blaisdell Publishing, p 481

P. Werbos (1974). Beyond regression: New Tools for Prediction
and Analysis in Behavorial Sciences
PhD thesis, Harvard University

D.E. Rumelhart, G.E. Hinton, R.J. Williams (1986)
Learning representations by backpropagating errors.
Nature 323 (6088): 533-536

backpropagation

Neural Networks 20
1995 1987

backpropagation

21

negative gradient gives the direction of steepest descent in E

simple gradient based minimization of E:

sequence w0 ! w1 ! . . .! w
t

! w
t+1 ! . . .

with w
t+1 = w

t

� ⌘ r E|w
t

approaches some minimum of E (?)

learning rate rate ⌘

– controls the step size of the algorithm

– has to be small enough to ensure convergence

– should be as large as possible to facilitate fast learning

76

22

assume E has a (local) minimum in w⇤, Taylor expansion in the vicinity:

E(w) ⇡ E(w⇤) + (w�w⇤)T r E|⇤| {z }
=0

+
1
2

(w�w⇤)T

H⇤ (w�w⇤) + . . .

E(w) ⇡ E(w⇤) +
1
2

(w�w⇤)T

H⇤ (w�w⇤) r E|w ⇡ H⇤ (w�w⇤)

with the positive definite Hesse matrix of second derivatives H⇤
ij

=
@2 E

@w
i

@w
j

����
⇤

H⇤ has only pos. eigenvalues �
i

> 0, orthonormal eigenvectors u
i

(all �
i

 �
max

)

gradient descent in the vicinity of w⇤: w
t

�w⇤ ⌘ �
t

= �
t�1 � ⌘ r E|w

t�1

�
t

⇡ [I � ⌘ H⇤] �
t�1 ⇡ [I � ⌘ H⇤]t �0 expansion in {u

i

}: �0 =
X

i

a
i

u
i

�
t

⇡
X

i

a
i

[I � ⌘ H⇤]t u
i

=
X

i

a
i

[1 � ⌘ �
i

]t u
i

with uT

j

u
k

= �
jk

we obtain | �
t

|2 =
X

i

a2
i

[1� ⌘�
i

]2t

77

assume E has a (local) minimum in w⇤, Taylor expansion in the vicinity:

E(w) ⇡ E(w⇤) + (w�w⇤)T r E|⇤| {z }
=0

+
1
2

(w�w⇤)T

H⇤ (w�w⇤) + . . .

E(w) ⇡ E(w⇤) +
1
2

(w�w⇤)T

H⇤ (w�w⇤) r E|w ⇡ H⇤ (w�w⇤)

with the positive definite Hesse matrix of second derivatives H⇤
ij

=
@2 E

@w
i

@w
j

����
⇤

H⇤ has only pos. eigenvalues �
i

> 0, orthonormal eigenvectors u
i

(all �
i

 �
max

)

gradient descent in the vicinity of w⇤: w
t

�w⇤ ⌘ �
t

= �
t�1 � ⌘ r E|w

t�1

�
t

⇡ [I � ⌘ H⇤] �
t�1 ⇡ [I � ⌘ H⇤]t �0 expansion in {u

i

}: �0 =
X

i

a
i

u
i

�
t

⇡
X

i

a
i

[I � ⌘ H⇤]t u
i

=
X

i

a
i

[1 � ⌘ �
i

]t u
i

with uT

j

u
k

= �
jk

we obtain | �
t

|2 =
X

i

a2
i

[1� ⌘�
i

]2t

77

wt = wt�1

Neural Networks 23

assume E has a (local) minimum in w⇤, Taylor expansion in the vicinity:

E(w) ⇡ E(w⇤) + (w�w⇤)T r E|⇤| {z }
=0

+
1
2

(w�w⇤)T

H⇤ (w�w⇤) + . . .

E(w) ⇡ E(w⇤) +
1
2

(w�w⇤)T

H⇤ (w�w⇤) r E|w ⇡ H⇤ (w�w⇤)

with the positive definite Hesse matrix of second derivatives H⇤
ij

=
@2 E

@w
i

@w
j

����
⇤

H⇤ has only pos. eigenvalues �
i

> 0, orthonormal eigenvectors u
i

(all �
i

 �
max

)

gradient descent in the vicinity of w⇤: w
t

�w⇤ ⌘ �
t

= �
t�1 � ⌘ r E|w

t�1

�
t

⇡ [I � ⌘ H⇤] �
t�1 ⇡ [I � ⌘ H⇤]t �0 expansion in {u

i

}: �0 =
X

i

a
i

u
i

�
t

⇡
X

i

a
i

[I � ⌘ H⇤]t u
i

=
X

i

a
i

[1 � ⌘ �
i

]t u
i

with uT

j

u
k

= �
jk

we obtain | �
t

|2 =
X

i

a2
i

[1� ⌘�
i

]2t

77

assume E has a (local) minimum in w⇤, Taylor expansion in the vicinity:

E(w) ⇡ E(w⇤) + (w�w⇤)T r E|⇤| {z }
=0

+
1
2

(w�w⇤)T

H⇤ (w�w⇤) + . . .

E(w) ⇡ E(w⇤) +
1
2

(w�w⇤)T

H⇤ (w�w⇤) r E|w ⇡ H⇤ (w�w⇤)

with the positive definite Hesse matrix of second derivatives H⇤
ij

=
@2 E

@w
i

@w
j

����
⇤

H⇤ has only pos. eigenvalues �
i

> 0, orthonormal eigenvectors u
i

(all �
i

 �
max

)

gradient descent in the vicinity of w⇤: w
t

�w⇤ ⌘ �
t

= �
t�1 � ⌘ r E|w

t�1

�
t

⇡ [I � ⌘ H⇤] �
t�1 ⇡ [I � ⌘ H⇤]t �0 expansion in {u

i

}: �0 =
X

i

a
i

u
i

�
t

⇡
X

i

a
i

[I � ⌘ H⇤]t u
i

=
X

i

a
i

[1 � ⌘ �
i

]t u
i

with uT

j

u
k

= �
jk

we obtain | �
t

|2 =
X

i

a2
i

[1� ⌘�
i

]2t

77

= [I � ⌘H⇤] �t�1

Neural Networks 24

assume E has a (local) minimum in w⇤, Taylor expansion in the vicinity:

E(w) ⇡ E(w⇤) + (w�w⇤)T r E|⇤| {z }
=0

+
1
2

(w�w⇤)T

H⇤ (w�w⇤) + . . .

E(w) ⇡ E(w⇤) +
1
2

(w�w⇤)T

H⇤ (w�w⇤) r E|w ⇡ H⇤ (w�w⇤)

with the positive definite Hesse matrix of second derivatives H⇤
ij

=
@2 E

@w
i

@w
j

����
⇤

H⇤ has only pos. eigenvalues �
i

> 0, orthonormal eigenvectors u
i

(all �
i

 �
max

)

gradient descent in the vicinity of w⇤: w
t

�w⇤ ⌘ �
t

= �
t�1 � ⌘ r E|w

t�1

�
t

⇡ [I � ⌘ H⇤] �
t�1 ⇡ [I � ⌘ H⇤]t �0 expansion in {u

i

}: �0 =
X

i

a
i

u
i

�
t

⇡
X

i

a
i

[I � ⌘ H⇤]t u
i

=
X

i

a
i

[1 � ⌘ �
i

]t u
i

with uT

j

u
k

= �
jk

we obtain | �
t

|2 =
X

i

a2
i

[1� ⌘�
i

]2t

77

assume E has a (local) minimum in w⇤, Taylor expansion in the vicinity:

E(w) ⇡ E(w⇤) + (w�w⇤)T r E|⇤| {z }
=0

+
1
2

(w�w⇤)T

H⇤ (w�w⇤) + . . .

E(w) ⇡ E(w⇤) +
1
2

(w�w⇤)T

H⇤ (w�w⇤) r E|w ⇡ H⇤ (w�w⇤)

with the positive definite Hesse matrix of second derivatives H⇤
ij

=
@2 E

@w
i

@w
j

����
⇤

H⇤ has only pos. eigenvalues �
i

> 0, orthonormal eigenvectors u
i

(all �
i

 �
max

)

gradient descent in the vicinity of w⇤: w
t

�w⇤ ⌘ �
t

= �
t�1 � ⌘ r E|w

t�1

�
t

⇡ [I � ⌘ H⇤] �
t�1 ⇡ [I � ⌘ H⇤]t �0 expansion in {u

i

}: �0 =
X

i

a
i

u
i

�
t

⇡
X

i

a
i

[I � ⌘ H⇤]t u
i

=
X

i

a
i

[1 � ⌘ �
i

]t u
i

with uT

j

u
k

= �
jk

we obtain | �
t

|2 =
X

i

a2
i

[1� ⌘�
i

]2t

77

assume E has a (local) minimum in w⇤, Taylor expansion in the vicinity:

E(w) ⇡ E(w⇤) + (w�w⇤)T r E|⇤| {z }
=0

+
1
2

(w�w⇤)T

H⇤ (w�w⇤) + . . .

E(w) ⇡ E(w⇤) +
1
2

(w�w⇤)T

H⇤ (w�w⇤) r E|w ⇡ H⇤ (w�w⇤)

with the positive definite Hesse matrix of second derivatives H⇤
ij

=
@2 E

@w
i

@w
j

����
⇤

H⇤ has only pos. eigenvalues �
i

> 0, orthonormal eigenvectors u
i

(all �
i

 �
max

)

gradient descent in the vicinity of w⇤: w
t

�w⇤ ⌘ �
t

= �
t�1 � ⌘ r E|w

t�1

�
t

⇡ [I � ⌘ H⇤] �
t�1 ⇡ [I � ⌘ H⇤]t �0 expansion in {u

i

}: �0 =
X

i

a
i

u
i

�
t

⇡
X

i

a
i

[I � ⌘ H⇤]t u
i

=
X

i

a
i

[1 � ⌘ �
i

]t u
i

with uT

j

u
k

= �
jk

we obtain | �
t

|2 =
X

i

a2
i

[1� ⌘�
i

]2t

77

25

iteration approaches the minimum, lim
t!1

| �
t

| = 0, only if | 1� ⌘�
i

| < 1 for all i

condition for (local) convergence: ⌘ < ⌘
max

=
2

�
max

⌘ <
⌘

max

2
=

1
�

max

1
�

max

< ⌘ <
2

�
max

⌘ > ⌘
max

=
2

�
max

1� ⌘�
max

> 0 1� ⌘�
max

< 0 1� ⌘�
max

< �1

smooth convergence oscillations divergence

79

iteration approaches the minimum, lim
t!1

| �
t

| = 0, only if | 1� ⌘�
i

| < 1 for all i

condition for (local) convergence: ⌘ < ⌘
max

=
2

�
max

⌘ <
⌘

max

2
=

1
�

max

1
�

max

< ⌘ <
2

�
max

⌘ > ⌘
max

=
2

�
max

1� ⌘�
max

> 0 1� ⌘�
max

< 0 1� ⌘�
max

< �1

smooth convergence oscillations divergence

79

iteration approaches the minimum, lim
t!1

| �
t

| = 0, only if | 1� ⌘�
i

| < 1 for all i

condition for (local) convergence: ⌘ < ⌘
max

=
2

�
max

⌘ <
⌘

max

2
=

1
�

max

1
�

max

< ⌘ <
2

�
max

⌘ > ⌘
max

=
2

�
max

1� ⌘�
max

> 0 1� ⌘�
max

< 0 1� ⌘�
max

< �1

smooth convergence oscillations divergence

79

iteration approaches the minimum, lim
t!1

| �
t

| = 0, only if | 1� ⌘�
i

| < 1 for all i

condition for (local) convergence: ⌘ < ⌘
max

=
2

�
max

⌘ <
⌘

max

2
=

1
�

max

1
�

max

< ⌘ <
2

�
max

⌘ > ⌘
max

=
2

�
max

1� ⌘�
max

> 0 1� ⌘�
max

< 0 1� ⌘�
max

< �1

smooth convergence oscillations divergence

79

26

... the above considerations

• are only valid close to the minimum

local minima can have completely different characteristics (�
max

)

• do not concern global convergence properties

e.g. the choice of the learning rate far from a minimum

potential problems:
• E can have (many) local minima far from global optimality

• initial conditions determine which minimum will be approached

• anistropic curvatures can cause strong oscillations

• E can have saddle points with r E = 0 and/or flat regions with r E ⇡ 0

gradient learning can slow down drastically by, e.g., plateau states, see below

80

27

some modifications:
• improved gradient descent: e.g. time dependent ⌘(t)
momentum: �w

t+1 = �⌘ r E + a�w
t

“keep going”

• sophisticated optimization methods:
line search procedures, conjugate gradient, second order methods,
e.g. Newton’s method (“matrix update” employs H), ...

• different learning rates for different weights, examples:
– heuristics: ⌘ / 1/N for input-to-hidden, ⌘ / 1/K for hidden-to-output weights
– simplified version of “matrix update” (assume H is approximately diagonal):

update each weight w
j

with a learning rate ⌘
j

/ 1
�

@

2
E

@w

2
j

– learning algorithms realize descent in E as long as �w · r E < 0

• construction of alternative well-behaved cost functions, one example:

E =
X

µ

⇢
� (� � ⌧)2 if sign(�) = sign(⌧)
(� � ⌧)2 if sign(�) 6= sign(⌧) with � increasing from 0 to 1.

small �: emphasis on correct sign of the output large �: fine tuning of �
81

28

some modifications:
• improved gradient descent: e.g. time dependent ⌘(t)
momentum: �w

t+1 = �⌘ r E + a�w
t

“keep going”

• sophisticated optimization methods:
line search procedures, conjugate gradient, second order methods,
e.g. Newton’s method (“matrix update” employs H), ...

• different learning rates for different weights, examples:
– heuristics: ⌘ / 1/N for input-to-hidden, ⌘ / 1/K for hidden-to-output weights
– simplified version of “matrix update” (assume H is approximately diagonal):

update each weight w
j

with a learning rate ⌘
j

/ 1
�

@

2
E

@w

2
j

– learning algorithms realize descent in E as long as �w · r E < 0

• construction of alternative well-behaved cost functions, one example:

E =
X

µ

⇢
� (� � ⌧)2 if sign(�) = sign(⌧)
(� � ⌧)2 if sign(�) 6= sign(⌧) with � increasing from 0 to 1.

small �: emphasis on correct sign of the output large �: fine tuning of �
81

29

some modifications:
• improved gradient descent: e.g. time dependent ⌘(t)
momentum: �w

t+1 = �⌘ r E + a�w
t

“keep going”

• sophisticated optimization methods:
line search procedures, conjugate gradient, second order methods,
e.g. Newton’s method (“matrix update” employs H), ...

• different learning rates for different weights, examples:
– heuristics: ⌘ / 1/N for input-to-hidden, ⌘ / 1/K for hidden-to-output weights
– simplified version of “matrix update” (assume H is approximately diagonal):

update each weight w
j

with a learning rate ⌘
j

/ 1
�

@

2
E

@w

2
j

– learning algorithms realize descent in E as long as �w · r E < 0

• construction of alternative well-behaved cost functions, one example:

E =
X

µ

⇢
� (� � ⌧)2 if sign(�) = sign(⌧)
(� � ⌧)2 if sign(�) 6= sign(⌧) with � increasing from 0 to 1.

small �: emphasis on correct sign of the output large �: fine tuning of �
81

30

some modifications:
• improved gradient descent: e.g. time dependent ⌘(t)
momentum: �w

t+1 = �⌘ r E + a�w
t

“keep going”

• sophisticated optimization methods:
line search procedures, conjugate gradient, second order methods,
e.g. Newton’s method (“matrix update” employs H), ...

• different learning rates for different weights, examples:
– heuristics: ⌘ / 1/N for input-to-hidden, ⌘ / 1/K for hidden-to-output weights
– simplified version of “matrix update” (assume H is approximately diagonal):

update each weight w
j

with a learning rate ⌘
j

/ 1
�

@

2
E

@w

2
j

– learning algorithms realize descent in E as long as �w · r E < 0

• construction of alternative well-behaved cost functions, one example:

E =
X

µ

⇢
� (� � ⌧)2 if sign(�) = sign(⌧)
(� � ⌧)2 if sign(�) 6= sign(⌧) with � increasing from 0 to 1.

small �: emphasis on correct sign of the output large �: fine tuning of �
81

Neural Networks 31

stochastic approximation (on-line gradient descent)

cost function E = 1
P

P
P

µ=1 eµ ⌘ eµ is an empirical average over examples

! simple approximation of rE by reµ for one example only

• select one µ 2 { 1, 2, . . . , P } with equal probabilty 1/P

• single step: w
t+1 = w

t

+ �w
t

= w
t

� ⌘ r eµ|w
t

– computationally cheap compared to off-line (batch) gradient descent

– intrinsic noise, fewer problems with local minima, flat regions etc.

(when) does the procedure converge?

behavior close to a (local) minimum w⇤ of E?

82

stochastic gradient descent

Neural Networks 32

stochastic approximation (on-line gradient descent)

cost function E = 1
P

P
P

µ=1 eµ ⌘ eµ is an empirical average over examples

! simple approximation of rE by reµ for one example only

• select one µ 2 { 1, 2, . . . , P } with equal probabilty 1/P

• single step: w
t+1 = w

t

+ �w
t

= w
t

� ⌘ r eµ|w
t

– computationally cheap compared to off-line (batch) gradient descent

– intrinsic noise, fewer problems with local minima, flat regions etc.

(when) does the procedure converge?

behavior close to a (local) minimum w⇤ of E?

82

stochastic gradient descent

33

averaged learning step: �w = �⌘ r eµ|w = � ⌘

P

PX

µ=1

r eµ|w = �⌘ r E|w

�w = 0 for w! w⇤

averaged length of �w: (�w)2 = ⌘2 (reµ|⇤)2 > 0

(0 is possible if all e µ = 0)

for constant rate ⌘ > 0: lim
t!1

(�w
t

)2 > 0

(fluctuations remain non-zero)

convergence in the sense of (�w)2 ! 0 only if ⌘(t)! 0 for t!1

one can show: lim
t!1

P
t

⌘(t) ! 1 but lim
t!1

P
t

⌘(t)2 < 1 is required

satisfied by, e.g. ⌘(t) / 1
t

for large t learning rate schedules, e.g. ⌘(t) =
a

b + t

83

Neural Networks 34

averaged learning step: �w = �⌘ r eµ|w = � ⌘

P

PX

µ=1

r eµ|w = �⌘ r E|w

�w = 0 for w! w⇤

averaged length of �w: (�w)2 = ⌘2 (reµ|⇤)2 > 0

(0 is possible if all e µ = 0)

for constant rate ⌘ > 0: lim
t!1

(�w
t

)2 > 0

(fluctuations remain non-zero)

convergence in the sense of (�w)2 ! 0 only if ⌘(t)! 0 for t!1

one can show: lim
t!1

P
t

⌘(t) ! 1 but lim
t!1

P
t

⌘(t)2 < 1 is required

satisfied by, e.g. ⌘(t) / 1
t

for large t learning rate schedules, e.g. ⌘(t) =
a

b + t

83

Neural Networks 35

averaged learning step: �w = �⌘ r eµ|w = � ⌘

P

PX

µ=1

r eµ|w = �⌘ r E|w

�w = 0 for w! w⇤

averaged length of �w: (�w)2 = ⌘2 (reµ|⇤)2 > 0

(0 is possible if all e µ = 0)

for constant rate ⌘ > 0: lim
t!1

(�w
t

)2 > 0

(fluctuations remain non-zero)

convergence in the sense of (�w)2 ! 0 only if ⌘(t)! 0 for t!1

one can show: lim
t!1

P
t

⌘(t) ! 1 but lim
t!1

P
t

⌘(t)2 < 1 is required

satisfied by, e.g. ⌘(t) / 1
t

for large t learning rate schedules, e.g. ⌘(t) =
a

b + t

83

alternative: averages of w over recent (or all) gradient steps

36

Plateau states
frequent observation:
training of multilayer networks is delayed by quasi-stationary plateaus

(S.J. Hanson, in: Y. Chauvin and D.E. Rummelhart, Backpropagation: Theory, Architectures,
and Applications, 1995)

84

37

example: a two-layer network trained from reliable, perfectly realizable data
by on-line gradient descent

"
g

number of examples P/(KN)

• fast initial decrease of "
g

• fast asymptotic decrease of "
g

! 0
(here: matching complexity)

• plateau state:
unspecialized h.u. with w

k

⇠w
o

+ noise

have all obtained some (the same)
information about the unknown rule

occurence of plateaus relates to symmetries:

the network output is invariant under permutations of hidden units
perfectly symmetric state corresponds to a flat region (saddle) in E

successful learning requires specialization and can be delayed significantly
math. analysis: D. Saad and S. Solla (1995), M. Biehl, P.Riegler, C. Wöhler (1996)

85analysed in depth in the statistical physics community (1990’s)
problem re-discovered in deep learning

Shallow and deep networks

Neural Networks

•  shallow networks
 frequently used: input-hidden-output architectures, e.g. N-M-1
 often shown to be universal approximators / classifiers
 easy to implement
 efficient, fast training, e.g. by backpropagation
 examples: Committee/Parity Machine
 Extreme Learning Machine
 Radial Basis Function Networks

 special case: Reservoir Computing
 replace hidden layer by a dynamical network with intra-
 layer connections and/or internal dynamics

•  deep networks (at a glimpse)
 deep learning, convolutional neural networks

shallow and deep architectures

Neural Networks

.....

Extreme Learning Machine (ELM)

.....

input: N-dim. feature vectors x
random input-to-hidden weights
(fixed, non-adaptive)

hidden layer: M units (e.g. M>N)
e.g. sigmoidal

adaptive hidden-to-output weights

linear output

� = (�1,�2, . . . ,�M)>

W = (w1,w2, . . . ,wM)> 2 IRM⇥N

�j = g
�
w

>
j x

�

S = v> �

v = (v1, v2, . . . , vM)>

training (hidden-to-output only!) by regression w.r.t. given targets
e.g. least square solution obtained as Moore-Penrose pseudoinverse

Neural Networks

- Huang et al. (IJCNN 2004): concept and name,
 see original (and later) publications provided in Nestor

- triggered numerous publications, even specialized journals and
 ELM conferences

- serious, on-going debate about originality of the concept, see
 Wikipedia entry and the Comment by Wang and Wan in IEEE TNN (2008)
 see also: http://elmorigin.weebly.com. One example early paper with
 similar ideas: Schmidt, Kraaijveld, Duin, ICPR 1992

- conceptual similarity to SVM is discussed in, e.g., Frenay and Verleysen:

 Using SVMs with randomised feature spaces: an extreme learning approach

Extreme Learning Machine (ELM)

Neural Networks

Radial Basis Functions (RBF) networks

.....

.....

input: N-dim. feature vectors x

�i = g(|x � ci|)

hidden layer: M units, activation (*)
depends on distance of x from

center ci:

* example: �i = exp

⇥
�� (x� ci)

2
⇤

�i =
exp

⇥
�� (x� ci)

2
⇤

PM
j=1 exp [�� (x� cj)

2
]

unnormalized (local)
normalized (constant
total activation)

S =
MX

j=1

vj�j e.g. linear output unit

adaptive: centers ci (e.g. by unsupervised vector quantization)

 weights v (e.g. by least squares regression for given centers)

 beyond RBF:

Neural Networks

RBF classifier

.....

.....

input: N-dim. feature vectors x

�i = g(|x � ci|)

hidden layer: M units, activation (*)
depends on distance of x from

center ci:

adaptive hidden-to-output weights (C pseudo-regression problems)
or fixed, pre-wired function

assign input to class with maximum score
very similar concept: Learning Vector Quantization

output units represent C classes,
compute class-membership scores

...

[RBF-networks: see book by Bishop for detailed discussion and references]

Neural Networks

.....

recurrent network as reservoir:
fixed random connections, represents
inputs by different internal states
-  leaky integrator units
 liquid state machine
-  sparsely connected attractor net
 echo-state networks

output:
linear unit with adaptive weights
read-out of the reservoir state

regression training: comparison with target output for a
 given set of input/output examples

input: enforce (initial) state in the
reservoir network (or a subset of units)

Reservoir Computing

Neural Networks

most prominent examples in the literature:
(see Nestor for original publications and review articles)

echo-state networks [Jaeger 2001]

liquid state machines [Natschlaeger et al. 2002]

decorrelation-backpropagation [Steil 2004]

see also: http://reservoir-computing.org

Reservoir Computing

Neural Networks

feed-forward networks with a large (?) number of layers and units
combination of several concepts / methods / tricks

training became feasible due to ...
 increased computational power (backpropagation of error)
 sparse connectivity (e.g. convolutional networks)
 weight sharing and pooling
 availability of huge data sets
 simplified transfer functions („rectified linear units“ g(x)=max{0,x})
 efficient regularization techniques (e.g. „dropout“)

main application areas with excellent performance:
 data with spatial / temporal structure
 image (faces, digits, scenes) classification / recognition

deep networks

Goodfellow, Bengio, Courville: Deep Learning, 2016

Neural Networks

deep networks

The fishermen in the north of Spain
have been using Deep Networks for centuries.
Their contribution should be recognized...

Javier Movellan

From a discussion about the origins of the term
“Deep Networks” in the Connectionists mailing list
http://dove.ccs.fau.edu/dawei/ICM/connectionists.html

