university of groningen

(C) Regression, layered neural networks

- Networks of continuous units
- Regression problems
- Gradient descent, backpropagation of error
- The role of the learning rate
- Online learning, stochastic approximation

Of Neurons and Networks

biological neurons (very brief)

- single neurons
- synapses and networks
- synaptic plasticity and learning
simplified description
- inspiration for artificial neural networks
artificial neural networks
- architectures and types of networks: recurrent attractor neural networks (associative memory) feed-forward neural networks (classification/ regression)

Of Neurons and Networks

pre-synaptic
post-synaptic

neurons:

highly specialized cells

- cell body soma
- incoming dendrites
- branched axon
many neurons!
$\gtrsim 10^{12}$ in human cortex
highly connected!
¿ 1000 neighbors
action potentials / spikes:
- cells generate electric pulses
- travel along the axon

Of Neurons and Networks

synapses:

- pre-synaptic pulse arriving at excitatory /inhibitory synapse triggers / hinders post-synaptic spike generation

post-synaptic
- all or nothing response
potential exceeds threshold $\quad \Rightarrow$ postsynaptic neuron fires
potential is sub-threshold \Rightarrow postsynaptic neuron rests

Of Neurons and Networks

simplified description of neural activity: firing rates

(mean) local potential at neuron i (with activity S_{i})
$\sum_{j} w_{i j} S_{j} \quad$ weighted sum of incoming activities
$\begin{array}{ll}\text { synaptic } \\ \text { weights }\end{array} \quad w_{i j}= \begin{cases}>0 & \text { excitatory synapse } \\ =0 & \\ <0 & \text { inhibitory synapse }\end{cases}$

Activation Function

non-linear response: $S_{i}=h\left[\sum_{j} w_{i j} S_{j}\right]$

- minimal activity
- maximal activity $\quad h(x \rightarrow+\infty) \equiv 1$
- monotonic increase $h^{\prime}(x)>0$

$$
\left.\begin{array}{l}
h(x \rightarrow-\infty) \equiv 0 \\
h(x \rightarrow+\infty) \equiv 1
\end{array}\right\}
$$

important class of fcts.: sigmoidal activation
just one example:

$$
h\left(x_{i}\right)=\frac{1}{2}\left(1+\tanh \left[\gamma\left(x_{i}-\theta\right)\right]\right)
$$

gain parameter γ local threshold θ

Activation Function

non-linear response: $S_{i}=g\left[\sum_{j} w_{i j} S_{j}\right]$

- minimal activity $\quad g(x \rightarrow-\infty) \equiv-1$
- maximal activity $g(x \rightarrow+\infty) \equiv 1$
- monotonic increase $\left.g^{\prime}(x)>0 \quad\right]$
just one example:

$$
g\left(x_{i}\right)=\tanh \left[\gamma\left(x_{i}-\theta\right)\right]
$$

gain parameter γ local threshold θ

McCulloch Pitts Neurons

an extreme case: infinite gain $\gamma \rightarrow \infty$
$g\left(x_{i}\right)=\tanh \left[\gamma\left(x_{i}-\theta\right)\right] \rightarrow \operatorname{sign}[x-\theta]= \begin{cases}+1 & \text { for } x \geq \theta \\ -1 & \text { for } x<\theta\end{cases}$

McCulloch Pitts [1943]:
model neuron is either quiescent or maximally active do not consider graded response
local threshold θ
(don't confuse θ with the all-or-nothing threshold in spiking neurons)

Synaptic Plasticity

$$
\begin{aligned}
& \text { D. Hebb [1949] Hypothesis: Hebbian Learning } \\
& \text { consider } \text { - presynaptic neuron } A \\
& \text { - postsynaptic neuron } B \\
& \text { - excitatory synapse } \quad w_{B A}
\end{aligned}
$$

If A and B (frequently) fire at the same time the excitatory synaptic strength $w_{A B}$ increases
\rightarrow memory-effect will favor joint activity in the future

For symmetrized firing rates $-1 \leq S_{A}, S_{B} \leq+1$ change of synaptic strength $\quad \Delta w_{B A} \propto S_{A} S_{B}$ pre-synaptic \times post-synaptic activity

Artificial Neural Networks

in the following:

- assembled from simple firing rate neurons
- connected by weights, real valued synaptic strenghts
- various architectures and types of networks e.g.: attractor neural networks, recurrent networks

dynamical systems, e.g. Hopfield model: network of McCulloch Pitts neurons, can operate as Associative Memory by learning of synaptic interactions
here: $N=5$ neurons partial connectivity

feed-forward networks

input layer (external stimulus)

hidden units
(internal representation)
$w_{i j}$

$$
S_{i}=g\left(\sum_{j} w_{i j} S_{j}\right)
$$

\uparrow previous layer only
output unit(s)
(function of input vector)
layered architecture (here: 6-3-4-1)
directed connections
(here: only to next layer)

$$
S=\operatorname{sign}\left(\sum_{j=1}^{N} w_{j} \xi_{j}-\theta\right)
$$

output = "linear separable function" of input variables parameterized by the weight vector \mathbf{w} and threshold θ

convergent two-layer architecture

output $=$ non-linear function of input variables:
$\sigma=g\left(\sum_{k=1}^{K} v_{k} S_{k}\right)=g\left(\sum_{k} v_{k} g\left(\sum_{j} w_{j}^{(k)} \xi_{j}\right)\right)$
parameterized by set of all weights (and threshold)

networks of continuous nodes

continuous activation functions, e.g. $g(x)=\tanh (\gamma x)$ for all nodes in the network
given a network architecture, the weights (and thresholds) parameterize a function (input/output relation):

$$
\boldsymbol{\xi} \in \mathbb{R}^{N} \rightarrow \sigma(\boldsymbol{\xi}) \in \mathbb{R} \quad \text { (here: single output unit) }
$$

Learning as regression problem
set of examples $\left\{\boldsymbol{\xi}^{\mu}, \tau^{\mu}=\tau\left(\xi^{\mu}\right)\right\}_{\mu=1}^{P}$ with real-valued labels τ^{μ}

training:

(approximately) implement $\sigma\left(\boldsymbol{\xi}^{\mu}\right)=\tau\left(\boldsymbol{\xi}^{\mu}\right)$ for all μ
generalization:
application to novel data

$$
\sigma(\boldsymbol{\xi}) \approx \tau(\boldsymbol{\xi})
$$

error measure and training

training strategy: employ an error measure for comparison of student/teacher outputs
just one very popular and plausible choice:
quadratic deviation: $\quad e(\sigma, \tau)=\frac{1}{2}(\sigma-\tau)^{2}$
cost function: $\quad E=\frac{1}{P} \sum_{\mu=1}^{P} e^{\mu}=\frac{1}{P} \sum_{\mu=1}^{P} \frac{1}{2}\left(\sigma\left(\boldsymbol{\xi}^{\mu}\right)-\tau\left(\boldsymbol{\xi}^{\mu}\right)\right)^{2}$

- defined for a given set of example data
- guides the training process
- is a differentiable function of weights and thresholds
- training by gradient descent minimization of E

$$
\begin{aligned}
E(\mathbf{w}) & =\frac{1}{P} \sum_{\mu=1}^{P} \frac{1}{2}\left(g\left(\mathbf{w} \cdot \boldsymbol{\xi}^{\mu}\right)-\tau^{\mu}\right)^{2} \\
\frac{\partial E(\mathbf{w})}{\partial w_{k}} & =\frac{1}{P} \sum_{\mu=1}^{P}\left(g\left(\mathbf{w} \cdot \boldsymbol{\xi}^{\mu}\right)-\tau^{\mu}\right) g^{\prime}\left(\mathbf{w} \cdot \boldsymbol{\xi}^{\mu}\right) \xi_{k}^{\mu}
\end{aligned}
$$

$$
\nabla_{w} E(\mathbf{w})=\frac{1}{P} \sum_{\mu=1}^{P}\left(g\left(\mathbf{w} \cdot \boldsymbol{\xi}^{\mu}\right)-\tau^{\mu}\right) g^{\prime}\left(\mathbf{w} \cdot \boldsymbol{\xi}^{\mu}\right) \boldsymbol{\xi}^{\mu}
$$

Backpropagation of Error

convenient calculation of the gradient in multilayer networks (\leftarrow chain rule)
example: continuous two-layer network with K hidden units

$$
\begin{aligned}
& \text { inputs } \quad \boldsymbol{\xi} \in \mathbb{R}^{N} \\
& \text { weights } \quad \mathbf{w}_{k} \in \mathbb{R}^{N}, k=1,2, \ldots, K
\end{aligned}
$$

hidden units $\sigma_{k}(\boldsymbol{\xi})=g\left(\mathbf{w}_{k} \cdot \boldsymbol{\xi}\right)$

$$
\text { output } \sigma(\boldsymbol{\xi})=h\left(\sum_{j=1}^{K} v_{j} g\left(\mathbf{w}_{j} \cdot \boldsymbol{\xi}\right)\right)
$$

the weighs \mathbf{w}_{k} and v_{k} are used \ldots

- downward for the calculation of hidden states and output
- upward for the calculation of the gradient

Exercise: derive $\nabla_{\mathrm{w}_{k}} E$ and $\frac{\partial E}{\partial v_{k}}$

backpropagation

A.E. Bryson, Y.-C. Ho (1969)

Applied optimal control: optimization, estimation and control. Blaisdell Publishing, p 481
P. Werbos (1974). Beyond regression: New Tools for Prediction and Analysis in Behavorial Sciences
PhD thesis, Harvard University
D.E. Rumelhart, G.E. Hinton, R.J. Williams (1986) Learning representations by backpropagating errors.
Nature 323 (6088): 533-536

backpropagation

BACKPROPAGATION:

THEORY;
ARCHITECTURES,
AND APPLICATIONS

83.NA

1995

negative gradient gives the direction of steepest descent in E

simple gradient based minimization of E :
sequence $\quad \mathbf{w}_{0} \rightarrow \mathbf{w}_{1} \rightarrow \ldots \rightarrow \mathbf{w}_{t} \rightarrow \mathbf{w}_{t+1} \rightarrow \ldots$
with $\quad \mathbf{w}_{t+1}=\mathbf{w}_{t}-\left.\eta \nabla E\right|_{w_{t}}$
approaches some minimum of E

learning rate rate η

- controls the step size of the algorithm
- has to be small enough to ensure convergence
- should be as large as possible to facilitate fast learning
assume E has a (local) minimum in \mathbf{w}^{*}, Taylor expansion in the vicinity:
$E(\mathbf{w}) \approx E\left(\mathbf{w}^{*}\right)+\left(\mathbf{w}-\mathbf{w}^{*}\right)^{T} \underbrace{\left.\nabla E\right|_{*}}_{=0}+\frac{1}{2}\left(\mathbf{w}-\mathbf{w}^{*}\right)^{T} H^{*}\left(\mathbf{w}-\mathbf{w}^{*}\right)+\ldots$
$E(\mathbf{w}) \approx E\left(\mathbf{w}^{*}\right)+\frac{1}{2}\left(\mathbf{w}-\mathbf{w}^{*}\right)^{T} H^{*}\left(\mathbf{w}-\mathbf{w}^{*}\right)$

$$
\left.\boldsymbol{\nabla} E\right|_{w} \approx H^{*}\left(\mathbf{w}-\mathbf{w}^{*}\right)
$$

with the positive definite Hesse matrix of second derivatives $\quad H_{i j}^{*}=\left.\frac{\partial^{2} E}{\partial w_{i} \partial w_{j}}\right|_{*}$
H^{*} has only pos. eigenvalues $\lambda_{i}>0$, orthonormal eigenvectors $\mathbf{u}_{i} \quad$ (all $\lambda_{i} \leq \lambda_{\max }$)
gradient descent in the vicinity of $\mathbf{w}^{*}: \quad \mathbf{w}_{t}=\mathbf{w}_{t-1}-\left.\eta \boldsymbol{\nabla} E\right|_{\mathbf{w}_{t-1}}$
assume E has a (local) minimum in \mathbf{w}^{*}, Taylor expansion in the vicinity: $E(\mathbf{w}) \approx E\left(\mathbf{w}^{*}\right)+\left(\mathbf{w}-\mathbf{w}^{*}\right)^{T} \underbrace{\left.\nabla E\right|_{*}}_{=0}+\frac{1}{2}\left(\mathbf{w}-\mathbf{w}^{*}\right)^{T} H^{*}\left(\mathbf{w}-\mathbf{w}^{*}\right)+\ldots$ $E(\mathbf{w}) \approx E\left(\mathbf{w}^{*}\right)+\frac{1}{2}\left(\mathbf{w}-\mathbf{w}^{*}\right)^{T} H^{*}\left(\mathbf{w}-\mathbf{w}^{*}\right)$

$$
\left.\boldsymbol{\nabla} E\right|_{w} \approx H^{*}\left(\mathbf{w}-\mathbf{w}^{*}\right)
$$

with the positive definite Hesse matrix of second derivatives $\quad H_{i j}^{*}=\left.\frac{\partial^{2} E}{\partial w_{i} \partial w_{j}}\right|_{*}$
H^{*} has only pos. eigenvalues $\lambda_{i}>0$, orthonormal eigenvectors $\mathbf{u}_{i} \quad$ (all $\lambda_{i} \leq \lambda_{\max }$)
gradient descent in the vicinity of \mathbf{w}^{*} :

$$
\begin{aligned}
\mathbf{w}_{t}-\mathbf{w}^{*} \equiv \boldsymbol{\delta}_{t} & =\boldsymbol{\delta}_{t-1}-\left.\eta \boldsymbol{\nabla} E\right|_{\mathbf{w}_{t-1}} \\
& =\left[I-\eta H^{*}\right] \boldsymbol{\delta}_{t-1}
\end{aligned}
$$

assume E has a (local) minimum in \mathbf{w}^{*}, Taylor expansion in the vicinity:
$E(\mathbf{w}) \approx E\left(\mathbf{w}^{*}\right)+\left(\mathbf{w}-\mathbf{w}^{*}\right)^{T} \underbrace{\left.\nabla E\right|_{*}}_{=0}+\frac{1}{2}\left(\mathbf{w}-\mathbf{w}^{*}\right)^{T} H^{*}\left(\mathbf{w}-\mathbf{w}^{*}\right)+\ldots$
$E(\mathbf{w}) \approx E\left(\mathbf{w}^{*}\right)+\frac{1}{2}\left(\mathbf{w}-\mathbf{w}^{*}\right)^{T} H^{*}\left(\mathbf{w}-\mathbf{w}^{*}\right)$

$$
\left.\boldsymbol{\nabla} E\right|_{w} \approx H^{*}\left(\mathbf{w}-\mathbf{w}^{*}\right)
$$

with the positive definite Hesse matrix of second derivatives $\quad H_{i j}^{*}=\left.\frac{\partial^{2} E}{\partial w_{i} \partial w_{j}}\right|_{*}$
H^{*} has only pos. eigenvalues $\lambda_{i}>0$, orthonormal eigenvectors $\mathbf{u}_{i} \quad$ (all $\lambda_{i} \leq \lambda_{\max }$)
gradient descent in the vicinity of \mathbf{w}^{*} :
$\boldsymbol{\delta}_{t} \approx\left[I-\eta H^{*}\right] \boldsymbol{\delta}_{t-1} \approx\left[I-\eta H^{*}\right]^{t} \boldsymbol{\delta}_{0}$
$\boldsymbol{\delta}_{t} \approx \sum_{i} a_{i}\left[I-\eta H^{*}\right]^{t} \mathbf{u}_{i}=\sum_{i} a_{i}\left[1-\eta \lambda_{i}\right]^{t} \mathbf{u}_{i}$
with $\mathbf{u}_{j}^{T} \mathbf{u}_{k}=\delta_{j k} \quad$ we obtain
$\mathbf{w}_{t}-\mathbf{w}^{*} \equiv \boldsymbol{\delta}_{t}=\boldsymbol{\delta}_{t-1}-\left.\eta \nabla E\right|_{\mathbf{w}_{t-1}}$
expansion in $\left\{\mathbf{u}_{i}\right\}: \delta_{0}=\sum_{i} a_{i} \mathbf{u}_{i}$

$$
a_{j} \omega_{k}-0_{j k} \quad \cos ^{2}
$$

$$
\left|\delta_{t}\right|^{2}=\sum_{i} a_{i}^{2}\left[1-\eta \lambda_{i}\right]^{2 t}
$$

iteration approaches the minimum, $\lim _{t \rightarrow \infty}\left|\boldsymbol{\delta}_{t}\right|=0$, only if $\left|1-\eta \lambda_{i}\right|<1$ for all i condition for (local) convergence: $\quad \eta<\eta_{\max }=\frac{2}{\lambda_{\max }}$
$\eta<\frac{\eta_{\max }}{2}=\frac{1}{\lambda_{\max }}$

$1-\eta \lambda_{\max }>0$
smooth convergence
$\frac{1}{\lambda_{\max }}<\eta<\frac{2}{\lambda_{\max }}$
$\eta>\eta_{\max }=\frac{2}{\lambda_{\max }}$

$1-\eta \lambda_{\max }<0$
oscillations

$1-\eta \lambda_{\max }<-1$
divergence
... the above considerations

- are only valid close to the minimum local minima can have completely different characteristics $\left(\lambda_{\max }\right)$
- do not concern global convergence properties
e.g. the choice of the learning rate far from a minimum

potential problems:

- E can have (many) local minima far from global optimality
- initial conditions determine which minimum will be approached
- anistropic curvatures can cause strong oscillations
- E can have saddle points with $\nabla E=0$ and/or flat regions with $\nabla E \approx 0$ gradient learning can slow down drastically by, e.g., plateau states, see below

some modifications:

- improved gradient descent: e.g. time dependent $\eta(t)$ momentum: $\Delta \mathbf{w}_{t+1}=-\eta \boldsymbol{\nabla} E+a \Delta \mathbf{w}_{t} \quad$ "keep going"

some modifications:

- improved gradient descent: e.g. time dependent $\eta(t)$ momentum: $\Delta \mathbf{w}_{t+1}=-\eta \boldsymbol{\nabla} E+a \Delta \mathbf{w}_{t}$ "keep going"
- sophisticated optimization methods: line search procedures, conjugate gradient, second order methods, e.g. Newton's method ("matrix update" employs H), ...

some modifications:

- improved gradient descent: e.g. time dependent $\eta(t)$ momentum: $\Delta \mathbf{w}_{t+1}=-\eta \boldsymbol{\nabla} E+a \Delta \mathbf{w}_{t} \quad$ "keep going"
- sophisticated optimization methods: line search procedures, conjugate gradient, second order methods, e.g. Newton's method ("matrix update" employs H), ...
- different learning rates for different weights, examples:
- heuristics: $\quad \eta \propto 1 / N$ for input-to-hidden, $\eta \propto 1 / K$ for hidden-to-output weights
- simplified version of "matrix update" (assume H is approximately diagonal): update each weight w_{j} with a learning rate $\eta_{j} \propto 1 / \frac{\partial^{2} E}{\partial w_{j}^{2}}$
- learning algorithms realize descent in E as long as $\Delta \mathbf{w} \cdot \nabla E<0$

some modifications:

- improved gradient descent: e.g. time dependent $\eta(t)$ momentum: $\Delta \mathbf{w}_{t+1}=-\eta \boldsymbol{\nabla} E+a \Delta \mathbf{w}_{t}$ "keep going"
- sophisticated optimization methods: line search procedures, conjugate gradient, second order methods, e.g. Newton's method ("matrix update" employs H), ...
- different learning rates for different weights, examples:
- heuristics: $\quad \eta \propto 1 / N$ for input-to-hidden, $\eta \propto 1 / K$ for hidden-to-output weights
- simplified version of "matrix update" (assume H is approximately diagonal): update each weight w_{j} with a learning rate $\eta_{j} \propto 1 / \frac{\partial^{2} E}{\partial w_{j}^{2}}$
- learning algorithms realize descent in E as long as $\Delta \mathbf{w} \cdot \nabla E<0$
- construction of alternative well-behaved cost functions, one example:

$$
E=\sum_{\mu}\left\{\begin{array}{cl}
\gamma(\sigma-\tau)^{2} & \text { if } \operatorname{sign}(\sigma)=\operatorname{sign}(\tau) \\
(\sigma-\tau)^{2} & \text { if } \operatorname{sign}(\sigma) \neq \operatorname{sign}(\tau)
\end{array} \quad \text { with } \gamma \text { increasing from } 0 \text { to } 1\right.
$$

small γ : emphasis on correct sign of the output large γ : fine tuning of σ

stochastic gradient descent

stochastic approximation (on-line gradient descent)
cost function $\quad E=\frac{1}{P} \sum_{\mu=1}^{P} e^{\mu} \equiv \overline{e^{\mu}} \quad$ is an empirical average over examples
\rightarrow simple approximation of ∇E by ∇e^{μ} for one example only

- select one $\mu \in\{1,2, \ldots, P\}$ with equal probabilty $1 / P$
- single step: $\mathbf{w}_{t+1}=\mathbf{w}_{t}+\Delta \mathbf{w}_{t}=\mathbf{w}_{t}-\left.\eta \boldsymbol{\nabla} e^{\mu}\right|_{w_{t}}$

stochastic gradient descent

stochastic approximation (on-line gradient descent)
cost function $\quad E=\frac{1}{P} \sum_{\mu=1}^{P} e^{\mu} \equiv \overline{e^{\mu}} \quad$ is an empirical average over examples
\rightarrow simple approximation of ∇E by ∇e^{μ} for one example only

- select one $\mu \in\{1,2, \ldots, P\}$ with equal probabilty $1 / P$
- single step: $\mathbf{w}_{t+1}=\mathbf{w}_{t}+\Delta \mathbf{w}_{t}=\mathbf{w}_{t}-\left.\eta \boldsymbol{\nabla} e^{\mu}\right|_{w_{t}}$
- computationally cheap compared to off-line (batch) gradient descent
- intrinsic noise, fewer problems with local minima, flat regions etc.
(when) does the procedure converge?
behavior close to a (local) minimum \mathbf{w}^{*} of E ?
averaged learning step: $\quad \overline{\Delta \mathbf{w}}=-\eta \overline{\left.\nabla e^{\mu}\right|_{w}}=-\left.\frac{\eta}{P} \sum_{\mu=1}^{P} \nabla e^{\mu}\right|_{w}=-\left.\eta \nabla E\right|_{w}$

$$
\overline{\Delta \mathbf{w}}=0 \quad \text { for } \quad \mathbf{w} \rightarrow \mathbf{w}^{*}
$$

$$
\text { averaged learning step: } \quad \begin{aligned}
\overline{\Delta \mathbf{w}} & =-\eta \overline{\left.\nabla e^{\mu}\right|_{\mathrm{w}}}=-\left.\frac{\eta}{P} \sum_{\mu=1}^{P} \nabla e^{\mu}\right|_{\mathrm{w}}=-\left.\eta \boldsymbol{\nabla} E\right|_{\mathrm{w}} \\
\overline{\Delta \mathbf{w}} & =0 \text { for } \mathbf{w} \rightarrow \mathbf{w}^{*}
\end{aligned}
$$

averaged length of $\Delta \mathbf{w}$:

$$
\overline{(\Delta \mathbf{w})^{2}}=\eta^{2} \overline{\left(\left.\boldsymbol{\nabla} e^{\mu}\right|_{*}\right)^{2}}>0
$$

($0 \quad$ is possible if all $e^{\mu}=0$)
for constant rate $\eta>0$: $\quad \lim _{t \rightarrow \infty}\left(\Delta \mathbf{w}_{t}\right)^{2}>0$
(fluctuations remain non-zero)

averaged learning step: $\quad \overline{\Delta \mathbf{w}}=-\eta \overline{\left.\nabla e^{\mu}\right|_{w}}=-\left.\frac{\eta}{P} \sum_{\mu=1}^{P} \nabla e^{\mu}\right|_{w}=-\left.\eta \nabla E\right|_{\mathrm{w}}$

$$
\overline{\Delta \mathbf{w}}=0 \text { for } \mathbf{w} \rightarrow \mathbf{w}^{*}
$$

averaged length of $\Delta \mathbf{w}$: $\quad \overline{(\Delta \mathbf{w})^{2}}=\eta^{2} \overline{\left(\left.\boldsymbol{\nabla} e^{\mu}\right|_{*}\right)^{2}}>0$
(0 is possible if all $e^{\mu}=0$)
for constant rate $\eta>0$: $\quad \lim _{t \rightarrow \infty}\left(\Delta \mathbf{w}_{t}\right)^{2}>0$
(fluctuations remain non-zero)

convergence in the sense of $(\Delta \mathbf{w})^{2} \rightarrow 0$ only if $\eta(t) \rightarrow 0 \quad$ for $t \rightarrow \infty$ one can show: $\quad \lim _{t \rightarrow \infty} \sum_{t} \eta(t) \rightarrow \infty$ but $\lim _{t \rightarrow \infty} \sum_{t} \eta(t)^{2}<\infty$ is required satisfied by, e.g. $\eta(t) \propto \frac{1}{t} \quad$ for large $t \quad$ learning rate schedules, e.g. $\eta(t)=\frac{a}{b+t}$
alternative: averages of \mathbf{w} over recent (or all) gradient steps

Plateau states

frequent observation:
training of multilayer networks is delayed by quasi-stationary plateaus

(S.J. Hanson, in: Y. Chauvin and D.E. Rummelhart, Backpropagation: Theory, Architectures, and Applications, 1995)
example: a two-layer network trained from reliable, perfectly realizable data by on-line gradient descent

- fast initial decrease of ε_{g}
- fast asymptotic decrease of $\varepsilon_{g} \rightarrow 0$ (here: matching complexity)
- plateau state:
unspecialized h.u. with $\mathbf{w}_{k} \sim \mathbf{w}_{o}+$ noise have all obtained some (the same) information about the unknown rule
occurence of plateaus relates to symmetries:
the network output is invariant under permutations of hidden units perfectly symmetric state corresponds to a flat region (saddle) in E successful learning requires specialization and can be delayed significantly analysed in depth in the statistical physics community (1990's) problem re-discovered in deep learning

Shallow and deep networks

shallow and deep architectures

- shallow networks
frequently used: input-hidden-output architectures, e.g. $\mathrm{N}-\mathrm{M}-1$
often shown to be universal approximators / classifiers
easy to implement
efficient, fast training, e.g. by backpropagation
examples: Committee/Parity Machine
Extreme Learning Machine
Radial Basis Function Networks
special case: Reservoir Computing
replace hidden layer by a dynamical network with intralayer connections and/or internal dynamics
- deep networks (at a glimpse) deep learning, convolutional neural networks

Extreme Learning Machine (ELM)

input: N -dim. feature vectors \mathbf{x}

training (hidden-to-output only!) by regression w.r.t. given targets e.g. least square solution obtained as Moore-Penrose pseudoinverse

Extreme Learning Machine (ELM)

- Huang et al. (IJCNN 2004): concept and name, see original (and later) publications provided in Nestor
- triggered numerous publications, even specialized journals and ELM conferences
- serious, on-going debate about originality of the concept, see Wikipedia entry and the Comment by Wang and Wan in IEEE TNN (2008) see also: http://elmorigin.weebly.com. One example early paper with similar ideas: Schmidt, Kraaijveld, Duin, ICPR 1992
- conceptual similarity to SVM is discussed in, e.g., Frenay and Verleysen:

Using SVMs with randomised feature spaces: an extreme learning approach

Radial Basis Functions (RBF) networks

input: N -dim. feature vectors \mathbf{x}
hidden layer: M units, activation (*)
depends on distance of \mathbf{x} from center $\mathbf{c}_{\mathbf{i}}: \quad \sigma_{i}=g\left(\left|\mathbf{x}-\mathbf{c}_{i}\right|\right)$
$S=\sum_{j=1}^{M} v_{j} \sigma_{j}$
e.g. linear output unit
adaptive: centers $\mathbf{c}_{\mathbf{i}}$ (e.g. by unsupervised vector quantization) weights \mathbf{v} (e.g. by least squares regression for given centers)

* example: $\quad \sigma_{i}=\exp \left[-\beta\left(\mathbf{x}-\mathbf{c}_{\mathbf{i}}\right)^{2}\right] \quad$ unnormalized (local)
beyond RBF: $\quad \sigma_{i}=\frac{\exp \left[-\beta\left(\mathbf{x}-\mathbf{c}_{\mathbf{i}}\right)^{2}\right]}{\sum_{j=1}^{M} \exp \left[-\beta\left(\mathbf{x}-\mathbf{c}_{\mathbf{j}}\right)^{2}\right]} \quad \begin{aligned} & \text { normalized (con } \\ & \text { total activation) }\end{aligned}$

RBF classifier

input: N -dim. feature vectors \mathbf{x}
hidden layer: M units, activation (*) depends on distance of \mathbf{x} from center $\mathbf{c}_{\mathbf{i}}: \quad \sigma_{i}=g\left(\left|\mathbf{x}-\mathbf{c}_{i}\right|\right)$
output units represent \mathbf{C} classes, compute class-membership scores
adaptive hidden-to-output weights (C pseudo-regression problems) or fixed, pre-wired function assign input to class with maximum score very similar concept: Learning Vector Quantization
[RBF-networks: see book by Bishop for detailed discussion and references]

input: enforce (initial) state in the reservoir network (or a subset of units)
recurrent network as reservoir: fixed random connections, represents inputs by different internal states

- leaky integrator units

liquid state machine

- sparsely connected attractor net echo-state networks
regression training: comparison with target output for a given set of input/output examples groningen

Reservoir Computing

most prominent examples in the literature:
(see Nestor for original publications and review articles)
echo-state networks
liquid state machines
decorrelation-backpropagation
[Jaeger 2001]
[Natschlaeger et al. 2002]
[Steil 2004]
see also: http://reservoir-computing.org groningen
feed-forward networks with a large (?) number of layers and units combination of several concepts / methods / tricks
training became feasible due to ...
increased computational power (backpropagation of error)
sparse connectivity (e.g. convolutional networks)
weight sharing and pooling
availability of huge data sets
simplified transfer functions (,,rectified linear units" $g(x)=\max \{0, x\}$)
efficient regularization techniques (e.g. „dropout")
main application areas with excellent performance:
data with spatial / temporal structure
image (faces, digits, scenes) classification / recognition
Goodfellow, Bengio, Courville: Deep Learning, 2016

The fishermen in the north of Spain have been using Deep Networks for centuries. Their contribution should be recognized...

Javier Movellan

From a discussion about the origins of the term
"Deep Networks" in the Connectionists mailing list http://dove.ccs.fau.edu/dawei/ICM/connectionists.html

