
(C) Regression, layered neural networks 

-  Networks of continuous units 
-  Regression problems  
-  Gradient descent,  backpropagation of error 
-  The role of the learning rate 
-  Online learning, stochastic approximation  
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Of Neurons and Networks 

biological neurons  (very brief)  
        - single neurons 
        - synapses and networks  
        - synaptic plasticity and learning  

simplified description  
        - inspiration for artificial neural networks  

artificial neural networks 
        - architectures and types of networks: 
           recurrent attractor neural networks  (associative memory) 
           feed-forward neural networks  (classification/ regression)   
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synaptic 
cleft 

post-synaptic pre-synaptic 

axon 
soma 

axon 
branches 

dendrites 

neurons: 
highly specialized cells 
•   cell body  soma  
•   incoming dendrites 
•   branched axon  

many neurons !  
≳ 1012 in human cortex 

highly connected !  
 ≳ 1000 neighbors  

Of Neurons and Networks 
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action potentials / spikes: 

∙ travel along 
   the axon 

∙ cells generate  
  electric pulses  
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receptors 

transmitter 

synaptic 
cleft 

vesicles ∙ pre-synaptic pulse arriving at  
   excitatory /inhibitory synapse 
     triggers  / hinders   
   post-synaptic spike generation 
   

pre-synaptic 

post-synaptic 

synapses:  

4 

                      excitatory: increase 
∙ incoming               the postsynaptic 
   pulse                     membrane potential                                 
                       inhibitory: decrease  
                                     
∙ all or nothing response 

potential exceeds threshold      ⇨    postsynaptic neuron fires  
potential   is  sub-threshold      ⇨    postsynaptic neuron rests  

Of Neurons and Networks 
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simplified description of neural activity: firing rates 

time [ms] 

e.
g.

   
sp

ik
es

 /
 m

s 
 mean activity 

single spikes  

S(t) 

Of Neurons and Networks 
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(mean) local potential  at neuron i  (with activity Si  ) 

weighted sum of incoming activities 

synaptic  
weights 

excitatory synapse 

inhibitory synapse 

j 

i 

X

j

wijSj

wij =

8
<

:

> 0
= 0
< 0

Of Neurons and Networks 
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non-linear response: 

∙ maximal activity       h(x→+∞) ≡  1    
∙ monotonic increase  h’(x) > 0     

∙ minimal activity        h(x→-∞)  ≡  0   
important class of fcts.: 
sigmoidal activation 

just one example:  

θ

gain parameter Υ 
local threshold θ  

0 

1 

Υ 

Activation Function 

Si = h
hP

j wijSj

i

xi =
X

j

wijSj

h(xi) =
1

2

⇣
1 + tanh [�(xi � ✓)]

⌘
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non-linear response: 

∙ maximal activity      g(x→+∞) ≡  1    
∙ monotonic increase  g’(x) > 0     

∙ minimal activity       g(x→-∞)  ≡ -1  
sigmoidal activation 

θ

gain parameter Υ 
local threshold θ 

-1 

1 

Υ 

just one example:  

Si = g
hP

j wijSj

i

xi =
X

j

wijSj

g(xi) = tanh [�(xi � ✓)]

Activation Function 
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an extreme case:  infinite gain  

θ

local threshold θ 
 
( don’t confuse θ with 
  the all-or-nothing 
  threshold in spiking  
  neurons ) 
 

-1 

1 

McCulloch Pitts  Neurons 

McCulloch Pitts  [1943]: 
model neuron is either quiescent or maximally active 
do not consider graded response  

xi =
X

j

wijSj

g(xi) = tanh [�(xi � ✓)] ! sign [x� ✓] =

⇢
+1 for x � ✓

�1 for x < ✓

� ! 1
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Synaptic Plasticity  

D. Hebb  [1949]  

consider    - presynaptic neuron     A  
                 - postsynaptic neuron   B 
                 - excitatory synapse               

A 

B 

Hypothesis: Hebbian Learning 

If A and B  (frequently)  fire at the same time  
the excitatory synaptic strength            increases  

→ memory-effect will favor joint activity in the future  

wAB

wBA

change of synaptic strength  �wBA / SASB

�1  SA, SB  +1For symmetrized firing rates  

pre-synaptic x post-synaptic activity 
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Artificial Neural Networks 

in the following:  
  - assembled from simple firing rate neurons   
  - connected by weights,  real valued synaptic strenghts 
  - various architectures and types of networks 
     e.g.: attractor neural networks, recurrent networks 

here: N=5 neurons 
partial connectivity 

wij Si(t)
Sj(t)

dynamical systems, e.g. Hopfield model: 
network of McCulloch Pitts neurons, 
can operate as Associative Memory 
by learning of synaptic interactions 
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feed-forward networks 

layered architecture 
(here: 6-3-4-1) 

directed connections 
(here: only to next layer)   

input layer (external stimulus)  

hidden units  
(internal representation)  

output unit(s)  
(function of input vector)   

↑ previous layer only 

Si = g

0

@
X

j

wijSj

1

A

wij
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input units  

weights  

single output unit  

output = “linear separable function”  of input variables 
parameterized by the weight vector      and threshold θ  

the perceptron revisited 

⇠j 2 IR

wj 2 IR,w 2 IRN

S = sign

0

@
NX

j=1

wj⇠j � ✓

1

A

w
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input units  

input to hidden weights 

single output unit  

hidden layer units  

hidden to output weights 

output = non-linear function of input variables: 

parameterized by set of all weights (and threshold)  

convergent two-layer architecture 

⇠j 2 IR, ⇠ 2 IRN

w(k)
j

vk

Sk = g

0

@
X

j

w(k)
j ⇠j

1

A

�

� = g

 
KX

k=1

vkSk

!
= g

0

@
X

k

vk g

0

@
X

j

w(k)
j ⇠j

1

A

1

A
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networks of continuous nodes 

continuous activation functions, e.g.  
for all nodes in the network        

given a network architecture, the weights (and thresholds) 
parameterize a function (input/output relation):  

(here: single output unit)   

Learning as regression problem  
set of examples                                     with real-valued  labels 

training:    
(approximately) implement   

generalization:    
application to novel data 

g(x) = tanh (�x)

⇠ 2 IRN ! �(⇠) 2 IR

{⇠µ, ⌧µ = ⌧(⇠µ)}Pµ=1 {⇠µ, ⌧µ = ⌧(⇠µ)}Pµ=1

�(⇠µ) = ⌧(⇠µ) for all µ

�(⇠) ⇡ ⌧(⇠)
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error measure and training 

training strategy:  employ an error measure   
                             for comparison of student/teacher outputs  

just one very popular and plausible choice:  

quadratic deviation:  

cost function:  

-  defined for a given set of example data  
-  guides the training process  
-  is a differentiable function of weights and thresholds 
-  training by gradient descent minimization of E 

e(�, ⌧) =
1

2
(� � ⌧)2

E =
1

P

PX

µ=1

eµ =
1

P

PX

µ=1

1

2

⇣
�(⇠µ)� ⌧(⇠µ)

⌘2
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. . .  

a single unit  

⇠j 2 IR, ⇠ 2 IRN

w 2 IRN

� = g

0

@
NX

j=1

wj ⇠j

1

A

E(w) =
1

P

PX

µ=1

1

2

⇣
g(w · ⇠µ)� ⌧µ

⌘2

@E(w)

@wk
=

1

P

PX

µ=1

⇣
g(w · ⇠µ)� ⌧µ

⌘
g0(w · ⇠µ) ⇠µk

rwE(w) =
1

P

PX

µ=1

⇣
g(w · ⇠µ)� ⌧µ

⌘
g0(w · ⇠µ) ⇠µ
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Backpropagation of Error

convenient calculation of the gradient in multilayer networks ( chain rule)

example: continuous two-layer network with K hidden units

inputs ⇠ 2 IRN

weights w
k

2 IRN , k = 1, 2, . . . ,K

hidden units �
k

(⇠) = g(w
k

· ⇠)

output �(⇠) = h
⇣P

K

j=1 v
j

g(w
j

· ⇠)
⌘

Exercise: derive r w
k

E and @E

@v

k

the weigths w
k

and v
k

are used ...

– downward for the calculation of hidden states and output

– upward for the calculation of the gradient
75
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negative gradient gives the direction of steepest descent in E

simple gradient based minimization of E:

sequence w0 ! w1 ! . . .! w
t

! w
t+1 ! . . .

with w
t+1 = w

t

� ⌘ r E|w
t

approaches some minimum of E (?)

learning rate rate ⌘

– controls the step size of the algorithm

– has to be small enough to ensure convergence

– should be as large as possible to facilitate fast learning

76
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assume E has a (local) minimum in w⇤, Taylor expansion in the vicinity:

E(w) ⇡ E(w⇤) + (w�w⇤ )T r E|⇤| {z }
=0

+
1
2

(w�w⇤ )T

H⇤ (w�w⇤ ) + . . .

E(w) ⇡ E(w⇤) +
1
2

(w�w⇤ )T

H⇤ (w�w⇤ ) r E|w ⇡ H⇤ (w�w⇤ )

with the positive definite Hesse matrix of second derivatives H⇤
ij

=
@2 E

@w
i

@w
j

����
⇤

H⇤ has only pos. eigenvalues �
i

> 0, orthonormal eigenvectors u
i

(all �
i

 �
max

)

gradient descent in the vicinity of w⇤: w
t

�w⇤ ⌘ �
t

= �
t�1 � ⌘ r E|w

t�1

�
t

⇡ [ I � ⌘ H⇤ ] �
t�1 ⇡ [ I � ⌘ H⇤ ]t �0 expansion in {u

i

}: �0 =
X

i

a
i

u
i

�
t

⇡
X

i

a
i

[ I � ⌘ H⇤ ]t u
i

=
X

i

a
i

[ 1 � ⌘ �
i

]t u
i

with uT

j

u
k

= �
jk

we obtain | �
t

|2 =
X

i

a2
i

[ 1� ⌘�
i

]2t
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assume E has a (local) minimum in w⇤, Taylor expansion in the vicinity:
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iteration approaches the minimum, lim
t!1

| �
t

| = 0, only if | 1� ⌘�
i

| < 1 for all i

condition for (local) convergence: ⌘ < ⌘
max
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�
max
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max

2
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1
�

max

1
�

max
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�
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=
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�
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> 0 1� ⌘�
max

< 0 1� ⌘�
max

< �1

smooth convergence oscillations divergence
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... the above considerations

• are only valid close to the minimum

local minima can have completely different characteristics (�
max

)

• do not concern global convergence properties

e.g. the choice of the learning rate far from a minimum

potential problems:
• E can have (many) local minima far from global optimality

• initial conditions determine which minimum will be approached

• anistropic curvatures can cause strong oscillations

• E can have saddle points with r E = 0 and/or flat regions with r E ⇡ 0

gradient learning can slow down drastically by, e.g., plateau states, see below
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some modifications:
• improved gradient descent: e.g. time dependent ⌘(t)
momentum: �w

t+1 = �⌘ r E + a�w
t

“keep going”

• sophisticated optimization methods:
line search procedures, conjugate gradient, second order methods,
e.g. Newton’s method (“matrix update” employs H), ...

• different learning rates for different weights, examples:
– heuristics: ⌘ / 1/N for input-to-hidden, ⌘ / 1/K for hidden-to-output weights
– simplified version of “matrix update” (assume H is approximately diagonal):

update each weight w
j

with a learning rate ⌘
j

/ 1
�

@

2
E

@w

2
j

– learning algorithms realize descent in E as long as �w · r E < 0

• construction of alternative well-behaved cost functions, one example:

E =
X

µ

⇢
� (� � ⌧)2 if sign(�) = sign(⌧)
(� � ⌧)2 if sign(�) 6= sign(⌧) with � increasing from 0 to 1.

small �: emphasis on correct sign of the output large �: fine tuning of �
81
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stochastic approximation (on-line gradient descent)

cost function E = 1
P

P
P

µ=1 eµ ⌘ eµ is an empirical average over examples

! simple approximation of rE by reµ for one example only

• select one µ 2 { 1, 2, . . . , P } with equal probabilty 1/P

• single step: w
t+1 = w

t

+ �w
t

= w
t

� ⌘ r eµ|w
t

– computationally cheap compared to off-line (batch) gradient descent

– intrinsic noise, fewer problems with local minima, flat regions etc.

(when) does the procedure converge?

behavior close to a (local) minimum w⇤ of E?

82

stochastic gradient descent 
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averaged learning step: �w = �⌘ r eµ|w = � ⌘

P

PX

µ=1

r eµ|w = �⌘ r E|w

�w = 0 for w! w⇤

averaged length of �w: (�w)2 = ⌘2 ( reµ|⇤ )2 > 0

(0     is  possible if all e µ = 0)

for constant rate ⌘ > 0: lim
t!1

( �w
t

)2 > 0

(fluctuations remain non-zero)

convergence in the sense of ( �w )2 ! 0 only if ⌘(t)! 0 for t!1

one can show: lim
t!1

P
t

⌘(t) ! 1 but lim
t!1

P
t

⌘(t)2 < 1 is required

satisfied by, e.g. ⌘(t) / 1
t

for large t learning rate schedules, e.g. ⌘(t) =
a

b + t
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Plateau states
frequent observation:
training of multilayer networks is delayed by quasi-stationary plateaus

(S.J. Hanson, in: Y. Chauvin and D.E. Rummelhart, Backpropagation: Theory, Architectures, 
and Applications, 1995)
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example: a two-layer network trained from reliable, perfectly realizable data
by on-line gradient descent

"
g

number of examples P/(KN)

• fast initial decrease of "
g

• fast asymptotic decrease of "
g

! 0
(here: matching complexity)

• plateau state:
unspecialized h.u. with w

k

⇠w
o

+ noise

have all obtained some (the same) 
information about the unknown rule

occurence of plateaus relates to symmetries:

the network output is invariant under permutations of hidden units
perfectly symmetric state corresponds to a flat region (saddle) in E

successful learning requires specialization and can be delayed significantly
math. analysis: D. Saad and S. Solla (1995), M. Biehl, P.Riegler, C. Wöhler (1996)

85analysed in depth in the statistical physics community (1990’s)  
problem re-discovered in deep learning 
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•  shallow networks  
     frequently used: input-hidden-output architectures, e.g. N-M-1 
     often shown to be universal approximators / classifiers 
         easy to implement  
         efficient, fast training, e.g. by backpropagation 
         examples:  Committee/Parity Machine 
                           Extreme Learning Machine      
                           Radial Basis Function Networks 

     special case:  Reservoir Computing 
     replace hidden layer by a dynamical network with intra- 
     layer connections and/or internal dynamics  
                          
•  deep networks  (at a glimpse) 
     deep learning, convolutional neural networks  
 
   

shallow and deep architectures 
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..... 

Extreme Learning Machine (ELM) 

..... 

input: N-dim. feature vectors x 
random input-to-hidden weights 
(fixed, non-adaptive)     

hidden layer:  M units (e.g. M>N) 
e.g. sigmoidal 

adaptive hidden-to-output weights 

linear output       

� = (�1,�2, . . . ,�M )>

W = (w1,w2, . . . ,wM )> 2 IRM⇥N

�j = g
�
w

>
j x

�

S = v> �

v = (v1, v2, . . . , vM )>

training (hidden-to-output only!) by regression w.r.t. given targets 
e.g. least square solution obtained as Moore-Penrose pseudoinverse  
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- Huang et al. (IJCNN 2004): concept and name, 
  see original (and later) publications provided in Nestor 

- triggered numerous publications, even specialized journals and 
  ELM conferences 

- serious, on-going debate about originality of the concept,  see 
  Wikipedia entry and the Comment by Wang and Wan in IEEE TNN (2008) 
  see also: http://elmorigin.weebly.com.  One example early paper with 
  similar ideas: Schmidt, Kraaijveld, Duin, ICPR 1992  
 

- conceptual similarity to SVM is discussed in, e.g., Frenay and Verleysen: 

  Using SVMs with randomised feature spaces: an extreme learning approach 

 

Extreme Learning Machine (ELM) 
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Radial Basis Functions (RBF) networks 

..... 

..... 

input: N-dim. feature vectors x 

�i = g(|x � ci|)

hidden layer:  M units, activation (*)  
depends on distance of x from  

center ci: 

* example:    �i = exp

⇥
�� (x� ci)

2
⇤

�i =
exp

⇥
�� (x� ci)

2
⇤

PM
j=1 exp [�� (x� cj)

2
]

unnormalized (local)  
normalized (constant 
total activation) 

S =
MX

j=1

vj�j e.g. linear output unit  

adaptive:  centers ci    (e.g. by unsupervised vector quantization) 

                  weights v     (e.g. by least squares regression for given centers) 

  beyond RBF:    
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RBF classifier 

..... 

..... 

input: N-dim. feature vectors x 

�i = g(|x � ci|)

hidden layer:  M units, activation (*)  
depends on distance of x from  

center ci: 

adaptive hidden-to-output weights  (C pseudo-regression problems ) 
or fixed, pre-wired function  

assign input to class with maximum score 
very similar concept: Learning Vector Quantization  

output units represent C classes,  
compute class-membership scores 

... 

[RBF-networks: see book by Bishop for detailed discussion and references ] 
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..... 

recurrent network as reservoir: 
fixed random connections, represents 
inputs by different internal states  
-  leaky integrator units 
     liquid state machine 
-  sparsely connected attractor net 
     echo-state networks 

output: 
linear unit with adaptive weights 
read-out of the reservoir state 

regression    training: comparison with target output for a 
                      given set of  input/output examples  

input:  enforce (initial) state in the  
reservoir network (or a subset of units) 

Reservoir Computing  
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most prominent examples in the literature: 
(see Nestor for original publications and review articles) 
 

echo-state networks                            [Jaeger 2001] 

liquid state machines                          [Natschlaeger et al. 2002] 

decorrelation-backpropagation          [Steil 2004] 

 

see also:  http://reservoir-computing.org 

Reservoir Computing  
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feed-forward networks with a large (?) number of layers and units 
combination of several concepts / methods / tricks 
 
training became feasible due to ... 
           increased computational power (backpropagation of error) 
           sparse connectivity  (e.g. convolutional networks) 
           weight sharing and  pooling                    
           availability of huge data sets 
           simplified transfer functions („rectified linear units“  g(x)=max{0,x})   
           efficient regularization techniques (e.g. „dropout“)  
 
main application areas with excellent performance:  
           data with spatial / temporal structure 
           image (faces, digits, scenes) classification / recognition                

deep networks 

Goodfellow, Bengio, Courville: Deep Learning, 2016   
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deep networks 

The fishermen in the north of Spain 
have been using Deep Networks for centuries.  
Their contribution should be recognized...  
 
Javier Movellan 

From a discussion about the origins of  the term 
“Deep Networks” in the Connectionists mailing list   
http://dove.ccs.fau.edu/dawei/ICM/connectionists.html 


