
Tutorials 09-11-2018 (M. Biehl)

Suggestions:
 - work in groups (as formed for the other tutorials)
 - all this should work in the python environments that you
 have been using; but you may also switch to matlab or
 whatever language you prefer (of course not everything is
 available ready-made in the same fashion there)

 - consider one or several of the suggested data sets
 (see following slides)
 and/or any data set from the other tutorials
 and/or or data you are working with anyway

 Important: the data should have numerical features
 (as opposed to images, for instance) and it should
 be labeled as to define a classification (or regression) task

Tutorials 09-11-2018

 - using a classification method of your choice, e.g. K-NN,
 SVM-linear kernel, LVQ / GMLVQ ...
 I focus here on classification, but you can also consider
 regression, e.g. simple linear regression, neural network
 regression

 - implement possible preprocessing, training, validation
 etc. yourself if you want to get hands-on insight into
 how things work
 or
 used the provided (or linked to) implementations

 - “play” with the data and algorithms by changing parameters
 etc. or follow one of the example workflows suggested
 below

suggested	data	sets:	

Iris	flower	data	set		(Fisher,	1936)		
h+p://archive.ics.uci.edu/ml/datasets/iris	
			a	classical	“toy	data	set”,	four-dim.	feature	vectors,	
			three-class	problem	
			consider	also	binary	sub-problems,	e.g.	class	1	vs.	others...			

UCI	segmenta;on	data	set	
h+p://archive.ics.uci.edu/ml/datasets/Image+SegmentaBon	
a	popular	benchmark	set,	19-dim.	feature	vectors,	7	clases	
(disregard	features	3,4,5	which	are	nearly	constant,		
	perform	z-score	transformaBon)		

In J. Van der Plas’ book (thanks to Aleke for pointing this out)

http://www.astroml.org/book_figures/chapter9/index.html#book-fig-chapter9

you can find several examples for ML analysis of astronomical data,
for instance:

http://www.astroml.org/examples/datasets/plot_rrlyrae_mags.html ,

concerning a binary classification of stars based on two
dimensional features

This could make a nice example for SVM classification as illustrated
also in the book

http://www.astroml.org/book_figures/chapter9/fig_rrlyrae_svm.html

but also for the application of other basic classifiers (see first link)

algorithm	suggesBons	

-  Perceptron	/	Support	Vector	Machine		
					implement	yourself,	e.g.	AdaTron	with	errors		
					or		
					use	available	SVM	implementaBons,	start	linear		
					first	and	extend	to	more	complex	kernel	later	

-  GMLVQ:	scikit/learn	compaBble	implementaBon		
					h+p://techfak.uni-bielefeld.de/~bpaassen/glvq.zip	
					h+p://github.com/MrNuggelz/sklearn-lvq	
				

-  K-nearest	neighbor	classifier		
					implement	yourself	K-Nearest	Neighbor	classificaBon	

other	aspects:	preprocessing,	validaBon	etc.	

-  z-score	transforma;on	
					rescale	a	given	data	set	such	that	features	have	
					zero	mean	/	unit	variance	

-  Valida;on:	implement	/	use	built-in	procedures				
					classical	k-fold	cross-validaBon	
					repeated	randomized	splits	

-  Receiver	Opera;ng	Characteris;cs	(ROC)		for	two-class	problems	
					implement	ROC	computaBon	for	threshold	classifiers		
					e.g.	SVM	/	Perceptron,	use	implementaBons	in	GMVQ	toolbox	
					etc.		

Possible mini-project 1
- consider the Iris data set or UCI segmetation data set
-  split into training and test data or perform k-fold cross validation
-  do the following with or without z-score transformation
 Note: obtain mean and standard deviation per feature only
 from the training data, but apply the transformation (subtraction
 of the mean, division by the standard deviation) also in the
 current validation set!
(*) perform a k-nearest neighbor classification, obtain the number
 of errors in the training set and in the validation set,
 perform averages over the validation runs (e.g. in cross-val.)
(**) vary k, repeat and compare by, for instance, plotting the
 mean training and validation error as a function of k

replace (*) and (**) according to other methods, e.g. SVM (consider
several two-class problems to realize the multi-class system, use
different kernels, LVQ or GMLVQ (play with #of prototypes, use or
do not use relevance learning etc.)

Possible mini-project 2
-  consider the Iris data set or UCI segmentation data set
-  apply or do not apply z-score transformation (here: of the entire data set)
 in one or several of the following:

-  perform PCA, visualize the labeled data in the two leading components
-  perform k-means with different k, plot quantization error vs. k
 can you find a characteristic k (elbow?)
-  apply GMLVQ (see link) and visualize the data with respect to the
 leading eigenvectors of the relevance matrix

Possible mini-project 3
-  consider the classification data set from van der Plas’ book
-  use linear SVM and SVM with more powerful kernels
-  compare their performances as obtained in cross-validation
-  obtain the ROC for training and validation sets, determine area under curve
 etc.

Feel free to mix/combine the above suggestions, come up
with your own ideas, and ask lots of questions J

