
 
 

(D1) General remarks, practical 
considerations  

1 

-  accuracy is not enough 
-  confusion matrix 
-  Receiver Operating Characteristics 

general remarks 
practical considerations 
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        accuracy is not enough (I)  

 observed test set performance of classifiers after training:  

    accuracy:             75%               70%   
classifier A        classifier B             

assume: results were obtained for imbalanced data 
             with 75% from class 0, only 25% from class I   („positives“)   

 acc. class   0:           100%               70%   
acc. class    I:               0%               70%   

problems: - strongly biased classification tasks 
                   (e.g. screening for rare diseases) 
  
                - different bias in training / test / real world ?  
 
                - Note: two types of error can have  
                   very different consequences (e.g. in medical diagnosis) 
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                              confusion matrix  

 TP  

FP = # of false pos. 

 FN = # of false neg. TN =# of true neg. 

ground truth (true class membership) 
1 (positive) 0 (negative) 

classifier output 
(predicted class 
    membership) 

1 

0 

true  pos. rate   tpr  =   
TP + FN  

TP = # of true pos. 

 TN  
true  neg. rate   tnr =   

TN + FP  

 FP  
false  pos. rate   fpr =   

FP + TN  

 FN  
false  neg. rate  fnr =   

TP + FN  

confusion matrix 
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Remarks 
 
-   rates are not independent, e.g.        tnr + fpr = 1  
                  
-  many more quantities derived from confusion matrix, e.g. 
     
    precision =  
     
 
-  even more names used in different disciplines, e.g.  
     
            tpr = recall = hit rate = sensitivity 
            tnr = 1-fpr = specificity  
            precision = positive predictive value (PPV)  
                 … 

 TP  

TP + FP  
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Examples of performance measures for imbalanced data sets:  
 
 
 
balanced accuracy:       BAC = (tpr + tnr) / 2     

F1-measure: 

Matthews correlation coefficient:              

F1 =
2TP

2TP + FP + FN

Advice: don’t even try to remember all these definitions!  J 

and many more …  

MCC =
TP · TN � FP · FNp

(TP + FP )(TP + FN)(TN + FP )(TN + FN)
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          Receiver Operating Characteristics 

frequently, classification is based on the evaluation of a 
discriminative function of input vectors:  
 
assignment to   

⇢
class 0 if g(x)  0
class 1 if g(x) > 0

e.g.: perceptron with    

introduce classification bias:  

e.g.: perceptron with    
⇢

class 0 if g(x)  ✓
class 1 if g(x) > ✓

S = sign(w · x)

S = sign(w · x � ✓)
assignment to   

-  consider the classifier for all possible values of  
-  determine tpr, fpr, ...        as functions of 
-  plot   tpr vs. fpr    ( eliminating the parameter     )  

✓

✓

✓
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false positive rate 
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  θ = 0

all data assigned to class 1  
-  all true positives detected 
-  max. number of “false alarms” 

          Receiver Operating Characteristics 

all data assigned to class 0 
    - no false alarms 
    - no positives detected 
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false positive rate 

tr
ue

 p
os

iti
ve

 ra
te

  θ = 0

Area under Curve 
(AUC) 

all data assigned to class 1  
-  all true positives detected 
-  max. number of “false alarms” 

          Receiver Operating Characteristics 

-  diagonal corresponds to random guesses with bias 
-  deviation from random guessing measured by AUC (ROC)   

all data assigned to class 0 
    - no false alarms 
    - no positives detected 
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interpretation of AUC (ROC)  

      select randomly  
      - one class 0 example 
         e.g. with  
       
      - one arbitrary class 1 example 

g(x)

x

o

✓, d✓
x

o

probability that 
is given by  
 

x1

g(x1) � g(x
o

)

tpr(✓)

density of  class 0  data at   
is given by the  derivative      

✓
d fpr

d✓

prob. that for a random 
pair               we have 
                       : 
 
g(x1) � g(x

o

)

{x0,x1} 1Z

�1

tpr(✓)
dfpr

d✓
d✓ =

1Z

0

tpr dfpr = AUC

✓

g(x
o

) = ✓
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Remarks 
-  AUC(ROC) can be used as a quality measure to  
    compare classifiers, e.g. in cross validation 

-  ROC leaves the choice of a working point to the domain expert 
    (e.g. extremal points, fpr=1-tpr, problem-specific bias, etc.)  
-  several competing schemes / criteria,  
    e.g. Precision/Recall (PR)  
    claimed to be more appropriate for strong bias (see literature) 
    but AUC (PR) without (obvious) statistical interpretation  
- see paper by Fawcett for an excellent review of ROC  

AUC (ROC) = probability  for correct order of random pairs 
                     with respect to the discriminative function  



IAC Winter School, November 2018, La Laguna, Tenerife 11 

                    

multi-class problems  
confusion matrix  contains all class-specific accuracies and errors  
 
 
 
predicted:                                   element (i,j) counts how many 
                                                  examples from class i are  
                                                  classified as j  
    
 
 
generalization of ROC etc. is non-trivial 
one possibility: define a particular class as “negative” 
                        consider ROC for “one-against-all-other”  
many “single quality measures” derived from the confusion matrix 
suggested in the literature 
                     

  true:    1   2      …   C  
 
        1 
        2 
         . 
         . 
        C 
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accuracy is not enough  (II) 

a machine learning urban legend 

US military: 
-   classifier to distinguish US from Russian tanks 
-   trained on a data set of still images 
-  nearly perfect classification performance  
     (training and also validation / test)   

-  complete failure “in practice”  
 

American tank  Russian tank  

                   almost true  :-)  
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models should be: 
 
transparent / intuitive / interpretable,  white box  
e.g.:    decision criteria used by the classifier 
           most important features contributing 
   
-  avoid artifacts, e.g. due to the hidden data set bias  
-  gain better insight into the data set / problem 
-  potentially understand underlying mechanisms 

one suitable framework: 
     similarity / distance based methods 
     representation / parameterization in terms of prototypes  
        

to be avoided: blind application of black box machine learning 

accuracy is not enough (II)   
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L  classifier with mediocre performance from small training data sets 
J  yet: insight into the problem, e.g. most relevant features 
           in a white-box classifier or regression system    

sometimes accuracy is not even the goal 

example: bio-marker identification in medical diagnosis 
               hints at disease mechanisms  
               suggests new scientific questions  

early	Rheumatoid	arthri/s		
vs.	resolving	inflamma/on	
	
110	citokine	markers	
ca.	30	pa/ents	only		



(D2) validation, over-fitting, 
bias and variance, regularization 
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key problems in supervised learning  

model selection 

model selection:   LVQ, Neural Networks, labelled SOM,… ? 
                            how many prototypes, neurons, which kernel  ?  

algorithm, (hyper-) parameters:  
                            which training prescription ?  
                            how many training epochs, which learning rate... ?  

data representation: coding, normalization, transformation, …   ?  

consequences of mismatched model complexity:  
       bias / variance dilemma  
       overfitting 
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key difficulty: the complexity of the rule is unknown, in general

model selection:
choice of network architecture, number of layers, nodes, adaptive parameters, etc.

Occam’s Razor:
Among different ideas which explain the same observation, accept the simplest

The bias-variance dilemma: (illustrative example)

– polynomial regression w.r.t. to an unknown target function: f(x) = x

3

– data set ID = {xi, yi }P
i=1 with �1  xi  1 (equidistant)

– noisy labels yi = f(xi) + ⌘i with random ⌘i uniform from [�a, a]

hypothesis: polynomial of degree K, fH(x) =
KX

j=0

aj x

j

coefficients aj obtained from least square fit w.r.t. ID

(by minimizing
P

i(fH(xi)� f(xi))2))
88

bias / variance dilemma 

 yi  

<yi> =  f(xi) 
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ID1

ID2

ID3

K = 1 K = 3 K = 7 example results for three
indep. random data sets

K too small: result is very robust , almost independent of ID

large deviations (fH(xi)� f(xi))2/2 (training error )

K too large: result varies strongly from data set to data set
small training error, poor prediction (inter- and extrapolation)             

89

bias / variance dilemma 

one data set,  three 
different models 
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ID1

ID2

ID3

K = 1 K = 3 K = 7 example results for three
indep. random data sets

K too small: result is very robust , almost independent of ID

large deviations (fH(xi)� f(xi))2/2 (training error )

K too large: result varies strongly from data set to data set
small training error, poor prediction (inter- and extrapolation)             

89

bias / variance dilemma 

yi 
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bias / variance dilemma 

the bias / variance dilemma  (qualitative discussion)   

competing aims in training: 

low bias          = small systematic deviation from the "true solution" 
                          on average over many data sets of the same size  

low variance    = weak dependence on the actual training set,  
                          robustness of the hypothesis    

dilemma:   
small variance: simple model,    under-fitting   →    large bias 
small bias:       complex model,  over-fitting     →    large variance  
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parameter 1  

pa
ra

m
et

er
 2

  

fit of model A 
low bias 
high variance 

fit of model B 
high bias 
low variance 

target, optimal 
solution 

bias / variance dilemma 
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bias / variance dilemma 
general argument:

h . . . iID = average over random realizations of ID

expected quadratic deviation of fH(x) and f(x) for an arbitrary x:
D

( fH(x) � f(x) )2
E

ID
(shorthand: fH, f w/o arguments)

=
⌦
f

2
H

↵
ID

� 2 f h fh iID + f

2

= h fH i2ID| {z }
⇤

� 2 f h fh iID + f

2 +
⌦
f

2
H

↵
ID

� 2 h fH i2ID + h fH i2ID| {z }
⇤

(* add up to 0)

= ( h fH iID � f )2| {z }
bias2

+
D

( fH � h fH iID )2
E

ID| {z }
variance

bias: systematic deviation of the (mean) fit from the target function

variance: fluctuations with respect to the realization of the data set

(above definitions are for one x,
R

dx . . . ! gives integrated bias/variance)

90
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key problems in supervised learning  

model selection 

model selection:   LVQ, Neural Networks, labelled SOM,…? 
                            how many prototypes, neurons, which kernel... ?  

algorithm, (hyper-) parameters:  
                            which training prescription ?  
                            how many training epochs, which learning rate... ?  

data representation: coding, normalization, transformation, … ?  

training: based on performance with respect to training data 
aim      : low error with respect to new data, generalization 

how can we test the generalization ability?    
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Validation procedures  

basic idea:    split available data  { }{ }P
µ µ

µ=1
D =  ,  S  ξ

{ }{ }Q
µ µ

µ=1
D  =  ,  S  training ξ { }{ }P

µ µ

µ=Q+1
D  =  ,  S  test ξ

(randomly) into disjoint sets: 

→ estimate of  test error         (e.g. number of misclassifications)  Etest
→ comparison/choice  of different models, algorithms, settings... 

→ prediction of performance with respect to novel data  ( ? )  

validation  
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problems:  

 - lack of data 
    can we afford to waste  example data  only  for validation  ?  

 - representative results ?  
    lucky / unlucky  set composition can give misleading outcome !  

 - variation of results ?    
    how safe is the prediction ?  error bars of the estimates ?   

validation  
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example strategy:     " n-fold cross-validation "   

split data  { }{ }P
µ µ

µ=1
D =  ,  S  ξ

n
(i) (i) (i) (i) (i)

i=1

D =  D           D  D D           D Dtrain test= =U

(randomly) into n disjoint sets 

all data                    training data (i)              test data (i)  

- repeat training n times 
- calculate average training / test errors   ( and variances ) 

- repeat cross-validation for different models, parameters, etc.  
- select the best system with respect to test errors  
   (model, number of units, learning rate, … )  

n-fold cross-validation  
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remarks:  

 - which n in n-fold cross-validation ?  
    larger n   →  larger fraction of D used in each training run 
                   →  more estimates of Etest  / smaller test sets  
                   →  higher computational effort 

    extreme case:  n = P  
    use all but one examples for training, test on single example, 
    repeat P times    “leave-one-out estimate"  

 - statistics ?  
    n results are not statistically independent 
    highly overlapping training sets!   
                         → difficult to estimate variance 

cross-validation  
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over-fitting  

test / training errors             (e.g. observed in cross-validation)  
vs. complexity of the model  (e.g. # of prototypes, neurons, … )   

Etrain  < Etest  

"complexity“  (e.g.: number of prototypes)  

- expect: better classification ( of Dtrain  ) with increasing complexity  

- classifier / regression can become over-specific to training set ! 
   over-fitting    ( low training, high test error )   

in general:  E  
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       over-fitting 
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overfitting for large 
training ‘time’  
 
 i.e. too thorough  
 optimization of the  
 cost function 

 Leukemia diagnosis, 
 [Biehl, Bunte, Schneider  
  PlosOne 2013] 
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Remarks 
 
Critical assumption:  data set represents the “real world”  
 
Validation procedures can overfit !!!  
    example: selection of parameters or features  
                   based on   Etest   in cross-validation 
                     - does depend on the entire data set D 
                     - unclear performance with respect to new data  
 
   strategies:  - second level of validation (extra data?)  
                     - base parameter and feature selection  
                        on training set performance, if possible   

       over-fitting 



IAC Winter School, November 2018, La Laguna, Tenerife 

  

Regularization 
algorithm (hyper-) parameters can control effective complexity 
i.e. the degree to which the training error can be minimized  
       e.g.     restricted magnitude of weights  
                  limited number of training epochs   
                  drop-out (training of randomized subsets of parameters)  
                  ...many more... 

Randomized validation  
even n-fold CV can be subject to un/lucky set composition 
repeat n-CV many times over randomized splits 

or (simpler):  
split data randomly into X% test, (100-X)% training data 
repeat and average over many random splits  

       over-fitting 
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regularization 

competing aims of training:
low bias – good approximation on average over all possible data sets
low variance – robustness with respect to particular realizations of the data set

Regression with neural networks
feedforward networks with continuous activation are universal approximators
... can implement arbitrary non-linear (smooth) functions

example formulation: Cybenko’s Theorem

a soft-committee machine with output �(⇠) =
KX

j=1

g(wj · ⇠ � ✓j),

sigmoidal activation functions g(x) (e.g. g(x) = erf(x) or g(x) = tanh(x))

adaptive weight vectors wj 2 IR

N
, and adaptive threshold values ✓j 2 IR

can approximate every (continuous, differentiable) function (IRN ! IR)

to arbitrary precision

. . . provided the number of hidden units K is large enough

91
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regularization 
frequently observed behavior (schematically)

"g

E

student complexity, e.g. K

over-fitting:
an overly complex adaptive system
can yield a low training error E

but very poor generalization ability

Model Selection (here in terms of neural networks)
choice of appropriate network complexity (e.g. size of the hidden layer)
requires validation, i.e. the estimation of "g based on test data (see later section)

idealzed training scenario:
– large amount of noise-free data available
– large test set! reliable validation! determine perfectly matching network
by comparing, e.g., the performance of different network sizes K

– minimization of training error E ! good generalization
93
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problems:
– costly validation schemes (computation, extra data required)
– minimization of E: local minima, other numerical difficulties
– noisy data sets! (strict) minimization of E . . .

is not required / may be disadvantageous (overfitting)

some possible strategies/methods to adapt the network architecture (number of
hidden units) to the complexity of the data during training:

• constructive approaches
start with a simple network, add units or layers
example: tiling like learning in multilayer networks

• pruning strategies
start with a complex network, remove units, layers, or single weights
examples: pruning, optimal brain damage, optimal brain surgery,...

– monitor generalization ability by means of validation schemes
– select network complexity in order to avoid underfitting / overfitting

94
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Regularization compromise:
– use a powerful (fixed) architecture, e.g. with large K

– restrict the number of degrees of freedom effectively
control of the effective complexity by some parameter in the training procedure

Example 1) weight decay
restrict the magnitude of weights in the network

units with activity � = g(
X

j

wj ⇠j) ⇡ g(0) + g

0(0) (w · ⇠) for |w | ⇡ 0

small weights effectively linearize the activation function

consider modified cost function b
E = E + �

1
2

X

j

w

2
j (with � > 0)

minimize b
E instead of E:

w(t + 1) = w(t) � ⌘r b
E = w(t) � ⌘r b

E � �w = w(t) (1� �) � ⌘ r E

2 steps: (1) gradient descent w.r.t. E, (2) weight decay by factor (1� �) 1

weight decay effectively smoothens the network output
and restricts the complexity that can be achieved

95

(intuition)
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Example 2 early stopping
– restricts the number of learning steps (e.g. gradient descent up to tmax)

– does not allow for the thorough minimization of E

– for initialization w ⇡ 0, early stopping effectively realizes weight decay

t = 0
t = tmax

practical problems:

– determination of tmax by validation schemes

– result depends strongly on initialization

– success of early stopping is not guaranteed
96
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example 3: dropout 

effective restriction of the network complexity in the training: 

In every update step, 
only a randomly selected  
subset of units is trained 
 
illustration from: 
Srivastava, Hinton et al. 
J. Machine Learning Res.  
15: 1929-1958 (2014)  
 
          

Training of randomized, simpler sub-networks 
Working phase uses full network  ≈  ensemble of many simple systems 
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concluding remarks 
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It’s a zoo ... 

e.g. classification: 
 K-NN, LVQ, supervised SOM/NG etc. 
 Discriminant Analysis, Logistic Regression 
 Perceptron, Support Vector Machine 
 Multilayered Neural Networks (many types) 
 Decision Trees, Forests of Trees 
 Gaussian Process Classifiers, ...............  

regression  
... 

clustering:  
... 

reinforcement 
learning: ... 

dimension  
reduction: ... 

novelty 
detection: ... 

... 
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Start simple!   

Think first:   
           - what is the goal ?   performance only, deeper insight, ... 
           - is it realistic ?  (machine learning ≠miracles)  
           - literature: has it (or something similar) been done before ?  

Inspect the data:  
            - representation, normalization, transformations... 
            - unsupervised analysis: correlations, clusters, structures ? 
            - employ visualization techniques 

in the zoo... 
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in the zoo... 

Start simple!   

Start simple:  
            - e.g. K-NN classifier, linear regression, PCA, k-means 
            - compare to baseline algorithms 
            - increase level of sophistication if necessary / promising 
            - the latest trend is not necessarily the best for your problem 

Accuracy is not enough:  
           - try to obtain insight  
           - employ interpretable models/systems, vsualization 
           - proper testing/validation with respect to suitable measures 
           - beware of artefacts, biased data ...  
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Some challenges (keywords) 

Transfer learning    
Lifelong learning 
Representation learning 
Interpretable models 
Learning causal relations ...  

Imbalanced data 
Incomplete data 
Noisy data ...  
 
Functional data 
Privileged information 
heterogeneous / mixed data 
non-vectorial data (graphs, relational data) ...  
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