Lecture 2

Models of cool stellar atmospheres and synthetic spectra

Kurucz, Marcs http://kurucz.harvard.edu http://marcs.astro.uu.se

- time-independent
- ID geometry
- a star is flat (sphericallysymmetric only for giants) local thermodynamic equilibrium
- no sources or sinks of enegry
- hydrostatic equilibrium
- simple convection recipies MLT
- no winds, magnetic fields
- no chromopsheres

1.0 0.8 0.6 synth 0.4 obs 0.2 5110 5120 5130 1.0 0.8 mhuhuhu 0.6 0.4 0.2 0.0E 5140 5150 5160 5170 1.0 0.8 mhulu 0.6 0.4 0.2 Ξ 0.0E 5200 5210 5180 5190 1.0 Y 0.8 mhululu 0.6 0.4 0.2 0.0E 5220 5230 5240

7

'Recipe-based modelling'

making a solar model spectrum is possible

adjusting MANY free parameters:

- abundances to match meteorites
- mixing length to approximate convective energy transport
- `micro-', `macro-turbulence' to represent turbulent mixing
- `astrophysical' atomic data

Models of (cool) stellar atmospheres

- Hydrodynamics and convection
- Non-local thermodynamic equilibrium
- Chromospheres
- Coronae
- Pulsations
- Winds and mass loss
- Terrible amounts of data from atomic and nuclear physics
- Molecular opacities
- Asymmetric shapes with `hot spots'
- MOLsphere (H₂O, SiO)
- Non-equilibrium chemistry

Non-local thermodynamic equilibrium

Non-local thermodynamic equilibrium

very low densities in the atmospheres collisions between gas particles are too weak to establish LTE

$$\frac{\partial n_i}{\partial t} + \nabla \cdot (n_i v) = \sum_{j \neq i} n_j P_{ji} - n_i \sum_{j \neq i} P_{ij}$$

$$n_i \sum_{j \neq i} P_{ij} = \sum_{j \neq i} n_j P_{ji}$$

$$\stackrel{-8.3}{-9.0}$$

$$\stackrel{-9.0}{\stackrel{5}{\text{of}} -10.0}$$

$$\stackrel{1}{\stackrel{5}{\text{of}} -11.0}$$

$$\stackrel{-13.5}{\stackrel{-4.0}{-2.0}}$$

$$\stackrel{-2.0}{\stackrel{1}{\text{og}} \tau_{500}}$$

Non-LTE reaction channels

overionization and photon pumping by super-thermal radiation field

Non-LTE reaction channels

overionization and photon pumping overrecombination and photon suction by super-thermal radiation fiel<u>d</u>

Non-LTE reaction channels

Non-local thermodynamic equilibrium

effect on <u>solar elemental abundances</u> from -0.3 to +0.2 dex

Non-local thermodynamic equilibrium

effect on <u>solar elemental abundances</u> from -0.3 to +0.2 dex

NLTE effects grow with Teff, log(g), and Fe/H]

Turnoff star

Red giant

18

Modelling spectral lines

modelling spectra of cool stars: lines are not simple gaussians Hyperfine structure, isotopic shifts, pressure broadening

Radiative hydrodynamics (RHD)

$$\begin{split} \frac{\partial \rho}{\partial t} &= -\nabla \cdot (\rho \mathbf{v}), & \qquad \text{mass conservation} \\ \frac{\partial \rho \mathbf{v}}{\partial t} &= -\nabla \cdot (\rho \mathbf{v} \mathbf{v}) - \nabla P - \rho \nabla \Phi - \nabla \cdot \tau_{visc}, & \qquad \text{momentum conservation} \\ \Phi &= -\frac{GM}{(r_0^4 + r^4/\sqrt{1} + (r/r_1)^8)^{1/4}} & d\Phi/dz = g, \\ \frac{\partial e}{\partial t} &= -\nabla \cdot (e\mathbf{v}) - P(\nabla \cdot \mathbf{v})/\rho + Q_{rad} + Q_{visc} & \qquad \text{energy conservation} \\ Q_{rad} &= \int_{\mathcal{V}} \int_{\Omega} \rho \kappa_{\nu} (I_{\nu} - S_{\nu}) d\Omega \, d\nu, & \qquad \text{radiative energy exchange} \end{split}$$

Grids of 3D RHD models

3D RHD or hydrostatic?

3D RHD simulation of a metal-poor red giant star \rightarrow no well-defined stellar surface

color - temperature

Х

Convective overshoot into the photosphere the concept of a 'mean' 1D hydrostatic structure is meaningless

 $\partial E / \partial t = -\nabla \cdot E \mathbf{u} - P \nabla \cdot \mathbf{u} + Q_{rad} + Q_{visc}$ Collet (2 in metal-poor stars, adiabatic cooling dominates over radiative heating Q_{rad}

Colour - Temperature

Nordlund et al. (2009)

Fe II line profile in a 3D simulation of solar surface convection

- rising and descending gas volumes have different line-of-sight velocities
- spectral lines are shifted and asymmetric

Elemental abundances from molecular lines are lower than predictions of 1D hydrostatic models

Stellar parameters

Bergemann et al. (2012)

Red Supergiants: atmospheres

- Global 3D RHD simulations star-in-a-box star completely enclosed in simulation domain
- Boundary conditions:
 - central luminosity source,
 - open external boundaries
- Low spatial resolution
- Gravity: prescribed potential
- Opacities: grey or binning
- Time per model: months

Chiavassa et al. (2011,2013)

Velocity fields have an effect on the structure of atmosphere through the line blanketing

in 1D hydrostatic models, V fields are represented by 'micro-turbulence' and 'macro-turbulence'

The effect of convection on the radiation field is huge in the frequencies of strong molecular absorption (e.g. TiO)

TiO: overestimate the flux in the near IR optical/IR SED: under-predict the TiO strengths

Red Supergiants: atmospheres

35

Unsolved problems

are RSG warm or cool? SED fitting TiO fitting

impact on evolution of massive stars and SNe

Davies et al. (2013)

AGB stars

3D RHD simulations of the outer envelope and atmosphere

- long-lasting giant convection cells, ~years
- short-lived surface granules
- strong radial pulsations
- \rightarrow shocks
- → radiation pressure on dust winds

12.06 yrs 12.37 yrs

600-400-200 0 200 400 60 600-400-200 0 200 400 600 x(R_{Sun})

Freytag et al. (2017)

AGB stars

Left: The spherically averaged radial velocity V(r; t) for the full run time and radial distance.

Right: mass-shell movements plotted as iso-mass contour lines

Freytag et al. (2017)

Schematic view of an AGB atmosphere

Stars and winds

	The Sun	RSG	Blue Supergiants
Driving mechanism	d P _{gas} /dr	P _{rad} on ions and dust	P _{rad} on ions
mass (M _{Sun})	1	8 40	10 100
luminosity (L _{Sun})	1	10 ⁴ 10 ⁶	10 ⁵ 10 ⁶
radius (R _{Sun})	1	500 1500	10 200
T _{eff} (K)	5777	3000	10 ⁴ 5 10 ⁴
wind temperature (K)	106	1000	8000 40000
mass loss rate (M _{Sun} /yr)	10-14	10 ⁻⁶ 10 ⁻⁴	10 ⁻⁶ 10 ⁻⁵
life time (yr)	10 ¹⁰	10 ⁵	107
total mass loss (M _{Sun})	10-4	< 0.5	90 %