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Models of cool stellar atmospheres  
and synthetic spectra
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time-independent

1D geometry

a star is flat (spherically-
symmetric only for giants) 
local thermodynamic equilibrium

no sources or sinks of enegry

hydrostatic equilibrium

simple convection recipies - MLT

no winds, magnetic fields

no chromopsheres

Classical models of stellar atmospheres
Kurucz, Marcs  
http://kurucz.harvard.edu

http://marcs.astro.uu.se

http://kurucz.harvard.edu
http://marcs.astro.uu.se
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at	each	depth

Classical models of stellar atmospheres
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at	each	depth

Input parameters

for a model atmosphere

Classical models of stellar atmospheres
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‘Recipe-based modelling’ 
making a solar model spectrum is possible

 adjusting MANY free parameters:


✓ abundances to match 
meteorites


✓ mixing length to approximate  
convective energy transport


✓ ‘micro-’, ‘macro-turbulence’ to 
represent turbulent mixing 


✓ ‘astrophysical’ atomic data

Classical models of stellar atmospheres
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Models of (cool) stellar atmospheres
➡ Hydrodynamics and convection 

➡ Non-local thermodynamic equilibrium

➡ Chromospheres

➡ Coronae

➡ Pulsations

➡ Winds and mass loss

➡ Terrible amounts of data from atomic and nuclear physics

➡ Molecular opacities

➡ Asymmetric shapes with ‘hot spots’

➡ MOLsphere (H2O, SiO) 

➡ Non-equilibrium chemistry
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LTE works remarkably well 

in many cases  

but it fails, t
oo, sometimes…

Non-local thermodynamic equilibrium
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Non-local thermodynamic equilibrium

very low densities in the atmospheres

collisions between gas particles are too weak to establish LTE 
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Non-LTE reaction channels
overionization and photon pumping  
by super-thermal radiation field
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Non-LTE reaction channels
overrecombination and photon suctionoverionization and photon pumping  

by super-thermal radiation field
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Non-LTE reaction channels
overrecombination and photon suctionoverionization and photon pumping  

by super-thermal radiation field resonance line scattering & photon loss
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LTE
NLTE
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Non-local thermodynamic equilibrium
effect on solar elemental abundances 

from -0.3 to +0.2 dex
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effect on solar elemental abundances 

from -0.3 to +0.2 dex
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Turnoff star

NLTE effects grow with    Teff,    log(g), and   [Fe/H]

Red giant
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Modelling spectral lines
modelling spectra of cool stars: lines are not simple gaussians  
Hyperfine structure, isotopic shifts, pressure broadening 
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radiative energy exchange 

mass conservation

momentum conservation

energy conservation

Radiative hydrodynamics (RHD)
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Grids of 3D RHD models
https://staggergrid.wordpress.com

Convection and granulation:

- all FGKM stars

- granules larger for lower log(g)

and [Fe/H]

- contrast larger for higher Teff

Freytag et al. (1997)
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X

Z

3D RHD simulation of a metal-poor red giant star 

 → no well-defined stellar surface

optical surface

2	Mm

color - temperature

3D RHD or hydrostatic?
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Convective overshoot into the photosphere  
the concept of a ‘mean’ 1D hydrostatic structure is meaningless

3D RHD model atmospheres

Collet (2008)

upflow

downdraft1D Radiative Eq.

in metal-poor stars, adiabatic cooling dominates over

radiative heating Qrad
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• rising and descending gas volumes 
have different line-of-sight 
velocities


• spectral lines are shifted and 
asymmetric

3D RHD model atmospheres

Fe II line profile in a 3D simulation 
of solar surface convection

Nordlund et al. (2009)

Colour	-	Temperature
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3D RHD model atmospheres
Elemental abundances from molecular lines are lower than  
predictions of 1D hydrostatic models
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1D LTE estimate 
of Teff and log(g)

Stellar parameters
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<3D>	NLTE	Teff	<3D>	NLTE	Teff	
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<3D>	NLTE	Teff	

<3D>	NLTE	log(g)	
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Bergemann et al. (2012)

<3D>	NLTE	Teff	

<3D>	NLTE	log(g)	
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Red Supergiants: atmospheres

➡ Global 3D RHD simulations  
star-in-a-box 
star completely enclosed in 
simulation domain


➡ Boundary conditions: 

➡ central luminosity source, 

➡ open external boundaries


➡ Low spatial resolution


➡ Gravity: prescribed potential


➡ Opacities: grey or binning 


➡ Time per model: months
Chiavassa et al. (2011,2013)
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Velocity fields have an effect on the structure of 
atmosphere through the line blanketing

CO lines 

in 1D hydrostatic 
models,  
V fields are 
represented by 
‘micro-turbulence’ 
and  
‘macro-turbulence’

3D RHD model atmospheres
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The effect of convection on the radiation field is huge in the 
frequencies of strong molecular absorption (e.g. TiO)

3D RHD model atmospheres
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Model fit to 

TiO bands (Teff = 3560 K)

Model fit to 

the full SED (Teff = 4280 K)

TiO:  overestimate the flux in the near IR

optical/IR SED:  under-predict the TiO strengths
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Red Supergiants: atmospheres

Tsuji (2003)
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Davies et al. (2013)

Unsolved problems

are RSG warm or 
cool?

SED fitting

TiO fitting


impact on evolution 
of massive stars  
and SNe 
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AGB stars

3D RHD simulations

of the outer envelope and 

atmosphere

- long-lasting giant 
convection cells,  ~years 
- short-lived surface granules

- strong radial pulsations  
 
→ shocks

→ radiation pressure on dust 
winds

Freytag et al. (2017)

x(RSun)
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Left: The spherically averaged radial velocity V(r; t) for the full run 
time and radial distance. 

Right: mass-shell movements plotted as iso-mass contour lines

AGB stars

Freytag et al. (2017)
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Schematic view of an AGB atmosphere

Decin (2003)
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Stars and winds
The Sun RSG Blue Supergiants

Driving mechanism d Pgas/dr Prad on ions and 
dust

Prad on ions

mass (MSun) 1 8 … 40 10 … 100
luminosity (LSun) 1 104 … 106 105 … 106 

radius (RSun) 1 500 … 1500 10 … 200

Teff (K) 5777 3000 104 … 5 104 

wind temperature (K) 106 1000 8000 … 40000

mass loss rate (MSun/yr) 10-14 10-6 … 10-4 10-6 … 10-5 

life time (yr) 1010 105 107

total mass loss (MSun) 10-4 < 0.5 90 %


