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’

e have considered to solve equations of radiative transfer and the
statistical equilibrium equations on a given density and temperature
structure

Two more equations are needed to give density and temperature (plus
the state equation)

« The momentum equation (or the hydrostatic equilibrium)
« The energy equation (or the radiative equilibrium equation)



Momentum Equation

for a mass element in our atmosphere we will have

a’m— = 2 df
Usmg the momentum conservation (with the acceleration)

v -dv  1dP- Gm - —
N, N T 2 r+gmd

+ v
ot oJdr  pdr r

After some manipulation this can be written
(a being the sound velocity, assumed constant)
a’ | dv da 2a° Gm

1— V— =— + ——"+g
v | dr dr r - rad

| ) ) )

i U U U

velocity field gas pressure gravity radiation
pressure



Momentum Equation

If the forces are in balance, v =0, and we recover the equation of hydrostatic equilibrium

L o)~ 80) = PP

dr
Sometimes, the mass column is used
dP
am’ = &t
A simple idea is to consider a isotermic atmosphere with just gas pressure
dP m
dP =—gpdr = —t=_gP g M,
& P P k,T
g
integrating at constant 7'
PdP P & H(”] ro)
__J g,UmH dr = —=¢ k,T _ e—Ar/H — p= PO e_Ar/H

with H the pressure scale height, the distance needed for the pressure to decrease 1/ e
k,T
gHm,,

H=

high g and low T make H small, i.e., the atmosphere more compact

A more compact atmosphere has more collisions and tends to higher opacities



Energy equation — Radiative equilibrium 9
D

Begin with the RTE
dl
I -8
e f1.-5)

integrating over angle and assuming that the source function

does not depend on the direction:

dxzjll"'u n=-x. J+1] S)du:jH )((JV—SV)

integrating now over frequency

o0

d e
d_ij Hva’v=0=—j

0

2.(J,—S,)dv



Energy equation — Radiative equilibrium 9
D

K o :
S = —B + —J (withy =Kk +0))
K +0 K +0

replacing S we get

[ &

oo K O oo
(K‘ +0 )(J — *—B — . J)dv=0:>f («x J +0J -k B —-0.J)dv=0
0 \% 14 v Kv+6v v KV+GV v 0 v v v v v v v v

.Om K, (J —B ) dv=0 (note: scattering plays no role in the radiative equilibrium)

We are stating that absorbed energy J.: k J dv= emitted energy J:o K B dv

This allows us to find a temperature structure 7'(x):
— we begin with a given k (x),T(x),B (T(x)),Vx

— solve the transfer equation and obtain J (x)

, o No — correct 7'(x)
— Is the equation |« (J, - B,)dv=0 fulfilled? —
o v v Yes — T'(x) correct



Energy equation — Radiative equilibrium

Assuming
- frequency-independent opacity
-LTE
- Eddington approximation (J= 3K through the whole atmosphere)
we obtain the gray temperature structure
(valid at the bottom of the atmosphere in radiative equilibrium)
3

_ _ 2
T4(T):Z]:;f(f+§j

and without the Eddington approximation we get
. 3 _
T'(7)= 2T (T +4(7))
where ¢(7) 1s a slowly varying function of 7, called the Hopf function. It varies between

1/v/3=0.57 at 7=0 and 0.71 at T=o.
Note that 7(0)=0.817, (0.847 in the Eddington approximation) and T (’f =2/ 3) =T,

o



Energy equation
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Energy equation - Convection 9

1 2 '
p, > p,. = gravity pulls down
P+dP T+dT = convection supressed
T,<T,=|VIT,[>VT,
‘ = |VTad| > |Vde| when no convection
_ _ P..=P., (stability)
v dAd:abat'C t "% ['Schwarzschild criterion for stability
P, T Pii=Pou 'splacemen dInT S dInT
dinP| |dInP|

Convection appears when the absolute adiabatic gradient is smaller than the radiative one

(dT(r)] 3k L(r) (dT(r)] _T,-17(») dP(r)

dr ) = dacT? 4nr? dr T, P(r) dr
I -1 H
Favouring convection: — (dlnP) =V = ——P[d—T)
‘large k (kappa effect) I, dInT ), r\dr),
[,~1 (gamma effect) in a monoatomic, non-relativistic ideal gas

This happens in ionization zones T, = Cp/cv =5/3 (and F=r=0=%)



Line Broadening- Intro 9
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Line Broadening- Intro

There are two main causes of line broadening

1.- intrinsic: Heisenberg's uncertainty principle
AEAt > g = if At L,AE T

2.- extrinsic: Doppler effect

A:A{uﬂj
C

and two main views
1.- Microscopic:
— affect the atomic absorption coefficient (for the atomic population)
— modify the total energy absorbed in the spectral line
2.- Macroscopic:
— do not affect the atomic absorption coefficient

— do not modify the total energy absorbed in the spectral line



Line Broadening- Intro

Origin
Intrinsic Extrinsic
View
Natural Thermal
) i Collisional Microturbulence
Microscopic
Rotation
Macriturbulence

Macroscopic




Natural line broadening

* Energy levels have a finite lifetime, and thus an energy uncertainty

» Natural broadening has a lorentzian profile

O 7 N S 7" S S L
me A@® + (7//2)2 me Ay’ +()//47r)2 me ¢ A)? +(ylz/47rc)2
with y the radiative damping constant constante
For a 1= transition, vy, will be given by v, + v,
Damping constant for natural broadening
\ The emission (or absorption) profile of an
T ) """"""""""" W IAWU ul (or [u) transition ia a lorentzian function with
3 / Y=Y.7TY,
. If for a level u we also include induced emission
and absorption (in addition to spontaneous emission):
x -------
Wi AW, Y, = 47r2 A, +47r2 I B, +47r2 I B
I<u I<u k>u




Collisional line broadening

BT - @’
\,‘__{V. (e ’.’ . [ .
““tis the perturbation of the energy levels of an atom caused by encounters (interaction)
with electrons, ions or other atoms and molecules.

The resulting broadening will be proportional to the number of collisions, i.e., to particle
density or pressure. Therefore, the collisional broadening is a good indicator of

gravity
gum,

P(ry=Pe""

» Perturbation will be larger for smaller inter-particle distance, R

"o

The energy change can be expressed

. Unperturbed 25 & POWET law:
o 7 energies A = constant/ R”
-l where n depends on the kind of interaction
2
4

In frequencies:
Av=C, / R"

Energy —»

R—»

Fig. 1 1.2. The energies associated with the upper and lower atomic levels on
a transition dgpend on the distance R to the perturber. The transition energy
can be either less (2) or greater (3) than the unperturbed value (1).

« C, has to be calculated for each transition and kind of interaction



Collisional line broadening 9

The shape of the absorption profile is usually obtained in the impact
approximation: the timespan of a collision is small compared to the time
between collisions

 We assume that when an unperturbed atom emits a photon it behaves
as an oscillating dipole during a time interval At. The resulting photon
can be represented as the product of a sinusoid and a box function

- The resulting frequency spectrum is a sinc function and its amplitude,
sinc?(TrAt (v-v,) ), is centered at the sinusoid frequency with width Av= 1/At

/\/\/\/\/\/\/\ Sinusoid of freq. v,

{ i
Box function of width At




Collisional line broadening 9

« The perturbing particle produces a sudden phase shift in the sinusoid.
The photon can be seen as the result of dividing the origibal wave in
pieces, with a phase shift in each of them.

/\/\/\A/\/\/\ Sinusoid of freq. v,

| 1
Box function of width At

>

t The photon is now the addition of the

‘ /\/ M partial sinusoids. Its frequency spectrum

N Y (Fourier transform) is the sum of the

individual Fourier transforms, each of them

impacto broader than the original one (Av = 1/ Ar),
as Avj = 1/ Atj

impacto

* The resulting profile will be a consequence of the At; distribution,
together with the sinc function of each of them



Collisional line broadening 9

The shape of the absorption coefficient will be proportional to the sinc” function

corresponding to each Af, weighted by the distribution of At and integrated to

all possible At values

) 2
0 o JW AL sSInTAH(v—v, ) /8 dAt
ooJo A (v—v,) At,

which gives
Yy, /A
(v— VO)2 + (7/71/4%)2

o = const with y = 2/ At,

Good news: that’s a lorentzian, as the natural broadening

(the convolution of two lorentzian functions 1s a lorentzian function)

We need now the (collisional) damping constant, that will depend on the kind of
interaction



Collisional line broadening

n Kind Lines affected perturbers
2 Linear Stark H, hydrogenic pte-

3 Resonance A-A Same species
4 Quadratic Stark Lines in hot stars Ions, e-

6 Van der Waals Lines 1n cool stars H

Note: the linear Stark broadening is stronger than the quadratic one. The terms ‘linear’ and
‘quadratic’ refer to the first and second order in the Hamiltonian in perturbation theory

Some expressions (from Gray, 2002):
2
logy, = 19+§logC4 +log P —%logT

logy, =20+0.4logC, +log P —0.7logT



Collisional line broadening

16 The line absorption coefficient

10 .
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Fig. 11.4. Damping constants for the Na I D, line are shown as a function
of depth in a solar model. The van der Waals damping constant is computed
using Eq. (11.9). The Stark damping constant comes from Eq. (11.27). For
omparison, the natural radiation damping according to Eq. (11.13) is shown.

.

(Gray, 2002)



Collisional line broadening 9

The Stark brodening is caused by the electric field of a charged particle (E= q/r?) on the
perturbed atom

For H atoms, the linear Stark effect is particularly important when there are enough free
electrons and ions (both because it is linear and because the nuclear charge is small).

We have to consider both the effect of the the slow protons (in the limit, the nearest
neighbour approximation, although we shall consider the correct distribution of
perturbers) and fast moving electrons (in the limit, the impact approximation)

Q/’ @

" \' WT T
-,

4700 4740 4780 4820 4360 4300 4940 4380 3020 5060 5100 @
Wavelength

Bad news: the result is a complicated expression that does not respond to an
analytical standard expression (gaussian or lorentzian, f.e.). It can be tabulated.



Thermal line broadening 9

Atoms move in the atmosphere with velocity vy (projected on the line of
sight). This will produce a Doppler shift (AA) in the absorbed or emitted light

The AA distribution will be proportional to the velocity distribution

The distribution of AA will be
dN 1 e—(M/A)LD)2 JA

1
N n/2 AL,
A’ e’ e’
The total energy absorbed by the line will be ——— f (in A unlts) — f (in v units)
c mc mc
So that the absorption coefficient will be
/2 2 102 1 ) /2 2 1 )
adr=""Cr e MMM 1) adv="""Cf 1 g™y,
mc c AL, mec "~ Av,

The form of the line absorption coeffcient
due to thermal broadening is a gaussian



Microturbulence 9

Microturbulence: absorbing elements of smaller size than the photon
mean free path. They move in all directions with a gaussian velocity
distribution. The absorbing atom sees the photon Doppler shifted.

As we assume a gaussian velocity distribution, microturbulence will have a
gaussian profile (same as the thermal broadening)

It is an ad-hoc hypothesis to explain the broadening
and strong absorption in some spectral lines



Hjerting and Voigt functions 9

N\
XY T-JAC

T”he‘global coefficient will be the convolution of all individual coeffcients

o(total) = o( natural)) * o( colisional) * at(termico) * ot(micro)

The natural and collisional broadenings will jointly give a lorentzian, and
the thermal and microturbulence will give a gauusian. We will have:

o = e’ 7’/47?2 N 1 o (A8 e’ S H(u,a) = r'%e’ lzf H(u,q)
Y ome” AV +(y/4r) ﬂl/zAvD mc Av, ’ mc AL,
H(u,a) 1s the Hjerting function, whose arguments are
u=Av/Av, = AL/ AL,
ArAv,  AmcAA,
and que
2 - —u}
H(u,a)= j y/4z e /Y g, = 4 c ~du

~ (Av—Av, ) +(y/4r)’ T = (u—u) +a>



H(u,a)=H (u)+aH (u)+a Hz(u)+ a3H3(u)+...

where the /; functions are tabulated. H (u) is a gaussian and dominates the profile center.

In the far wing the even terms in the expansion tend to zero and we can use (asymptotically)

0.56419 0.846 0.
H (u)= +——— and H (u)=— 56
u u
: : ] 1
It is customary to use the Voigt function V(u,a)= A —— H(u,a)
»Q)
1 IR Hyperfine and isotopic splitting 259

Hjerting function
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Gray (2002) .
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For Stark broadening (that does not result in a gaussian or lorentzian function)
we have to perform a numerical convolution with the Hjerting or Voigt function
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Line brodening- summary 1

- Up to now we have seen processes that modify the atomic absorption
coefficient
Natural Collisional (or Pressure) Thermal Microturbulence
Process
Resonance | van der Stark linear | Strak
Waals cuadratico

Shape Lorentz. Lorentz. Lorentz. Gauss. Gauss.

Physics Heisenberg | Collisions | Collisions | Ions and e- | Ions and e- | Atoms Heuristic: gas cells
uncertainty | with with other | electric electric thermal of smaller size than
principle identical atoms fields on fields on velocity the photon mean

atoms hydrogenic | non- distribution | free path.
atoms hydrogenic
atoms

comment | Small Mainly collisions with Dominant in hot stars Jointly with the lorentzian, results

broadening | H a Hjerting or Voigt profile




Macroturbulence 9

-

Microturbulence: absorbing elements of /arger size than the photon mean free
path. The emitting and absorbing atoms are at rest w.r.t. each other.

Each macro cell behaves as an independent atmosphere. The emerging
spectrum will be convolved with the velocity distribution of the cells

I,=1%0(A) = F, = I’ +O(AL)cosOdw
A simple assumption is a gaussian velocity distribution, but it has been shown

better to use a radial-tangential profile

A 2 A . 2
O(AL)=A4,0 (AL)+ A0 _(AL) = R e_(M/CRCOSG) + A e‘(M/CTSHl@)
()= 4,0, (A1) + 4,0,(A4) nl/zgR cosO ﬂl/ng sin @

where ¢, and ¢ are the macroturbulent velocities in radial and tangential directions

to the stellar surface, and 6 is the angle of the line of sight with the normal to the surface



Rotational line broadening 9
D

The stellar emergent flux will still be

F = <J>[ ,cosOdw

But now the intensity at each point will

be shifted by Doppler effect due to rotation
F = C_'Slv()t— Ad)cosOdw




Rotational line broadening 9

This can again be expressed as a convolution with the rotation profile (that gives the
distribution of AA)

F = T[v(it — AV)G(AMVAAL =T (A)* G(A)

where
S O el e (R Gl (2] )
G(AL) = S O Y P
TAA (1 — % ) AL, AL

and we have used the usual limb darkening law 7 =1 f(l — £+ £cos0)

Rotation and macroturbulence will be convolved numerically



Line brodening- summary 2

Natural Collisional | Thermal | Rotation | Micro Macro
Origin Uncertainty | Atomic Thermal Stellar Convection? | Convection
principle interaction | velocity rotation (cool stars) (cool stars)
dispersion Pulsation?
(hot stars)
Shape Lorentzian | Lorentzian | Gaussian | own Gaussian Radial-
(mostly) tangential
Parameter | Aik, 1 Gravity T (notin | Rotational | Abundances
stars) velocity (needed for)
Changes yes yes yes no yes no
absorbed
energy?
Objects Atoms Cool stars | Low stars stars stars
(van der density
Waals) hot
Hot stars plasmas
(Stark)




