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Radiative transfer (RT) 

 

 

• Radiative transfer is a link between the macroscopic properties of 
celestial bodies (e.g. radiative flux they emit) and the microscopic 
interactions of photons with gas particles that determine the conditions 
on these objects.  

 

• Radiation is the most important diagnostic tool we have at hands for the 
study of distant celestial objects. 

 

• Radiation is not only a source of information; it also affects the physical 
state of the medium it propagates through 

 

• Radiative transfer is a necessary step in the iterative process of  
astrophysical object modeling 
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Stellar atmospheres 

modeling 

Physical laws 

Model of  

• internal structure 

• state of matter 

• energy transport  

The stellar atmosphere 

physical system 

Observed 

spectrum 

Synthetic 

spectrum  

Atomic data 

comparison 
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Outline 

• I.  The radiative transfer equation (RTE) and its formal solution 

        (both in differential and integral form) 
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•   II. Linear RT problems (two-level-atom line transfer) 

         (direct and iterative methods)  

•    III. Non-linear RT problems (multi-level-atom line transfer) 

          (iterative methods) 



Specific intensity of radiation  

 7 variables/parameters:  

 

 3 coordinates (Cartesian: x,y,z),  

 2 angles  ( θ, φ ),  

 frequency (       )  and  

 time ( t ).  
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Radiative transfer equation (RTE) 

  t – thermal processes   

s – scattering processes 

RTE: 

along a ray  
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The most general form of the RTE 

Simplifications are needed! 
 

          

7 variables/parameters:  

 

 3 coordinates (Cartesian:x,y,z),  

 2 angles (θ,φ),  

 frequency (      )  and  

 time (t).  
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(that takes into account  the variation of intensity with respect to all variables) 
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For the time independent case:  

In a static medium - straight paths, constant 

frequency 

In a moving medium – two frames: 

   Laboratory (observer’s) frame: LHS of RTE  is simple, but transport 

coefficients are anisotropic 

   Comoving frame (CMF): LHS more complicated, transport coefficients are the 

same as in the static case  

We will consider time-independent and static case: 

In static media, transport coefficients are isotropic if the scattering is isotropic.   

=1 e.g. for coherent and 

isotropic scattering  



In planar geometry: 

In spherical geometry: 
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Assumption: atmosphere is stratified either in homogeneous 

plane-paralel or spherically symmetric layers.  

Homogeneity  = 1D         azimuthal symmetry  

Geometry: 



optical depth 

source function 

Is the number of mean free paths of a 

photon at frequency      traveling from               

to   

RTE: 

RTE: 

Time-independent  RT equation in the static, 

plane-parallel media with isotropic scattering : 

11 



Some simple 1D plane–parallel transfer problems  

• no absorpion, no emission :  

• no absorption, only emission :  

• no emission, only absorption :  

and 

but 

but 
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Radiation-matter interactions  

TE                     LTE                non-LTE 
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• TE: 

• LTE: 

example: two-level 

atom line formation  

 linear  problem   

 direct or iterative 

methods of solution 

NF x ND ordinary 

differential equations 

system of NF x ND integro-differential equations 

RTE : 

• non-LTE: 
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Boundary conditions for the RTE 

for analytical solutions 

for numerical solutions 

diffusion approximation 

(at 1st order) 

(no incident radiation) 

•  Upper boundary condition: 

•  Lower boundary condition: 

(A) Semi-infinite medium 

(B) Finite slab (spherical shell) of total optical thickness T 
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Formal solution 

• The formal solution is a necessary step in any iterative solution of 

the full RT problem (self-consistent computation of the radiation 

field and the state of the medium). At each iteration step one 

solves  the RTE with the known (from the previous iteration) 

source function, and uses the information provided by the formal 

solution within an efficient iterative procedure.   
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•    It has to be performed many times          it must be efficient ! 

•    Methods that use the differential form of the RTE  

      (e.g., Feautrier solution) 

•   Methods that use the integral form of the RTE  

     (e.g., short characteristics approach) 



Second-order differential form of the RTE 
(along a ray subject to two-point boundary conditions) 

Feautrier’s variables:  

Schuster (1905); generalized by Feautrier in 1964  
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The two-point boundary nature of the RT problem, i.e. the existence of two 

separate families of boundary conditions suggests a separate treatment of 

the in-going and out-going intensities (for two directions along the ray).  

(for each frequency and direction) 



Boundary conditions 

or 
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Feautrier solution 

or 
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Discretization: 



Forward elimination/back substitution  

  

Forward elimination: derive for each layer 

(l,l+1) the coefficients of the recursive relation 

then back-substitution                                      up to the surface l=1.  
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At the top:  

At the bottom 

 A1=0 



Two-point algorithm 

Upper boundary condition: 

The coefficients of boundary condition for the next layer are found from   

Taylor’s expansion 

Taylor’s expansion 

RTE 

The relation between  and is obtained from:   
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recursive relation 



Formal solution of the RTE in integral form  

• Inward intensity (using the upper boundary condition)  

 

 

•   Outward intensity (using the lower boundary condition) 

integrating factor 
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The general formal solution of the RTE for a semi-infinite plane-parallel atmosphere:  



Some simple 1D plane–parallel transfer problems 

• absorption and emission : 

• semi-infinite atmosphere : 

• finite, homogeneous slab : 

and 
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Moments of specific intensity in 1-D 

(in Eddington’s notation) 

The zeroth angular moment 

- Mean intensity 

The first angular moment - 

Eddington flux 

The second angular moment 

- K-integral 
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Mean intensity  

Ʌ operator 
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Flux  

K-integral 
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The essence of the whole story  
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Radiative transfer puts into relation the radiative flux, one of the fundamental 

stellar parameters, with the microscopic interaction processes.  

The emergent intensity: 

The emergent radiative flux:  



RTE in integral form 

Long characteristics (full polynomial interpolation) : U is the point at the boundary 

at which the ray penetrates into the medium; a single function is fitted to the full set of 

given data (global fits) 

Lagrange form of the 

polynomial that goes 

through N points  

Short characteristics (piece-wise interpolation) - ray segments (local fits)   

D.Mihalas, L.Auer & B.Mihalas  (1978)  
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For the numerical integration we may either assume that the behavior of the source 

function between any pair of its known values at two points can be approximated by a 

polynomial or replace the integral by a quadrature sum.  



Long vs. short characteristics in 2D  

(Auer, 2003) 
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Short characteristics 
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1st order (linear) short characteristics: 

The general formal solution can be applied to the interval between two 

successive grid points 

The integrals can be solved by assuming some polynomial representation for S 



Short characteristics (Kunasz and Auer, 1987)  

Formal solution based on the SC solution of the first-order differential  

RT equation and parabolic approximation for the source function in three points 

Widely exploited within the ALI (Approximate Lambda Iteration) methods  

The integral 

is expressed in terms of the source function in three points:  

            U (upwind), L (local) and D (downwind) 
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Integrating by parts 
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we have the integral                               expressed in terms of S and its derivatives 

 in two points:  

• A  piece-wise linear interpolation of            between          and   

leads to 
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• A  piece-wise parabolic interpolation of             between           and   

leads to 



Hermite interpolation 

Hermite polynomial on the interval  

34 

matches both the function and the derivative values at the ends of the interval.  

Bezier splines  

go through the end points of the interval, but use control points Sc inside 

the interval to shape the polynomial curve.  

Quadratic (n=2)  

Bezier spline:  

Cubic (n=3) 

Bezier spline:  

Basis functions:  



Integral form of RTE – short characteristics approach 

RTE  “along a ray” 

The formal solution of this equation (integrating from point L-1 to L)  

part  transmitted from point L-1 to point  L 

Polynomial representation of the source function  leads either to:  

or 

(ALI: 3-point algorithm)  

(FBILI: 2-point algorithm) 
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