Rosseland Centre for Solar Physics

Stellar Atmosphere Codes I

Mats Carlsson Rosseland Centre for Solar Physics, Univ Oslo La Laguna, November 14-15 2017

Stellar atmosphere codes

Diagnostic codes

Opacity data

R 🛑 C S

Diagnostic codes, LTE

- many codes. Input data format. Input data
 - Turbomarcs: MARCS
 - MOOG:ATLASx
 - Synthe:ATLASx
 - Synspec: ATLASx, Tlusty

SYNSPEC Version 43

<u>User's guide</u>
References
Synplot
<u>Convolution (Rotin3)</u>
<u>Data</u>
<u>Model atmospheres</u>
<u>Download Synspec</u>

€<u>Tlusty</u>

Sa Synspec's Home

Contact Us

<u>Copyright and Disclaimer</u> <u>Web Authors</u>

Last update: October 5, 2005

Welcome to Synspec's Home Page!

Ivan Hubeny & Thierry Lanz

A user-oriented package for modeling stellar atmospheres and for stellar spectroscopic diagnostics

Synspec is a general spectrum synthesis program. It assumes an existing model atmosphere, calculated previously with <u>Tlusty</u> or taken from the literature, for instance from the <u>Kurucz</u> grid of models. The opacity sources (continua, atomic and molecular lines) are fully specified by the user. An arbitrary stellar rotation and instrumental profile can be applied to the synthetic spectrum.

Synplot is a user-friendly IDL wrapper around Synspec. Synplot is keyword-driven and incorporates all the necessary plotting resources for spectral analyses.

http://nova.astro.umd.edu/Synspec43/synspec.html

R

C S

non-LTE

Diagnostic codes, NLTE

- Linear-A, Linear-B, Pandora,...
- + MULTI (Carlsson 1986)
- MUGA (Fabiani-Bendicho, Trujillo-Bueno 1995...)
- +RH (Uitenbroek 2001)
- Phoenix (Hauschildt, Baron)
- PORTA (Stepan, Trujillo-Bueno 2013)
- +NICOLE (Socas-Navarro et al 2015)
- (Detail/Surface, CMFGEN, FASTWIND, PoWR, Tlusty, WM-basic)

Diagnostic codes, NLTE

- Linear-A, Linear-B, Pandora,...
- + MULTI (Carlsson 1986)
- MUGA (Fabiani-Bendicho, Trujillo-Bueno 1995...)
- +RH (Uitenbroek 2001) PRD, IQUV
- Phoenix (Hauschildt, Baron) extensive model atoms
- PORTA (Stepan, Trujillo-Bueno 2013)
- +NICOLE (Socas-Navarro et al 2015)
- (Detail/Surface, CMFGEN, FASTWIND, PoWR, Tlusty, WM-basic)

MULTI

Background

- Problem: non-LTE spectrum from given atmosphere
- Computer: serial, few MB RAM, 20 MHz
- Language: Fortran-77

CPU speed

Table 1. CPU-usage. VAX-11/750

	Ca %	Н %	Fe %
Initializations	9	9	3
Background opacities	11	13	4
Voigt profiles	2	1	1
Error calculation	36	30	15
Set up of matrices	20	28	15
Solving matrix equations	22	19	62
Total (seconds)	63	127	335

Portability

Table 2. CPU speed relative to VAX-11/750, Ca II problem

a) 45 depth-points

Computer, operating system	total	EQSYST
Cray 1A	36.3	48.2
Amdahl VP-1100	25.0	64.0
Allient FX/8 2 CE, UNIX	5.8	10.8
Allient FX/8 1 CE, UNIX	4.8	6.0
FPS-164	4.5	6.7
ELXSI, EMBOS	3.9	3.6
NorskData 570/CX, SINTRAN III		
with array instructions in EQSYST	3.8	6.6
Gould Concept 32/8750, MPX, FPA	3.5	2.8
NorskData 570/CX, SINTRAN III	3.4	2.5
Cyber 170/835, NOS	2.6	2.0
VAX-11/780, VMS 4.2, FPA	1.5	1.2
Gould Concept 32/67, MPX, FPA	1.2	0.8
MicroVAX II, VMS 4.1, FPA	1.1	1.1
VAX-11/750, VMS 4.2, FPA	1.0	1.0
VAX-11/780, UNIX 4.2BSD, FPA	0.6	0.7
NorskData 530/CX, SINTRAN III	0.6	0.4
HP-9000, UNIX, FPA	0.5	0.5

Macbook Pro 2.8 GHz i7 (2015): 0.08s, speedup 790

MULTI

http://folk.uio.no/matsc/mul23

- ID
- Statistical equilibrium
- given atmosphere {T, Ne, Vz, Vmic}(z)
- one element at a time
- continuum opacity in LTE
- Complete Redistribution
- Hydrostatic equilibrium can be solved for

Scharmer (global) or diagonal (local) operator

Scharmer (1981) operator Ca II 5 levels+continuum, 45 depth points

R 🛑

C S

Convergence properties

R

CS

MULTI documentation in <u>http://folk.uio.no/matsc/mul23</u>

multi_manual.pdf report33.pdf mul23.pdf idldoc.pdf multi_exercises.pdf quick start manual version 1.0 documentation version 2.3 documentation IDL routines documentation exercises

MULTI

Input filesATMOSatmospheric structureDSCALEdepth discretizationABUNDabundancesABSDATbackground opacitiesATOMatomic dataINPUTswitches, run-parameters

Output IDL files JOBLOG OUT

ATMOS

	VAL3C						
	MASS SCALE						
*							
*	LG G						
	4.44						
*							
*	NDEP						
	52						
*							
*I	G CMASS	TEMPERATURI	Ξ	NE	V	V	'TURB
	-5.279262E+00	4.470000E+0	05 1.20	5000E+09	0.	1.12	8000E+01
	-5.270430E+00	1.410000E+0	05 3.83	9000E+09	0.	9.87	0000E+00
	-5.269783E+00	8.910000E+0	04 5.96	51000E+09	0.	9.82	0000E+00
	-5.268492E+00	5.00000E+0	04 9.99	3000E+09	0.	9.76	0000E+00
• •	•						
*							
*	HYDROGEN POPU	JLATIONS					
*	NH(1)	NH(2)	NH(3)	NH (4	1)	NH(5)	NP
	2.3841E+03	7.9839E-04	2.0919E-	-04 2.31	l10E-04	2.9470E-04	1.0030E+09
	5.3401E+04	1.8790E-02	7.4560E-	-03 8.17	751E-03	1.0430E-02	3.1990E+09
	2.4030E+05	7.5740E-02	2.9400E-	-02 3.15	550E-02	4.0101E-02	5.0310E+09

R C S

• • •

DSCALE

- * DEPTH SCALE FROM DSCAL2 DSCAL2 ON equidistant MASS SCALE * NDEP lg(Tau_500[1]) 80 -6.672232 -5.225000 -5.213486
- • •

ABUND

Η	12.00	abundance	es from						
HE	10.93	Asplund,	Grevesse,	Sauval,	Scott	2009,	ARAA	47,	481
SI	7.51								
MG	7.60								
AL	6.45								
FE	7.50								
С	8.43								
NA	6.24								
S	7.12								
K	5.03								
CA	6.34								
NI	6.22								
CR	5.64								
Ν	7.83								
0	8.69								
NE	7.93								
SC	3.15								
TI	4.95								
V	3.93								
MN	5.43								
CO	4.99								
R	C S								

ABSDAT

		21											
Η	HE (C N	O NE	NA	MG AL S	SI S	КС	A SC	TI V	CR M	IN FE	CO NI	
	1.	.008	4.	003	12	.01	14	.01	16	.00	2	20.18	
	23	3.00	24	.32	26	.97	28	.06	32	.06	3	89.10	
	4(0.08	45	.0	47	.9	50	.9	52	.01	5	54.9	
	55	5.85	58	.9	58	.69							
	2	3	4	4	4	4	4	4	4	4	4	4	
	4	4	4	4	4	4	4	4	4				
	2	1											
H	I												
13	.595	2	11.0	2									
H	I												
• •	•												
/C.	A II	3P6	4S 2SE	1	CA II	II G	ROUND	TERM	$P \cdot J$	UDGE	/ CC	MPILAT	ION
2			0.0	00	2.0								
	ILOO	GL=1	KVAD	L=0	MINE	K=0	MAXE	X=0	NLATB	= 11			
	[510.	6	00.	75	50.	8	50.	9.	50.	1	.000.	
	1(020.	10	26.	103	30.	10	35.	10	45.			
	ILOO	GT=0	KVAD	0=т	MINE	г=0	MAXE	ст=0	NTETB	= 1	ΓI	TETA=0	
1	•557I	E-19	1.836E	-19	2.101E-	-19	2.183E	2-19 2	2.142E	-19 2	.122	2E-19	
2	.101H	E-19	2.081E	-19	2.060E-	-19	2.0608	2-19 2	2.040E	-19			
•R	C C	S											

ATOM

CA II				
* ABUND AWGT				
6.36 40.08				
*NK NLINE NCONT NRFIX				
6 5 5 0				
* E G	LABEL	ION		
0.00000 2.00000	'CA II 3P6 4S	2SE ' 2		
13650.248 4.00000	'CA II 3P6 3D	2DE 3/2' 2		
13710.900 6.00000	'CA II 3P6 3D	2DE 5/2' 2		
25191.535 2.00000	'CA II 3P6 4P	2PO 1/2' 2		
25414.465 4.00000	'CA II 3P6 4P	2PO 3/2' 2		
95785.470 1.00000	'CA III GROUND) TERM ' 3		
*JIFNQ	QMAX Q0 IW	GA GVW	GS	
4 1 3.1600E-01 101	300. 3. 0 1	.42E08 234.223	3.0E-06	
5 1 6.3700E-01 101	300. 3. 0 1	.46E08 234.223	3.0E-06	
4 2 4.7300E-02 101	150. 1. 0 1	.42E08 2.04	3.0E-06	
5 2 9.6000E-03 101	150. 1. 0 1	.46E08 2.01	3.0E-06	
5 3 5.7400E-02 101	150. 1. 0 1	.46E08 2.01	3.0E-06	
* UP LO F NQ	QMAX Q0			
6 1 2.036E-19 5	-1. 0.0			
1044.2 2.0360E-19				
911.7 2.1400E-19				
850.0 2.1720E-19				
750.0 2.1030E-19				
600.0 1.8200E-19				
*				
•••				
GENCOL				
TEMP				
7 2000. 3000.	6000.	12000. 24000.	48000.	96000.
OHMEGA				
2 1 5.60e+00 5.60e	e+00 5.60e+00	5.60e+00 5.60e-	-00 5.60e+00	5.60e+00
OHMEGA CS				

INPUT

- DIFF=2.0,ELIM1=0.1,ELIM2=0.001,QNORM=12.85,THIN=0.1,
- IATOM2=0,ICONV=1,IHSE=0,ILAMBD=2,IOPAC=1,ISTART=1,ISUM=0,
- ITMAX=40,ITRAN=0,NMU=5,
- IWABND=0,IWATMS=0,IWATOM=0,IWCHAN=0,IWDAMP=0,IWEMAX=1,IWEQW=0,
- IWEVEC=0,IWHEAD=0,IWHSE=0,IWLGMX=1,IWLINE=0,IWLTE=0,IWN=0,IWNIIT=0,
- IWOPAC=0,IWRAD=0,IWRATE=0,IWSTRT=0,IWTAUQ=0,IWTEST=0,IWWMAT=0,
- IWJFIX=0,IWARN=0,IOPACL=0,ISCAT=0,INCRAD=0,INGACC=0,ICRSW=0,
- IOSMET=0,EOSMET=0.5,
- IDL1=1,IDLNY=1,IDLCNT=1,IDLOPC=1

INPUT

- DIFF=2.0, ELIM1=0.1, ELIM2=0.001, QNORM=12.85, THIN=0.1,
- IATOM2=0,ICONV=1,IHSE=0,ILAMBD=2,IOPAC=1,ISTART=1,ISUM=0,
- ITMAX=40,ITRAN=0,NMU=5,
- IWABND=0,IWATMS=0,IWATOM=0,IWCHAN=0,IWDAMP=0,IWEMAX=1,IWEQW=0,
- IWEVEC=0,IWHEAD=0,IWHSE=0,IWLGMX=1,IWLINE=0,IWLTE=0,IWN=0,IWNIIT=0,
- IWOPAC=0,IWRAD=0,IWRATE=0,IWSTRT=0,IWTAUQ=0,IWTEST=0,IWWMAT=0,
- IWJFIX=0,IWARN=0,IOPACL=0,ISCAT=0,INCRAD=0,INGACC=0,ICRSW=0,
- IOSMET=0,EOSMET=0.5,
- IDL1=1,IDLNY=1,IDLCNT=1,IDLOPC=1

INPUT

- DIFF=2.0,ELIM1=0.1,ELIM2=0.001,QNORM=12.85,THIN=0.1,
- IATOM2=0,ICONV=1,IHSE=0,ILAMBD=2,IOPAC=1,ISTART=1,ISUM=0,
- ITMAX=40,ITRAN=0,NMU=5,
- IWABND=0,IWATMS=0,IWATOM=0,IWCHAN=0,IWDAMP=0,IWEMAX=1,IWEQW=0,
- IWEVEC=0,IWHEAD=0,IWHSE=0,IWLGMX=1,IWLINE=0,IWLTE=0,IWN=0,IWNIIT=0,
- IWOPAC=0,IWRAD=0,IWRATE=0,IWSTRT=0,IWTAUQ=0,IWTEST=0,IWWMAT=0,
- IWJFIX=0,IWARN=0,IOPACL=0,ISCAT=0,INCRAD=0,INGACC=0,ICRSW=0,
- IOSMET=0,EOSMET=0.5,
- IDL1=1, IDLNY=1, IDLCNT=1, IDLOPC=1

RH

http://iris.lmsal.com/software.html

Uitenbroek, 2001, ApJ 557, 389 Pereira & Uitenbroek, 2015, A&A 574, 3

- ID, 2D, 3D Cartesian, ID spherical, 1.5D
- Statistical equilibrium
- given atmosphere {T, Ne,Vz,Vmic}([x,y,]z)
- many elements at the same time, full blends
- PRD, angle dependent
- Full Stokes (I,Q,U,V)
- Hydrostatic equilibrium can be solved for

R

C S

non-LTE modelling of Si I

Bard, Carlsson, 2008, ApJ 682, I 376

R

CS

non-LTE modelling of Si I

We need a lot of atomic data!

CS

Si 10827 Å line in FALC

Ionization equilibrium

R C S

Influence of different rates

R 🛑 C S

Simplified model atom 23 levels, 149 lines, 22 continua

C S

Intensity, FALC

Solid: large model atom Dashed: simplified model atom

R 🛑 C S

Contribution function to relative absorption

Solid: large model atom Dashed: simplified model atom

R 🛑

CS

2D-3D

In ID all rays pass through all grid "points" (planes).

R C S

Long characteristics through all grid-points

Many rays: slow

Long characteristics through one plane

Fast but may miss localized sources

Short characteristics

Approximate S through 3 points (U, O, D), integrate analytically

Diffusive

CS

Short characteristics in 3D

R 🛑 C S

MPI: massive communication

CS

^R C ^S MPI: simple communication, complicated admin

Short characteristics

Order: passive processors multiple sweeps

3D radiative transfer

- IRIS (Ibgui, Hubeny, Lanz, Stehlé)
- Phoenix (Hauschildt, Baron)
- RH (Uitenbroek)
- MULTI3D (Botnen, Leenaarts, Carlsson)
- ? (Leenaarts)

Mg II h & k lines

Pereira, Leenaarts, De Pontieu, Carlsson, Uitenbroek, 2013, ApJ 778, 143

R

CS

H-α

Line width

Τ (τ=0.5-5)

R C S