New Horizons at Pluto: Surface – Atmosphere Interactions

John Stansberry Space Telescope Science Institute

With many thanks to the New Horizons team For a great mission (and all the charts I stole...)

New Horizons: Science Instruments

Launch: 19 January 2006

- Nearly perfect trajectory
- Fastest Earth departure ever (57,000 km/hr)
- Passed Moon's orbit in 9 hours
- Passed orbits of:
 - Mars on 7 Apr 2006 (< 3 months)
 - Jupiter on 28 Feb 2007 (~1 year)
 - Saturn on 8 Jun 2008 (~2.4 years)
 - Uranus on 18 Mar 2011 (~5.2 years)
 - Neptune on 24 Aug 2014 (~8.6 years)
- Pluto system encounter on 14 Jul 2015 (9.5 years)

New Horizons Pluto Encounter

Pluto Before New Horizons

Pluto in Natural Color from New Horizons

Nomenclature – it's informal

Nomenclature – it's informal

What are we seeing on Pluto's surface?

Volatile Ices on Pluto, Triton

- Ground-based spectra

 Disk-integrated composition
- Volatile ices:
 - High vapor pressures
 - Low melting points
- Outer solar system volatile ices
 - N2
 - CO
 - CH4
 - Ar? O2?

2016-11-16

IAC Winter School – Tenerife – J. Stansberry

LEISA Spectral Domains on Pluto

2016-11-16

LEISA Spectral Maps of Pluto's Surface

2016-11-16

LEISA Spectral Maps of Pluto's Surface

 H_2O

non-volatile

volatile

 N_2

Grundy et al., Science, 2016

Vapor Pressures of Ices on Pluto, Triton

- N₂, CO and CH₄ ices have significant vapor pressures at relevant surface temperatures
- On low-gravity, low-temperature objects such as Pluto and Triton they are in the ice:gas phase equilibrium regime
- Seasonal transport of these ices is ocurring

Volatile Atmosphere of Pluto (and Triton)

- Is 10 ubar a real atmosphere?
 - Fully collisional to many scale heights altitude
 - Pressure is ~uniform across the surface at a given radius / altitude
 - Yes these are real atmospheres
- But it is a different kind of real atmosphere
 - The *primary* constituent, N2, is a condensable species
 - Mars-like, not Earth-like
 - CH4 may behave like H2O in Earth's atmosphere

2016-11-16

N₂ Ice Temperature is Constant over the Surface

Latent Heat Transport

- N₂ dominates surface ices and the atmosphere
- Large latent heat of sublimation
 - small ΔT produces big ΔP
 - Sublimation (L dm/dt) balances σT^4
 - < 1.5 g/cm^2 /yr of ice
- Global sublimation winds require tiny pressure gradients
 - Eckmann layer, ≤ 1km deep
 - $-V_{wind} \le 5 \text{ m/s}$ (interhemispheric)
 - $-C_{sound} = 125 \text{ m/s}$
 - If $\Delta P/P = 0.1$, $\Delta T_{hemispheric} \approx 0.2$ K
 - ΔP/P ≈ 0.02 estimated (Ingersoll 1990 for Triton)
 - $\rightarrow N_2$ ice globally isothermal
 - Pertains for $T_{frost} \ge 32$ K, $P \ge 0.5$ µb

(sketch by L. Young)

2016-11-16

IAC Winter School – Tenerife – J. Stansberry

Summer hemisphere

Sublimation site

N₂ ice

Winter hemisphere

Condensation site

Seasonal Forcing on Pluto

Pluto's Changing Atmosphere

2016-11-16

Pluto's Changing Atmosphere

Sicardy 2015

Pluto's atmospheric pressure increased 3x between its discovery (1989) and the New Horizons encounter.

2016-11-16

Changing Atmospheric Structure

2016-11-16

Atmospheric Heating & T Profiles

Lapse rate is adiabatic above warm areas, and is the saturated lapse rate over N2 ice.

2016-11-16

Pluto's Atmosphere: Expectation, Reality...

Is the cool upper-atmosphere seen by New Horizons consistent with the stellar occultations 1998 – 2015?

2016-11-16

Lower Atmosphere from REX radio occultation

Gladstone+ 2016 (Science); Hinson+ (DPS48 224.03)

Lower Atmosphere from REX radio occultation

Gladstone+ 2016 (Science); Hinson+ (DPS48 224.03)

[P,T] Profile of Pluto's Lower Atmosphere

N₂ Ice Temperature is Constant over the Surface

Vapor Pressure ~Equilibrium atmospheres can do some weird stuff...

2016-11-16

"Global" N₂ Ice Quantities

N₂ Ice Temperature (T_{N2})

- Set by globally-averaged equilibrium temperature of N₂ ice $S_0 (1-A_B) = \gamma \epsilon \sigma T^4$

- Atmospheric Surface Pressure (P₀)
 - $-N_2$ Vapor pressure at T_{N2}

Topography: Local Downhill Transport

Mass flux is energy-limited (just as for other processes)

"Global" N₂ Ice Quantities

N₂ Ice Temperature (T_{N2})

- Set by globally-averaged equilibrium temperature of N₂ ice $S_0 (1-A_B) = \gamma \epsilon \sigma T^4$

- Atmospheric Surface Pressure (P₀)
 N₂ Vapor pressure at T_{N2}
- N_2 Ice Elevation (z_{N2})

- Height (radius) where $P_{Atm}(z) = P_{VP}(T_{N2})$

What happens to N2 ice at elevations other than z_{N2}?

N2 Ice Elevation and Atmospheric Pressure

IAC Winter School – Tenerife – J. Stansberry

N2 Ice Elevation and Atmospheric Pressure

 $\Delta P/\Delta z = 1 \mu b/km (H = 15 km)$

Hemispheric $\Delta P = 0.32 \mu b$ Energy-limited $\Delta P = 0.001 \mu b$ Energy-limited dm/dt = g/cm²/yr

Trafton & Stansberry 2015 DPS:

- N_2 ice T(z) ~follows wet adiabat
 - Small departures drive mass fluxes
- Downhill transport occurs on the night/winter hemisphere
- Sublimation/deposition is much weaker than reported last year at DPS

Large Scale Topography

- Center of mass offset?
 - Global-scale biases in N2 distribution
- Highlands/lowlands dichotomy

N₂-ice "Shorelines"

- Surface of volatile deposits will tend to a single height
 - Localized and global-scale downhill transport
 - Albedo, latitude, slope effects compete with topographic effects
 - Winter/night: conduction is only energy source
 - This will result in lower rates than stated above (need to quantify)
 - Timescales are of order 10^6 years for 1km of N₂ ice
- N₂ ice will infill below a geopotential surface ("Ice Level")
 - Height defined by long-term global energy balance of the N₂
 - N₂ surface may serve as a global geological reference level
 - Seasonal, diurnal transport can produce short-lived N₂ deposits at higher elevations

Sputnik Planum, Elliot Crater "Shorelines"

 Predict that these bright, basin-filling deposits are all N2 dominated, at nearly the same elevation

- Existing N2 maps consistent, but S/N is rather low

"Dead Seas"

 Predict that these low-albedo depressions are at higher elevations than S.P., do not contain N₂

The Data Sets

Altitude (km)

Nitrogen Absorption

New Horizons data generally supports topographic transport model

- Sputnik Planitia is the prime example
- Other basins also show N2
- But counter examples clearly exist
 - Series of craters SW of S.P.
 - Elliot crater has strong CO, but not much N2

Data analysis is progressing

- New DEM products and composition maps
- Regional slopes are hard to constrain via DEM methods...

N_2 Distribution vs Z

- Divide data into ~2500 bins (~200 pix/bin if evenly distributed)
- S.P. clearly has concentration of the strongest N2 band, Elliot and a few other craters, too.

Bertrand & Forget 2016

Good agreement with volatile ice distribution. Wind speeds are moderate: atmosphere is ~isostatic, so N2 ice is still expected to be isothermal

2016 Oct 26

Seasonal Forcing on Pluto

Emissivity and Fate

- Nitrogen α β phase transition at 35.6K
 - $-\alpha$ phase has a much lower emissivity
 - Higher equilibrium temperature for N2
 - P(35.6 K) = 4.2 μb
 - hydrostatic equilibrium, isothermal N2 ice
 - 3-phase equilibrium
- No atmospheric freeze-out?
 All β-N2 must disappear 1st
- Difficult to test
 α-N2 confined to winter/night side

Methane: Overabundant in Atmosphere

- MAX mixing ratios
- CH₄ : N₂ solution depresses P_{vap} and X
- CH₄ : N₂ ~ 1:100
- CH₄ ice < 50 K
- CH₄ ice supplies atmosphere
 - photolysis

2016-11-16

N2 : CH4 Phase Diagram

- N2 and CH4 are soluble as liquids and (slightly) as solids
- At Pluto's temperature their ices will be either CH4:N2 (few % N2) or N2:CH4 (few % CH4)

Methane: Overabundant in Atmosphere

Patch Model

Atmosphere:

 $18\mu b N_2$, X CH₄ = 0.05 - 5 %

Detailed Balancing Model

Atmosphere: $3\mu b N_2$, X CH₄ = 0.5%

• Upper atmosphere X $CH_4 \approx .5\%$ (CH_4 thermostat; spectra) - ~ 10 - 10³ enhancement over vapor pressure ratio (pure or Raoult)

- Patch model: warm CH₄ patches, inefficient condensation
- Detailed balancing: ~10 molecule CH₄ layer throttles N₂ sublimation

Sublimation of CH4:N2 Ice Sample (Lab)

N2:CH4 mixture

- Saturated composition (~5% CH4)
- Shifted CH4 band dominates at the start
- As the sample sublimes the shifted CH4 band weakens, and the un-shifted band of 'pure' CH4 grows

Stansberry et al. 1996

Abundance Maps for Volatile Ices on Pluto

2016-11-16

N2:CH4 Ice: Solid-state Dilution Effects

Protopapa et al. 2015

- CH4 rich solid solution
 - Band shape changes as N2 concentration grows
- N2 rich solid solution
 - Band shape changes
 - CH4 bands are shifted, and the shift is larger for lower CH4 concentrations

Solid State Solutions of N2:CH4

Protopapa et al. 2017

IAC Winter School – Tenerife – J. Stansberry

1.2

1.0

2.4

2.2

1.8

Wavelength (µm)

2.0

g

h

Vapor Pressure Atmospheres are Cool!

Vapor Pressure Atmospheres are Cool

IAC Winter School Lectures are **OVER!**

Triton's Sublimation Driven Winds

Surface winds trend NE, Streaks at 1km trend E (anticyclonic) Plumes at 8km trend west (cyclonic) from Hansen et al. 1990

Triton's Lower Atmosphere Circulation

Surface & 1km winds driven by sublimation flow / polar high, 8km winds require hotter atmosphere over equator

Composition of Pluto's Upper Atmosphere

Gladstone+ 2016 (Science); Kammer (DPS48 306.02); Young+ (in prep)

Composition and Chemistry

Gladstone+ 2016 (Science); Wong+ (Icarus special issue); Wong+, Kammer+ (DPS48 306.03, 306.02); Young+ (in prep

Some Basic Parameters

Quantity	Triton	Pluto	units
g	75	65	cm/s^2
Rotation period	5.9	6.4	days
P (surface)	16	30	microbar
column mass	0.2	0.5	g/cm^2
T (nitrogen frost)	38	39	К
H (surface)	15	17	km
A (bolometric, N2 frost)	0.8		
ε (bolometric, N2 frost)	~0	.6	
N2 sublimation rate	1.5		g/cm^2/yr
sublimation wind speed	5	2	m/s
Atm. recycle timescale	8	17	local days
A (hemispheric, bare grnd)	0.6	0.4	
T (bare ground)	50	55	К
Г (diurnal)	~100?	15	J/m^2/s^0.5/K
Г (seasonal)	300?	2000	MKS
Γ (water ice)	2000		MKS