

Archives 202

Prepare and understand your download

Practical Session

Sébastien Besse, ESA's Planetary Science Archive (PSA) Lead Scientist

sbesse@sciops.esa.int

How to get the data you need

Objectives

- 1. Search for Rosetta/COSIMA datasets with a very specific science goal
- 2. Search for Chandrayaan-1 dataset and documentation
- 3. Use VESPA to search and visualize Saturn's aurora

What will you learn (hopefully)?

- → You can cross-combine tools to get what you need
- → You have to read the documentation, you will get nowhere without it!

Archives 202 Space Science Archives

Narrow-down COSIMA products

Go to the Spice webgeocalc of NAIF to perform some computation

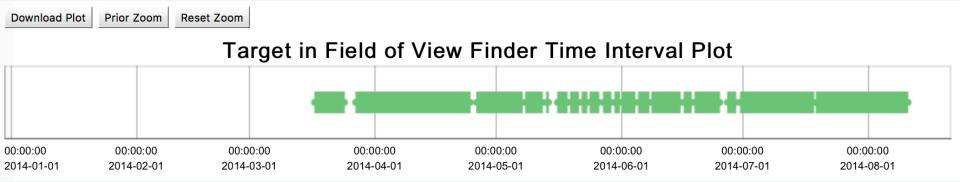
http://wgc.jpl.nasa.gov:8080/webgeocalc/#NewCalculation

Tell me when is the target available in the field of view after the mission wake-up?

What informations do you need?

- → Target in Field of View Finder
- → Rosetta, 67P/Churyumov-Gerasimenko, COSIMA
- → 20 Jan 10 August 2014
- → Step of 1 day

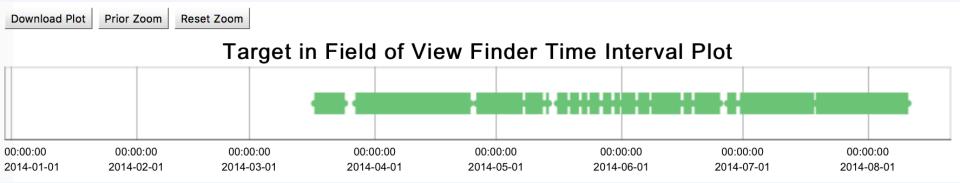
Target in Field of View Finder


Sa

Find time intervals when a target intersects the space bounded by the field-of-view of an instrument.						
Kernel selection:	Rosetta	\$? ►			
Instrument:	ROS_COSIMA	? ►				
Target:	67P/CHURYUMOV-GERASIMEN	? ►				
Target shape:	● Point ☐ Ellipsoid					
Reference frame:		? ►				
Observer:	ROSETTA ORBITER	? ►				

Input Time				
Time system:	UTC			
Time format:	Calendar date and time 🗘	⊘ ≻		
Input times:	Single interval			
Start time:	2014 JAN 10	⊘ ≻		
Stop time:	2014 AUG 11	2 >		
Time step:	1	days 💲 🕐		

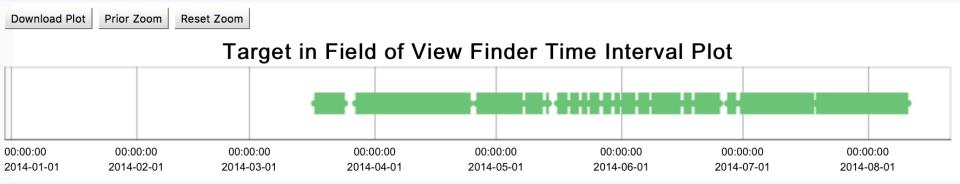
Solutions: MARCH 17!



Now replace COSIMA by another instrument (e.g. ROSINA, OSIRIS, etc...)

Do you see any difference?

Solutions: MARCH 17!


Now replace COSIMA by another instrument (e.g. ROSINA, OSIRIS, etc...)

Do you see any difference?

Wake-up is January 20, but I see data only in March. Why?

Solutions: MARCH 17!

Now replace COSIMA by another instrument (e.g. ROSINA, OSIRIS, etc...)

Do you see any difference?

Wake-up is January 20, but I see data only in March. Why?

Let's go to the PSA Archive: http://archives.esac.esa.int/npsa_test/ Find the older product of COSIMA from the Comet phase (target is 67P)

Solutions

Wake-up is January 20, SPICE tell me I can get favorable conditions since March 17, but the first product is from July! Why?

Download the third product (*_GR__.tab). What do you have?

Solutions

Wake-up is January 20, SPICE tell me I can get favorable conditions since March 17, but the first product is from July! Why?

Download the third product. What do you have?

```
OBJECT
                                 = FEATURE_TABLE
  NAME
                                 = FEATURES
  INTERCHANGE_FORMAT
                                 = ASCII
                                 = 1268
  ROWS
  COLUMNS
  ROW BYTES
  ^STRUCTURE
                                  = "COSISCOPE_GRAINS.FMT"
  DESCRIPTION
                                 = "COSISCOPE GENERATED LIST OF PROMINENT
                                    FEATURES IN THE SUBSTRATE IMAGE. THE
                                    SUBSTRATE HAS AREA OF 10000X10000
                                    MICROMETERS."
END OBJECT
                                 = FEATURE TABLE
END
   592, 8193,
                 592,
                       8193, 0, 14
   786,
         8164,
                 800,
                       8192, 0, 32
   503.
       7127,
                 531.
                       7154,105,
         7459,
                 560,
                       7473, 12, 19
   546.
   711,
        7153,
                 725,
                       7181, 30,
   266,
         7003,
                 266,
                       7017, 11,
   363,
         6878,
                 405,
                       6933,255, 87
                 293,
   293,
         6906,
                       6906,
   516,
        7126,
                 517,
                       7140, 0, 19
   486.
         6572,
                 486,
                       6572, 25,
                 581,
   567,
         6295,
                       6308, 23,
   595,
         6364,
                 623,
                       6405,255, 60
   277,
         6379,
                 277,
                       6379, 0, 12
   498.
         6212.
                 498.
                       6212. 0. 18
         5852.
                       5879. 16. 0
                 440.
```


Solutions

Wake-up is January 20, SPICE tell me I can get favorable conditions since March 17, but the first product is from July! Why?

Download the third product.

What do you have?

SPACE ARCHIVES is a complicated business, we can provide to the community only what the community is given us.

And you will often have to read pages of documentation! But this is faster then spending 5 years proposing your instrument, 10 years flying it to the comet...etc...

Archives 202 Space Science Archives

Looking at various datasets of Chandrayaan-1

Here is the science case

I want to compare reflectance calibrated data of Moon Mineralogy Mapper (M³) instrument onboard Chandrayaan-1 with my own calibration.

What do I need?

- Raw data to perform my own calibration
- Calibrated data so that I can compare to my own calibration
- PDS cartography and imaging node

→ Find Raw and Calibrated datasets of Moon Mineralogy Mapper (M³) Help: L0, L1, L2

You don't need to download the data.

Solution

http://pds-imaging.jpl.nasa.gov/volumes/m3.html

Level 1 is radiance

Level 2 is reflectance

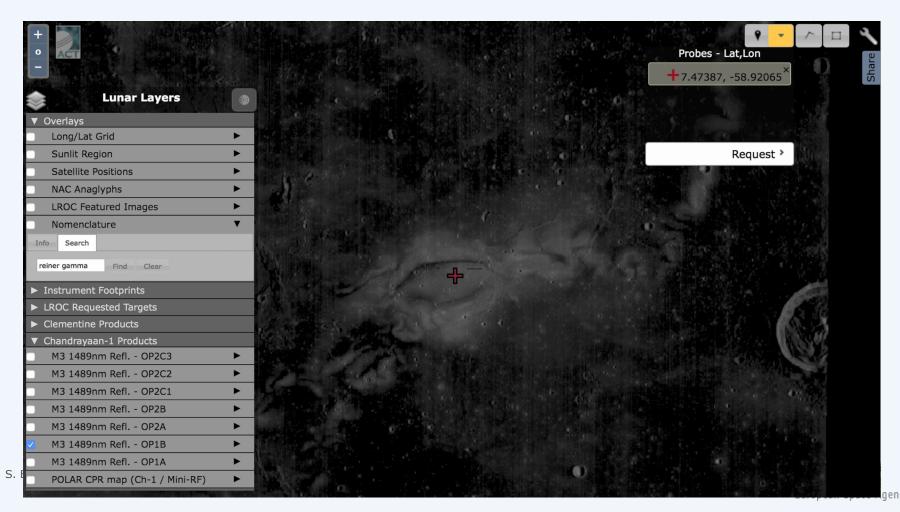
Solution

http://pds-imaging.jpl.nasa.gov/volumes/m3.html

Level 1 is radiance

Level 2 is reflectance

However, here you have to search and download the file.


Go to http://target.lroc.asu.edu/q3/#

Search for M3 OP1B, Go to Reiner Gamma, Select a cross, and display the spectra of all Ops

Solution

http://pds-imaging.jpl.nasa.gov/volumes/m3.html

Solution

http://pds-imaging.jpl.nasa.gov/volumes/m3.html

Solution

http://pds-imaging.jpl.nasa.gov/volumes/m3.html

Get the DPSIS document

http://pds-imaging.jpl.nasa.gov/data/m3/CH1M3_0004/DOCUMENT/DPSIS.PDF

Go to page 42

Am I doing the same?

Solution

http://pds-imaging.jpl.nasa.gov/volumes/m3.html

Level 2, Step 1: Iπ/F Conversion

$$L2_{s1}(\lambda) = L1b(\lambda) * \pi / (SolarIrrad(\lambda) / d^2)$$

Level 2, Step 2: Statistical Polishing

$$\mathbf{L2_{s2}}(\lambda) = \mathbf{L2_{s1}}(\lambda) * g_{SP}(\lambda) + o_{SP}(\lambda))$$

Level 2, Step 3: Thermal Removal

$$L2_{s3}(\lambda) = F(L2_{s2}(\lambda))$$

$$L2_{s4}(\lambda) = L2_{s3}(\lambda) * \{ X_{L_norm}(i_{topo}, e_{topo}, \alpha) * F_{alpha_norm}(\alpha, \lambda) \}$$

Solution

http://pds-imaging.jpl.nasa.gov/volumes/m3.html

Get the DPSIS document

http://pds-imaging.jpl.nasa.gov/data/m3/CH1M3 0004/DOCUMENT/DPSIS.PDF

Go to page 42

Am I doing the same?

Going to the documentation is KEY in most of the searches you will be doing.

Never be shy on that!

Archives 202 Space Science Archives

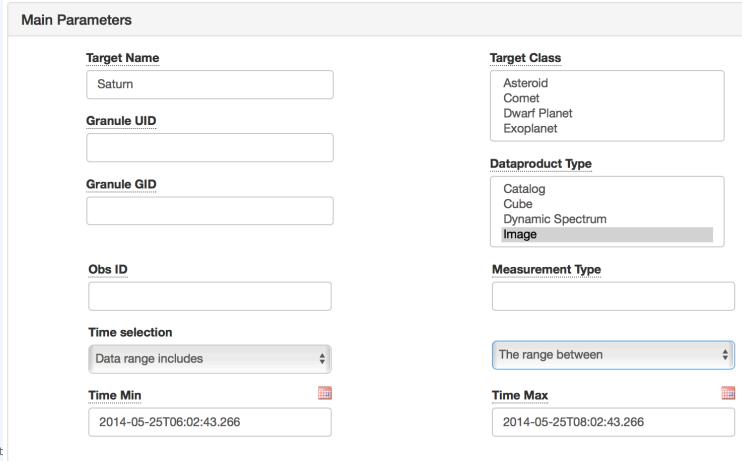
Searching for Saturn aurora with VESPA

Science case

I would like to search for other products about Saturn.

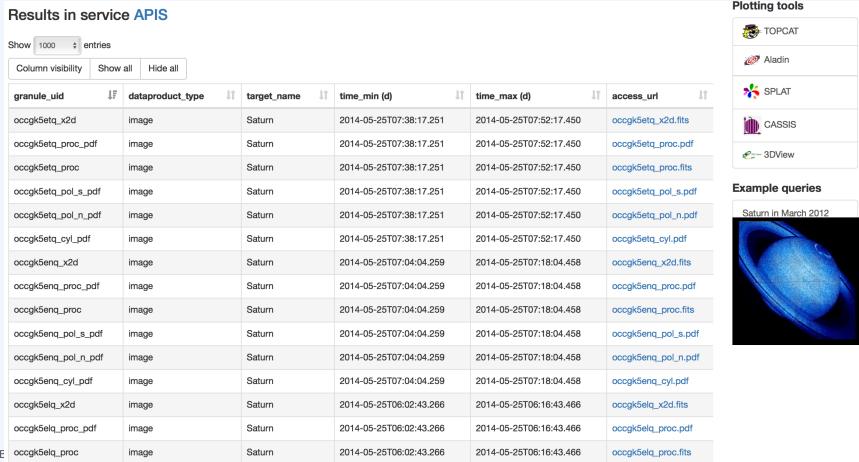
In particular, I am interested in Saturn's Aurora

Target is Saturn, and I want to look at images during this period of time:

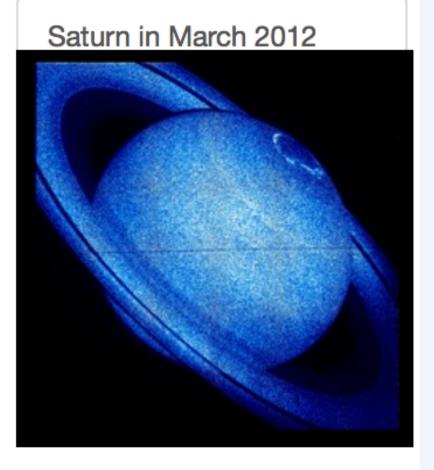

Start time: 2014-05-25T06:02:43.266

Stop time: 2014-05-25T08:02:43.266

Search the VESPA client, and get those data!!



Solution


Solution

Solution

	Results in service APIS Show 1000 \$ entries							
	Column visibility Show	all Hide all						
	granule_uid ↓	dataproduct_type	target_name	time_min (d)				
	occgk5etq_x2d	image	Saturn	2014-05-25T07:38:17.251				
	occgk5etq_proc_pdf	image	Saturn	2014-05-25T07:38:17.251				
	occgk5etq_proc	image	Saturn	2014-05-25T07:38:17.251				
	occgk5etq_pol_s_pdf	image	Saturn	2014-05-25T07:38:17.251				
	occgk5etq_pol_n_pdf	image	Saturn	2014-05-25T07:38:17.251				
	occgk5etq_cyl_pdf	image	Saturn	2014-05-25T07:38:17.251				
	occgk5enq_x2d	image	Saturn	2014-05-25T07:04:04.259				
	occgk5enq_proc_pdf	image	Saturn	2014-05-25T07:04:04.259				
	occgk5enq_proc	image	Saturn	2014-05-25T07:04:04.259				
	occgk5enq_pol_s_pdf	image	Saturn	2014-05-25T07:04:04.259				
	occgk5enq_pol_n_pdf	image	Saturn	2014-05-25T07:04:04.259				
	occgk5enq_cyl_pdf	image	Saturn	2014-05-25T07:04:04.259				
	occgk5elq_x2d	image	Saturn	2014-05-25T06:02:43.266				
	occgk5elq_proc_pdf	image	Saturn	2014-05-25T06:02:43.266				
Е	occgk5elq_proc	image	Saturn	2014-05-25T06:02:43.266				

