

The James Webb Space Telescope

will explore our Solar System: asteroids; comets; Mars; giant planets and their moons including Europa; Pluto and other distant objects; plus more...

www.jwst.nasa.gov www.stsci.edu/jwst/science/solar-system http://iopscience.ion.org/1538-3873/128/959 James Webb Space Jelescope (JWST) – 1;

Project Status and Moving Targets

IAC Winter School – Tenerife – November 2016

J. Stansberry (STScl) 2016-10-10

James Webb Space Telescope (JWST)

Organization

- Mission Lead: Goddard Space Flight Center
- International collaboration with ESA & CSA
- Prime Contractor: Northrop Grumman Aerospace Systems
- Instruments:
 - Near Infrared Camera (NIRCam) Univ. of Arizona
 - Near Infrared Spectrograph (NIRSpec) ESA
 - Mid-Infrared Instrument (MIRI) JPL/ESA
 - Fine Guidance Sensor (FGS) CSA
- **Operations:** Space Telescope Science Institute

Description

- Deployable infrared telescope with 6.5 meter diameter segmented adjustable primary mirror
- Cryogenic temperature telescope and instruments for infrared performance
- Launch on an ESA-supplied Ariane 5 rocket to Sun-Earth L2
- 5-year science mission (10-year goal)

www.JWST.nasa.gov

End of the dark ages: First light and reionization

JWST Science Themes

The assembly of galaxies

Birth of stars and

proto-planetary

systems

Planetary systems and the origin of life

JWST Vital Stats

- General Astrophysical Observatory
 - Mission Lifetime: 5 years required, 10 years goal
- Primary mirror
 - 6.5 meters in 18 segments
 - Diffraction limited image beyond 2 microns wavelength
- Sunshield
 - 5 layers, 21.2 meters by 14.2 meters
 - Thermal (cooling) and scattered light control
- Perational Orbit
 - 1.5 million km (0.01 AU) from Earth, L2 point
- Operating temperature
 - Below 50 Kelvin, 5K for mid-IR instrument
- Four Science Instruments
 - Imaging, Spectroscopy, Coronagraphy
 - 0.6–28.5 microns wavelength

Yearly Themes

- 2013: Instrument Integration: The Science instruments will be finished and begin their testing as an integrated science payload
- 2014: Manufacturing the Spacecraft: Construction will commence on the spacecraft that will carry the science instruments and the telescope
- 2015: Assembling the Mirror: The mirror segments, secondary mirror and aft optics will all be assembled into the telescope
- 2016: Observatory Assembly: The three main components of the observatory will be completed (instruments, telescope, spacecraft)
- 2017: Observatory Testing: The three main components of the observatory will be tested and readied for assembly (instruments, telescope, spacecraft) into a single unit
- 2018: Kourou Countdown: All parts of the observatory will be brought together, tested and readied for launch in Kourou, French Guiana

JWST Instrumentation - NIRCam

- 1 5 um imager
- Slitless spectroscopy (exoplanets, cosmology)
- Wavefront sensing
- 2 identical, fully redundant modules

JWST Instrumentation - NIRSpec

- 1 5 um spectrometer
- Multi-object
- Imaging (IFU)
- 3 resolving powers

JWST Instrumentation - MIRI

- 5 28 um imager and spectrometer
- Imaging spectroscopy (IFU)
- R ~ 2000

JWST Instrumentation – FGS / NIRISS

FGS:

- Fine Guidance Sensor
- Pointing correction
 @ 16Hz
- Key for moving targets
- NIRISS:
- 2.5 5 um imager
- Slitless spectroscopy (exoplanets)
- Aperture masking interferometry

Integrated Science Instrument Module Assembly

MIRI

NIRSpec

ISIM Fully Integrated for Cryo-vac and Flight

NIRCam

ISIM Fully Integrated for Cryo-vac and Flight

Primary Mirror Segment Optical Testing

Primary Mirror Backplane

Carbon fiber composite structure. Deployable 'wings' – 3 segment each. Deployable secondary mirror support

Primary Mirror Assembly

Primary Mirror Assembly

IAC Winter School 2016JWST Solar System Explorations - - J. Stansberry

IN ANY VY JI

ISIM Cryo-vac 3 test complete March 2016

The Integrated Science Instrument Module, containing the 4 science instruments and the Fine Guidance Sensor, being lifted from the vacuum chamber at Goddard Spaceflight Center.

CV3 now complete. Late October to February 2016.

Cooldown ~20 days Testing ~60 days Warmup ~15 days

Instrument + Telescope integration complete.

ISIM Installation

http://jwst.nasa.gov/webcam.html

JWST Optical Telescope Element Complete

Sunshield Full Deployment Test

Spacecraft Bus - Complete

2017: Observatory testing Chamber A, Johnson SC

OTE Optical Test at NASA Johnson - 2017

2018: Observatory integration and launch sunshield + spacecraft + observatory

Animations

- Telescope handling at Goddard
 - https://www.youtube.com/watch?v=QZYs7x7GWH8&index=4&list=PLcy1 hEnsejK1JKdJlg4HSZMvOkRgN9cd8
 - https://www.youtube.com/watch?v=QZYs7x7GWH8&index=4&list=PLcy1hEnsejK1JKdJlg4HSZMvOkRgN9cd8
- Post-launch deployments
 - https://www.youtube.com/watch?v=bTxLAGchWnA&list=PL691BF261E32 A4420&index=1
 - https://www.youtube.com/watch?v=bTxLAGchWnA&list=PL691BF261E32A4420&index=1

Deployments – backup video

JWST Solar System Observing

- JWST will fully support Solar System observations
 - Costs approved through NASA Planetary Sciences Division (2008)
 - Planets, satellites & rings (Mars outward)
 - Asteroids, KBOs, and comets
- Non-sidereal tracking implemented
 - Rates up to 30 mas/sec (108 "/hr) for Cycle 1 (maybe higher for Cycle 2)
 - Covers everything except fastest NEOs, comets
 - Ephemeris represented as 5th O polynomial, 0.4 mas accuracy
 - Jitter ~7 mas over 1000 sec

JWST Field of Regard

Solar System Targets: Observations occur near quadrature, not at opposition

- Observatory thermal design defines the allowed Solar orientations
 - Solar elongation 85° to 135° (like Spitzer, Herschel)
 - Roll ±5° about line of sight
- JWST can observe the whole sky every year while remaining continuously in the shadow of its sunshield.
 - Instantaneous Field of Regard is an annulus covering 35% of the sky
 - The whole sky is covered twice each year with small continuous viewing zones at the Ecliptic poles

VST Instrument FOVs for Targets in the Ecliptic Plane

JWST Instrumentation

Imaging Modes

JWST Imaging Modes

Mode	Instrument	Wavelength (microns)	Pixel Scale (arcsec)	Full-Array* Field of View
Imaging	NIRCam*	0.6 - 2.3	0.032	2.2 x 2.2'
	NIRCam*	2.4 - 5.0	0.065	2.2 x 2.2'
	NIRISS	$0.9 - 5.0^{\circ}$	0.065	2.2 x 2.2'
	MIRI*	5.0 - 28	0.11	1.23 x 1.88'
Aperture Mask Interferometry	NIRISS	3.8 - 4.8	0.065	
Coronography	NIRCam	0.6 - 2.3	0.032	20 x 20"
	NIRCam	2.4 - 5.0	0.065	20 x 20"
	MIRI	10.65	0.11	24 x 24"
	MIRI	11.4	0.11	24 x 24"
	MIRI	15.5	0.11	24 x 24"
	MIRI	23	0.11	30 x 30"

Spectroscopic Modes

JWST Spectroscopy Modes

Mode	Instrument	Wavelength (microns)	Resolving Power (λ/Δλ)	Field of View
Slitless Spectroscopy	NIRISS	1.0 - 2.5	150	2.2' x 2.2'
	NIRISS	0.6 - 2.5	700	single object
	NIRCam	2.4 - 5.0	2000	2.2' x 2.2'
Multi-Object Spectroscopy	NIRSpec	0.6 - 5.0	100, 1000, 2700	3.4' x 3.4' with 250k 0.2 x 0.5" microshutters
Single Slit Spectroscopy	NIRSpec	0.6 - 5.0	100, 1000, 2700	slit widths 0.4" x 3.8" 0.2" x 3.3" 1.6" x 1.6"
	MIRI	5.0-~14.0	~100 at 7.5 microns	0.6" x 5.5" slit
Integral Field Spectroscopy	NIRSpec	0.6 - 5.0	100, 1000, 2700	3.0" x 3.0"
	MIRI	5.0 - 7.7	3500	3.0" x 3.9"
	MIRI	7.7 – 11.9	2800	3.5" x 4.4"
	MIRI	11.9 - 18.3	2700	5.2" x 6.2"
	MIRI	18.3 - 28.8	2200	6.7" x 7.7"

Sensitivity

Sensitivity

Sensitivity

Moving Targets – Observatory, Flight Software

- Non-sidereal tracking Implemented.
 - Rates up to 30 mas/s (108"/hr) supported (max rate of Mars)
 - Modeling shows excellent pointing stability (< 7mas NEA), ~same as fixed targets
 - The moving-target is fixed in detector frame while exposing
 - Dithers, mosaics supported (slightly higher overheads)
 - ~1 mag brighter guide stars required for moving targets
 - Long (~1hr+ tracks) possible while guiding continuously
 - Longer observations possible using multiple guide stars

How Fast are Moving Targets Moving?

Fine Guidance Sensor Moving Target T

- FGS configuration
 - FGS → TRACK
 - 32x32 track box (subarray)
 - Saved image data
 - Note hot pixels
- OSIM point source
 - Moderate illumination
 - 'steps' mimic GS motion on FGS detector
- FGS FSW
 - Centroids at 16 Hz
 - FSW moves track box to follow guide star
 - NOT quite the same as MT tracking...
 - For MT tracking Box moves in manner prescribed by the ephemeris

Moving Targets – Observatory, Flight Software

- Event-driven scheduling / operations
 - Each target has many possible guide stars, useable during different windows
 - At time of observation, 1st usable guide star selected, acquired normally
 - 5th O Chebyshev representation of guide-star track
 - **Primarily** enables guide-stars to be used at any time during target visibility window
 - Secondarily allows tracking targets with ephemeris accelerations
 - Time-constrained observations are supported

Guide Stars for Moving Target Observations

- Event-driven operations provide flexibility in use of Guide Stars for moving targets
 - Multiple sets of guide stars defined to cover complete visit scheduling window
 - Typically 3 guide stars for any time within visit scheduling window
 - Up to 200 guide star candidates per moving target observation
- Observations with different instruments require separate guide stars (and visits)

Target Acquisition: NIRSpec

- NIRSpec TA for moving targets is not easy
 - 1.6" square aperture
 - Ephemeris of target must be accurate!
 - Centroid calculated on-board
 - Target can be accurately (<10mas) positioned in the IFU, any of the fixed slits, or in a pseudo long-slit in the microshutter array

PASP Special Issue (Jan 4, 2016)

Innovative Solar System Science with the James Webb Space Telescope Stefanie Milam, Special Editor

http://iopscience.iop.org/1538-3873/128/959 11 topical papers http://iopscience.iop.org/1538-3873/128/960 1 high-level paper (Norwood et al.)

10 JWST Solar System Focus Groups

(and 11 papers! http://iopscience.iop.org/1538-3873/128/959

- Asteroids (Andy Rivkin, JHU/APL)
- Comets (Chick Woodward, U. Minnesota)
- Giant Planets (Jim Norwood, NMSU)
- Mars (Geronimo Villanueva, GSFC)
- NEOs (Cristina Thomas, GSFC)
- Occultations (Pablo Santos-Sanz, IAA-CSIC, Spain)
- Rings (Matt Tiscareno, Cornell)
- Satellites (Laszlo Kestay, USGS)
- Titan (Conor Nixon, GSFC)
- TNOs (Alex Parker, SwRI)
- JWST Solar System Capabilities (Milam, GSFC)