

Reduction of spectra from ground-based telescopes

Julia de León Instituto de Astrofísica de Canarias - IAC The composition of asteroids is inferred by the study of the reflectance spectra of their surfaces, mainly in the UV-VIS-NIR wavelength range (0.3-2.5 microns)

Spectra have been obtained using the 10.4m Gran Telescopio Canarias – GTC, located at the "El Roque de los Muchachos" Observatory (La Palma, Spain). We used the OSIRIS cameraspectrograph that works in visible wavelengths.

Spectra have been obtained using the 10.4m Gran Telescopio Canarias – GTC, located at the "El Roque de los Muchachos" Observatory (La Palma, Spain). We used the OSIRIS cameraspectrograph that works in visible wavelengths.

SOLAR SYSTEM

Frame Transfer Photometry

2051

Spectral axis

SOLAR SYSTEM EXPLORATION

1049

OSIRIS has 2 CCDs (1049 x 2051)
Science data is located commonly at CCD_2
Total FOV of 7.8 x 8.5 arcmin

Imaging	Spectroscopy
Broad Band Imaging	LongSlit Spectroscopy
Medium Band Imaging: SHARDS Filters	Multi-Object Spectroscopy
Narrow Band Imaging: Tunable Filters	
Fast Photometry	
Frame Transfer Photometry	

ID	$\lambda_{c}(A)$	λ range (A)	D (A/pix)	Resolution	Peak Efficiency	Туре	Efficiency
R300B	4405	3600 -7200	4.96	360	70%	Grism	graph
R300R	6635	4800 - 10000	7.74	348	70%	Grism	graph
R500B	4745	3600 - 7200	3.54	537	68%	Grism	graph
R500R	7165	4800 - 10000	4.88	587	67%	Grism	graph
R1000B	5455	3630 - 7500	2.12	1018	65%	Grism	graph
R1000R	7430	5100 - 10000	2.62	1122	65%	Grism	graph
R2000B	4755	3950 - 5700	0.86	2165	87%	VPH	graph
R2500U	3975	3440 - 4610	0.62	2555	70%	VPH	graph
R2500V	5185	4500 - 6000	0.80	2515	80%	VPH	graph
R2500R	6560	5575 - 7685	1.04	2475	80%	VPH	graph
R2500I	8650	7330 - 10000	1.36	2503	80%	VPH	graph

IRAF: Image Reduction and Analysis Facility

Written and supported by the National Optical Astronomy Observations (NOAO)

IRAF: Image Reduction and Analysis Facility

Written and supported by the National Optical Astronomy Observations (NOAO)

SPACE TELESCOPE SCIENCE INSTITUTE

Google™ Custom Search Search

Home

About Us

Current Missions

Data Archives News and Education **Future Missions and Initiatives Support**

Research

STScl > PyRAF **Events**

Contact

contact help@stsci.edu 🖾

For further information,

Space Telescope Science Institute **PVRAF**

Astronomer's **Proposal Tool**

HSTCAL

IUETOOLS

Drizzlepac

OPUS

PyFITS

PVRAF

Description

PyRAF is a command language for running IRAF tasks that is based on the Python scripting language. It gives users the ability to run IRAF tasks in an environment that has all the power and flexibility of Python. PyRAF can be installed along with an existing IRAF installation; users can then choose to run either PyRAF or the IRAF CL.

PyRAF is part of the stsci_python package of astronomical data analysis tools, and is a product of the Science Software Branch at the Space Telescope Science Institute.

The current release of PyRAF is v2.1.11 and can be downloaded from the stand-alone PyRAF download page.

PyRAF can also be found bundled with stsci_python which can be downloaded from the stsci_python download page.

The release notes can be found here

» Package Index > pyraf > 2.1.11

search

PACKAGE INDEX

Browse packages

Package submission

List trove classifiers

RSS (latest 40 updates)

RSS (newest 40 packages)

PyPI Tutorial

PyPI Security

PyPI Support

PyPI Bug Reports

PyPI Discussion PyPI Developer Info

pyraf 2.1.11

Provides a Pythonic interface to IRAF.

PyRAF is a command language for IRAF based on the Python scripting language that can be used in place of the existing IRAF CL.

For more information on PyRAF - release notes, installation instructions, the FAQ, tutorials and other documentation, etc. - please visit:

http://www.stsci.edu/resources/software hardware/pyraf

Not Logged In

<u>Login</u>

Download

pyraf-2.1.11.tar.gz

Register

Lost Login?

Use OpenID IP

Login with Google G

Status

Nothing to report

CREATE A DIRECTORY TO STORE YOUR DATA:

- > mkdir /scratch/WSTuesday15
- > cd /scratch/WSTuesday15
- > cp -r /home/jmlc/WS2016/Spectra .

EXECUTE IRAF

- > cd
- > mkdir iraf
- > cd iraf
- > mkiraf (select xgterm when requested for a terminal)

NOW TYPE ON YOUR TERMINAL:

> xgterm -sb &

ON YOUR XGTERM:

- > cd iraf
- > ecl

Open the text file "Nightlog.txt":

<gtc18-15a_0064></gtc18-15a_0064>	
IMAGE GTCPROGID DEC EXPTIME AIRMASS HBIN VBIN FILTERW1 FILTERW2 FILTERW3 IPA ROTAN	GTCOBID OBJECT RA NG GRISMW Z_ekw6 Z_ekw7 OS-FILTER SLITW TIME-START
	FBANDW MASKNAME
0000782528-20150504-OSIRIS-OsirisLongSlitSpectroscopy.fits GTC18-15A	0064 85727
	OPEN 62.916 -55.69 OPEN 31950 0 NULL
0. 23:41:56.649 TWOCCDS A 0.95 200 OsirisLongSlitSpectroscopy 0000782529-20150504-OSIRIS-OsirisLongSlitSpectroscopy.fits GTC18-15A	0.00 0.00 NOMASK 0064 85727
13:27:42.496 -03:01:46.313 10.00 1.177 true true OPEN Sloan_r	OPEN 62.916 -56.50 OPEN 31950 0 NULL
0. 23:43:58.170 TWOCCDS A 0.95 200 OsirisLongSlitSpectroscopy	0.00 0.00 NOMASK
0000782530-20150504-0SIRIS-OsirisLongSlitSpectroscopy.fits GTC18-15A 13:27:42.438 -03:01:46.352 10.00 1.177 true true OPEN Sloan r	0064 85727 OPEN 62.916 -57.05 OPEN 31950 0 NULL
5. 23:45:20.085 TWOCCDS A 0.95 200 OsirisLongSlitSpectroscopy	0.00 0.00 LongSlits5.0Arcsec
0000782531-20150504-OSIRIS-OsirisLongSlitSpectroscopy.fits GTC18-15A	0064 85727
13:27:42.356	<pre>OPEN 62.916 -57.83 R300R 31950 0 NULL 0.00 0.00 LongSlits5.0Arcsec</pre>
0000782532-20150504-0SIRIS-OsirisLongSlitSpectroscopy.fits GTC18-15A	0064 85727
13:27:42.241 -03:01:36.335 250.00 1.177 true true OPEN GR	OPEN 62.916 -59.72 R300R 31950 0 NULL
5. 23:51:47.824 TWOCCDS A 0.95 200 OsirisLongSlitSpectroscopy 0000782533-20150504-OSIRIS-OsirisLongSlitSpectroscopy.fits GTC18-15A	0.00
13:27:42.076 -03:01:26.270 250.00 1.178 true true OPEN GR	OPEN 62.916 -61.65 R300R 31950 0 NULL
5. 23:56:21.296 TWOCCDS_A 0.95 200 OsirisLongSlitSpectroscopy	0.00 0.00 LongSlits5.0Arcsec

Know your data:

```
cl> imhead Obj1.fits
   Obj1.fits[901,751][real]: 49859
cl> imhead Obj1.fits l+
   Obj1.fits[901,751][real]: 49859
   No bad pixels, min=0., max=0. (old)
   Line storage mode, physdim [901,751], length of user area 7047 s.u.
   Pixel file "Obj1.fits" [ok]
   EXTEND =
                                F / File may contain extensions
   DATE = '2016-11-10T18:26:39' / Date FITS file was generated
   IRAF-TLM= '2016-11-10T18:26:39' / Time of last modification
                       / Name of the object observed
   OBJECT = '49859'
   ORIGFILE= 'May04 233047.fits' / Filename
                             / Instrument Name
   INSTRUME= 'OSIRIS
   DETECTOR= 'E2V CCD44_82_BI' / Detectors Model
   DETSIZE = '[1:4096,1:4102]' / Maximum Imaging Pixel Area
cl> hselect Obj1 AIRMASS yes
   1.30028967312208
```


GO BACK TO YOUR WORKING DIRECTORY:

cl> cd /scratch/WSTuesday15/Spectra/ **cl>**!ds9 &

Any Linux command can be executed from IRAF using the! symbol

SAOImage DS9

Home | What's New | Download | Documentation | Gallery

SAOImage DS9 is an astronomical imaging and data visualization application. DS9 supports FITS images and binary tables, multiple frame buffers, region manipulation, and many scale algorithms and colormaps. It provides for easy communication with external analysis tasks and is highly configurable and extensible via XPA and SAMP.

DS9 is a stand-alone application. It requires no installation or support files. All versions and platforms support a consistent set of GUI and functional capabilities.

DS9 supports advanced features such as 2-D, 3-D and RGB frame buffers, mosaic images, tiling, blinking, geometric markers, colormap manipulation, scaling, arbitrary zoom, cropping, rotation, pan, and a variety of coordinate systems.

The GUI for DS9 is user configurable. GUI elements such as the coordinate display, panner, magnifier, horizontal and vertical graphs,

SAOImage DS9 Version 7.4

DS9 version 7.4 is now available on the **Download** page. New to version 7.4 is image blocking and reordering of data cube axes. Please see the What's New page for more details. News Flash-- Version 7.5rc2 is now available

Tweets by @SAOImageDS9

SAOImage DS9 Retweeted

Eric Mandel

@astrosoftware

JS9 v1.10: keyboard actions, full window display, session management, alternate wcs, and a more modern look @ js9.si.edu

SAOImage DS9

SAOImage DS9 version 7.5rc2 is now available for download at ds9.si.edu/site/Beta.html

SAOImage DS9

Embed

View on Twitter

GO BACK TO YOUR WORKING DIRECTORY:

cl> cd /scratch/WSTuesday15/Spectra/

cl>!ds9 &

cl> display Obj1.fits 1

GO BACK TO YOUR WORKING DIRECTORY:

```
cl> cd /scratch/WSTuesday15/Spectra/
cl>!ds9 &
cl> display Obj1.fits 1
cl> epar display
     PACKAGE = tv
          TASK = display
```

To exit from *epar*, you can type \Rightarrow Exit without saving changes :wq → Save changes and exit \Rightarrow Save changes and execute

```
image
                     Obj1.fits image to be displayed
                                frame to be written into
frame
(bpmask =
                           BPM) bad pixel mask
(bpdispl=
                          none) bad pixel display (none|overlay|interpolate)
(bpcolor=
                            red) bad pixel colors
(overlay=
                               ) overlay mask
(ocolors=
                         green) overlay colors
(erase =
                           yes) erase frame
(border =
                            no) erase unfilled area of window
(select =
                           yes) display frame being loaded
(repeat =
                            no) repeat previous display parameters
(fill
                            no) scale image to fit display window
(zscale =
                           yes) display range of greylevels near median
(contras=
                          0.25) contrast adjustment for zscale algorithm
                           yes) display full image intensity range
(zrange =
(zmask =
                               ) sample mask
(nsample=
                          1000) maximum number of sample pixels to use
```

If you have doubts on any specific task, type help and then the name of the task: **cl>** help display

```
DISPLAY (Mar97)
                                                       DISPLAY (Mar97)
                               images.tv
NAME
   display -- Load and display images in an image display
USAGE
   display image frame
PARAMETERS
    image
       Image to be loaded.
   frame
       Display frame to be loaded.
   bpmask = "BPM"
       Bad pixel mask. The bad pixel mask is used to exclude bad
       pixels from the automatic intensity mapping algorithm.
       also be displayed as an overlay or to interpolate the input
       image as selected by the bpdisplay parameter. The bad pixel
       mask is specified by a pixel list image (.pl extension) or an...
```

Redi 7:30

Basics on data reduction:

- **Bias subtraction**: the bias level is an electronic offset added to the signal from the CCD that makes sure that the Analogue-to-Digital Converter (ADC) always receives a positive value.

A bias frame is obtained with the shutter closed and 0 seconds exposure time

Basics on data reduction:

- **Bias subtraction**: the bias level is an electronic offset added to the signal from the CCD that makes sure that the Analogue-to-Digital Converter (ADC) always receives a positive value.

A bias frame is obtained with the shutter closed and 0 seconds exposure time

- **Flat field correction**: the sensitivity of CCDs varies from point to point (i.e. the recorded signal per unit of incident flux – photons – is not uniform).

A flat frame is obtained using a photometrically flat source.

In spectroscopy, we use a source of "white" light (same brightness at all wavelengths). In practice, halogen lamps used still has some wavelength-dependent variation that has to be characterized and removed.

Our images are already bias-subtracted. So let's flat-field correct them:

```
cl> twodspec
                                                           First, we have to normalize
cl> longslit
                                                           our flat-field, to remove the
cl> epar response
                                                           wavelength dependence that
PACKAGE = longslit
                                                           our "white" light is showing
   TASK = response
calibrat=
                          Flat Longslit calibration images
normaliz=
                          Flat Normalization spectrum images
                         nFlat Response function images
response=
                           yes) Fit normalization spectrum interactively?
(interac=
(thresho=
                         INDEF) Response threshold
(sample =
                             *) Sample of points to use in fit
(naverag=
                             1) Number of points in sample averaging
                       spline3) Fitting function
(functio=
                                                                     A cubic spline with
                             5) Order of fitting function
(order =
                                                                     a low order (10-25)
(low rej=
                            0.) Low rejection in sigma of fit
(high re=
                            0.) High rejection in sigma of fit
                                                                     will work
(niterat=
                             1) Number of rejection iterations
                            0.) Rejection growing radius
(grow
                      stdgraph) Graphics output device
(graphic=
(cursor =
                                Graphics cursor input
(mode
                            ql)
```


Fit the normalization spectrum for Flat interactively (yes):
Dispersion axis (1=along lines, 2=along columns, 3=along z) (1:3) (2): 2

Now you are in the interactive interface. You can change the function or the order doing

:function legendre (enter)
:order 25 (enter)

and then type *f* to execute the changes

Type q to exit

Now we divide our images (not the arcs!!!!) by the normalized flat. Make a list with your images (list.txt):

Obj1.fits

Obj2.fits

SA1.fits

SA2.fits

cl> imarith @list.txt / nFlat f//@list.txt

Now we divide our images (not the arcs!!!!) by the normalized flat. Make a list with your images (list.txt):

Obj1.fits Obj2.fits SA1.fits

SA2.fits

cl> imarith @list.txt / nFlat f//@list.txt

Once the images have been bias and flat-field corrected, the next step is to EXTRACT your spectra and collapse them from 2D to 1D. This is done using the **apall** task:

```
cl> twodspec
cl> apextract
 apall
                apedit
                               apflatten
                                               apnormalize
                                                              apscatter
 apdefault@
                apfind
                               apmask
                                               aprecenter
                                                              apsum
 apdemos.
                apfit
                               apnoise
                                               apresize
                                                              aptrace
```


SOLAR SYSTEM EXPLORATION

And trace the center of the profile through the spatial axis to properly sum the columns and collapse the spectrum.

cl> epar apall input = fSA1.fits List of input images (output =) List of output spectra (apertur=) Apertures (format = multispec) Extracted spectra format (referen=) List of aperture reference images (profile=) List of aperture profile images (interac= yes) Run task interactively? (find yes) Find apertures? (recente= yes) Recenter apertures? (resize = yes) Resize apertures? (edit yes) Edit apertures? (trace = yes) Trace apertures? (fittrac= yes) Fit the traced points interactively? yes) Extract spectra? (extract= (extras = yes) Extract sky, sigma, etc.? (review = yes) Review extractions?

DEFAULT BACKGROUND PARAMETERS

```
(b funct=
                      legendre) Background function
(b order=
                             2) Background function order
(b_sampl=
                             *) Background sample regions
(b naver=
                            -3) Background average or median
(b niter=
                             2) Background rejection iterations
(b_low_r=
                            3.) Background lower rejection sigma
(b high =
                            3.) Background upper rejection sigma
                            0.) Background rejection growing radius
(b grow =
```

TRACING PARAMETERS

(t_nsum =	25)	Number of dispersion lines to sum		
(t_step =	25)	Tracing step		
(t_funct=	legendre)	Trace fitting function		
(t_order=	4)	Trace fitting function order		
(backgro=	fit)	Background to subtract		

Type :go to execute the task

Find apertures for SA2? (yes):yes

Number of apertures to be found automatically (1):1

Resize apertures for SA2? (yes): yes

Edit apertures for SA2? (yes): yes

A new directory has been created, called **database**. There you will find information on the extractions, the wavelength calibration, etc.

```
cl> ls database/
apfSA1 aparcHgAr aparcNe aparcXe aplast
aperture
```


SOLAR SYSTEM EXPLORATION

A new directory has been on the extractions, the w

```
cl> ls database/

apSA1 aparcHg2

aperture
```

```
# Sun 22:51:58 13-Nov-2016
        aperture SA1 1 202.3782 375.
begin
        image
                SA1
        aperture
        beam
                202.3782 375.
        center
                -4.556763 -374.
        low
                4.097412 376.
        high
        background
                xmin -176.1466
                xmax 197.2405
                function legendre
                order 2
                sample -176.1466:-95.40266 97.24863:197.2405
                naverage -3
                niterate 2
                 low_reject 3.
                high_reject 3.
                grow 0.
        axis
        curve
                5.
                585.
                -0.5453721
                1.797959
                -0.1794658
                0.07168905
```

Now extract the arc lamps using the extraction of one object as a reference:

```
input
                    arcNe.fits List of input images
(output =
                              ) List of output spectra
(apertur=
                              ) Apertures
(format =
                     multispec) Extracted spectra format
                          fSA1) List of aperture reference images
(referen=
                              ) List of aperture profile images
(profile=
(interac=
                           no) Run task interactively?
(find =
                           no) Find apertures?
(recente=
                           no) Recenter apertures?
                           no) Resize apertures?
(resize =
(edit =
                           no) Edit apertures?
                           no) Trace apertures?
(trace =
                               Fit the traced points
(fittrac=
                               interactively?
                          yes) Extract spectra?
(extract=
(extras =
                           no) Extract sky, sigma, etc.?
(review =
                          yes) Review extractions?
                         none) Background to subtract
(backgro=
```

Red: 7:30

Add all the arcs to create the calibration file we are going to use to do the wavelength calibration:

cl> imexpr "a+b+c" arc.ms arcHgAr.ms arcNe.ms arcXe.ms
cl> implot arc.ms

To perform the wavelength calibration we use the task **identify**:

```
cl> onedspec
cl> epar identify
images =
                        arc.ms Images containing features to be identified
(section=
                   middle line) Section to apply to two dimensional images
                      database) Database in which to record feature data
(databas=
(coordli= linelists$idhenear.dat) User coordinate list
(units =
                              ) Coordinate units
(nsum
                            10) Number of lines/columns/bands to sum in 2D image
(match =
                           -3.) Coordinate list matching limit
(maxfeat=
                            50) Maximum number of features for automatic identif
                          100.) Zoom graph width in user units
(zwidth =
(ftype =
                      emission) Feature type
(fwidth =
                            4.) Feature width in pixels
(cradius=
                            5.) Centering radius in pixels
(thresho=
                            0.) Feature threshold for centering
(minsep =
                            2.) Minimum pixel separation
(functio=
                      legendre) Coordinate function
(order =
                             2) Order of coordinate function
                             *) Coordinate sample regions
(sample =
```


You can find the information on the calibration lamps on the webpage of the telescope: http://www.gtc.iac.es/instruments/osiris/osiris.php

Arc Line maps

A complete arc linelist for all the lamps available at the OSIRIS Instrument Calibration Module (ICM) can be retrieved here. As additional help in the wavelength calibration, some sky spectra at the resolutions covered by OSIRIS are available: R300, R500, R1000, R2000, and R2500.

Spectral Line List and Calibration ARCs			
R300B LineList & ARC (HgAr, Ar, Ne, Xe)	R500B LineList & ARC (HgAr, Ar, Ne)	R1000B LineList & ARC (HgAr, Ar, Ne)	R2000B LineList & ARC
R300R	R500R	R1000R	
LineList & ARC	LineList & ARC	LineList & ARC	
(HgAr, Ar, Ne, %e)	(HgAr, Ar, Ne, Xe)	(HgAr, Ar, Ne, Xe)	
R2500U	R2500V	R2500R	R2500I
LineList & ARC	LineList & ARC	LineList & ARC	LineList & ARC

cl> Is database/

apSA1 aparcHgAr aparcNe aparcXe aplast idarc.ms

XXVIII CANARY ISLANDS WINTER SCHOOL OF ASTROPHYSICS

SOLAR SYSTEM EXPLORATION

```
# Mon 16:59:26 14-Nov-2016
        identify arco.ms - Ap 1
begin
        id
                arco.ms
        task
                identify
                arco.ms - Ap 1
        image
        aperture
        aplow
                197.82
        aphigh 206.48
                Angstroms
        units
        features
                        15
                                               8.0 1 1
                 90.07 5460.59337
                                    5460.735
                154.48 5944.81793 5944.8342
                                               8.0 1 1 NeI(1)
                180.54 6143.3851 6143.0623
                                               8.0 1 1 NeI(1)
                250.05 6679.11616
                                               8.0 1 1 blend HeI 6678.149 with NeI 6678.2764
                                      6678.2
                282.26 6929.85237
                                    6929.468
                                               8.0 1 1 NeI(6)
                295.21 7031.00153 7032.4127
                                               8.0 1 1 NeI(1)
                313.30 7172.58756
                                    7173.939
                                               8.0 1 1 NeI(6)
                322.56 7245.21611
                                    7245.167
                                               8.0 1 1 NeI(3)
                372.23 7635.64756
                                    7635.105
                                               8.0 1 1 AI(1)
                                               8.0 1 1 blend AI(1) 7723.760 and AI(6) 7724.206
                383.54 7724.70862
                                      7723.8
                521.96 8819.45969
                                    8819.411
                                               8.0 1 1
                                               8.0 1 1
                538.64 8952.04893
                                    8952.252
                550.38 9045.41245
                                     9045.45
                                               8.0 1 1
                644.82 9799.36867
                                      9799.7
                                               8.0 1 1
                                               8.0 1 1
                660.31 9923.51016
                                     9923.19
        function spline3
        order 2
        sample *
        naverage 1
        niterate 0
        low_reject 3.
        high_reject 3.
        arow 0.
        coefficients
                з.
                2.
                750.999999999999
                380.4459396198231
                788.3566357150674
                1276.031312328298
                1772.835151635517
```


2286.32677550035

Add the information on the wavelength calibration to the header of the image using **hedit**, and then apply the wavelength calibration using **dispcor**:

```
cl> hedit fSA1.ms REFSPEC1 "arc.ms" add+ up+
cl> dispcor fSA1.ms cfSA1.ms
cfSA1.ms: ap = 1, w1 = 4809.904, w2 = 10653.7, dw = 7.791727, nw = 751
```

This value should be similar to the dispersion of your grism, in this case the R300R grism has a dispersion of 7.74 A/pix so our wavelength calibration is satisfactory.

Add the information on the wavelength calibration to the header of the image using **hedit**, and then apply the wavelength calibration using **dispcor**:

cl> hedit fSA1.ms REFSPEC1 "arc.ms" add+ up+

cl> dispcor fSA1.ms cfSA1

cfSA1.ms: ap = 1, w1

Have a look at the result using **splot**:

We do not have to do any flux calibration, as we are interested in the reflectance spectrum of the asteroid. So, to obtain it and to "remove" the contribution of the reflected light from the Sun, we simply divide the spectrum of the asteroid by the spectrum of the solar analogue star:

cl> sarith cfObj1.ms / cfSA1.ms asteroid1

cl> splot asteroid 1

You can download the lectures from the Winter School in PDF format here: http://www.iac.es/winterschool/2016/pages/about-the-school/program.php

News and updates

About the School

Outline of the School

Lecturers and topics

School Venue

Attending the School

Registration

Deadlines

Travel information

PROGRAM

SEBASTIEN LEBONNOIS

Planetary Atmospheres

- 1. Overview of planetary atmospheres in the Solar System
- 2. Radiative transfer, composition, and clouds
- 3. Atmospheric dynamics and circulation regimes
- 4. Global Climate Modeling

AURÉLIEN CRIDA

Origin and early evolution of the Solar System

Click here