4. Global Climate Modeling

Sébastien LEBONNOIS CNRS Researcher Laboratoire de Météorologie Dynamique, Paris

Global Climate Modeling

Virtual planets

- Different models for different scales
- Successes, and lessons from failure

Forget F. and Lebonnois S., « Global climate models of the terrestrial planets » *Comparative Climatology of the Terrestrial Planets*, S.J. Maxwell et al. Eds. University of Arizona, Tuscon, 2013

Global Climate Modeling

Virtual planets

- Different models for different scales
- Successes, and lessons from failure

GCM : General Circulation Models

First GCMs were designed in late 50's, early 60's

Design : mandatory bricks

GCM : Global Climate Models

Because an atmosphere is a complex, coupled system

GCM : Global Climate Models

Earth

The dynamical core

6 equations

Zonal momentum

Meridional momentum

Hydrostatic balance

Mass conservation

First principal of thermodynamics

Ideal gas equation of state

- 6 variables, dynamical and thermodynamical

- Forcings and planetary constants

$$\frac{du}{dt} - \frac{uv \tan \phi}{a} = 2\Omega \sin \phi v - \frac{1}{\rho} \frac{\partial p}{\partial x} + F_u$$
$$\frac{dv}{dt} + \frac{u^2 \tan \phi}{a} = -2\Omega \sin \phi u - \frac{1}{\rho} \frac{\partial p}{\partial y} + F_v$$
$$-\frac{1}{\rho} \frac{\partial p}{\partial z} - g = 0$$
$$\frac{\partial \rho}{\partial t} + \operatorname{div} (\rho \mathbf{V}) = 0$$
$$\frac{c_p}{\theta} \frac{d\theta}{dt} = \frac{Q}{T} \quad \text{with} \quad \theta = T \left[\frac{p_0}{p}\right]^{\kappa}$$
$$p = \rho RT$$

The dynamical core

Different types of GCM

Hydrostatic vs Quasi-hydrostatic Shallow atmosphere vs Deep atmosphere

Cp(T), Cp(composition)

The dynamical core

Horizontal discretization

Finite differences, finite volumes

Spectral (spherical harmonics), spectral elements

Vertical discretization : mass, altitude, pressure...

Time marching scheme

Conservation concerns : mass, energy, angular momentum

The radiative transfer

Strategy : fast computation ; versatility

Physics processes

Key physical processes	Earth	Mars	Venus	Titan	Triton/Pluto
Radiative transfer	×	×	Optical thickness ^a	×	\times^{b}
Clouds	H_2O	H ₂ O ice, CO ₂ ice	H_2SO_4	CH_4, C_2H_6	N ₂ ice?
Hazes	Aerosols	Mineral dust		Organic haze	Organic haze?
Turbulence and convection	Near-surface	Near-surface	Cloud layers	Near-surface	Near surface
Subsurface heat storage	With oceans	×	×	×	Long-term buffer ^c
Dominant gas condensation		CO_2			N_2
Minor species condensation	H_2O	H_2O		CH_4, C_2H_6	CH_4 ?
Dynamical core					
Deep atmosphere				\times^d	
Specific heat variations			$C_p(T)^e$		
Composition variations		$ imes^d$			
Momentum conservation			Critical ^d	Critical ^d	

Table 1: Summary of key processes and related problems in low atmosphere terrestrial planet global climate models.

a: Eymet et al. (2009) ; *b*: Triton's atmosphere N_2 atmosphere is so pure and teneous that gaseous absorption of radiation can be neglected; Molecular conduction then dominate heat transport. (Yelle et al. 1991; Vangvichith et al. 2013). *c*: see section 2.5 ; *d*: see section 2.2 ; *e*: Lebonnois et al. (2010a).

Global Climate Modeling

- Virtual planets
- Different models for different scales
- Successes, and lessons from failure

Small-scale processes

Large Eddy Similations :

small scale (1-1000m), idealized, non-hydrostatic models

=> study small-scale processes : turbulence, convection gravity waves

Titan methane convective clouds

Intermediate-scale processes

Regional Climate Models :

- Intermediate scales => small-scales parameterized
- non-hydrostatic
- boundary conditions from GCMs

Intermediate-scale processes

Global Climate Modeling

- Virtual planets
- Different models for different scales
- Successes, and lessons from failure

Mars climate

Water and cloud cycles

Mars climate

Heterogeneous chemistry

Mars paleoclimate

Non-polar glaciers, millions of years ago

XXVIII Canary Islands Winter School of Astrophysics – Solar System Exploration

Titan detached haze layer

Titan equatorial dunes

Lessons from failure

- Missing physical processes Radiative effect of Martian clouds
- Insuffisant representation of physical processes :
 - complex sub-scale processes **Terrestrial clouds** gravity waves
 - Positives retroactions, instabilities Rétroaction due to ice albedo
 - Non-linearities, thresholds Martian dust storms
- Long time scales, sensitivity to initial state Pluto ices

Weak forcings : when the system evolution is sensitive to a subtle balance between processes, and not driven by a strong forcing

Superrotation

Terrestrial clouds

Complex microphysics Precipitations in a GCM and small-scale dynamics Global scale, coarse resolution (~100 km)

Martian dust storms

Strong positive retroaction of dust on circulation and on dust lifting

Martian dust storms

Difficult to reproduce the interannual variability...

Titan superrotation

Same GCM, corrections in the dissipation formulation

Venus superrotation

Several dynamical cores, same simplified physics

To conclude

Suggested bibliography

- A. Sánchez-Lavega, *An Introduction to Planetary Atmospheres*, CRC Press, Taylor and Francis, 2011, ISBN 9781420067354.

 Forget F. and Lebonnois S., « Global climate models of the terrestrial planets » + Dowling T., « Earth General Circulation Models » in *Comparative Climatology of the Terrestrial Planets*, S.J. Maxwell et al. Eds. University of Arizona, Tuscon, 2013

Acknowledgements

- thanks to the authors of all the images and plots I showed. I can send references upon request
- thanks to Julia and Javier for the invitation and this great Winter School.