3. Atmospheric dynamics and circulation regimes

Sébastien LEBONNOIS CNRS Researcher Laboratoire de Météorologie Dynamique, Paris

Atmospheric dynamics and circulation regimes

- Equations of the atmospheric fluid
- Circulation patterns in terrestrial atmospheres
- Instabilities and wave activitiy
- Vortices

Atmospheric dynamics and circulation regimes

- Equations of the atmospheric fluid
- Circulation patterns in terrestrial atmospheres
- Instabilities and wave activitiy
- Vortices

Equation of state : ideal gas law

We consider the atmospheric gas as **ideal** :

Hydrostatic equilibrium

Scale height

Combining ideal gas law and hydrostatic equilibrium :

$$\frac{dp}{p} = -\frac{g}{RT}dz \qquad \qquad H = \frac{RT}{g}$$

When *T* is taken as constant (**isothermal** atmosphere) :

$$p = p_0 \ e^{-z/H}$$

Adiabatic lapse rate

For a parcel recieving the heat quantity δq , from first principle of thermodynamics we get :

$$\int c_p dT = \frac{dp}{\rho} + \delta q$$

Specific heat capacity at constant pressure

When this parcel moves adiabatically :

$$\frac{dT}{T} = \frac{R}{c_p} \frac{dp}{p} \qquad \Rightarrow \qquad \Gamma_d = \frac{dT}{dz} = -\frac{g}{c_p}$$

Potential temperature

Moving adiabatically a parcel from (p, T) to a reference pressure p_0 , its temperature will be θ , defined as the potential temperature.

To get the expression for θ , we integrate this expression

$$\frac{dT}{T} = \frac{R}{c_p} \frac{dp}{p}$$

If *c_p* does not depend on *T*, we get

$$\theta = T\left(\frac{p_0}{p}\right)^{\kappa}$$

$$\kappa = R / c_p$$

Momentum equations derived in the local frame

Approximations

thin atmosphere : z << a

Thermal wind equation

Atmospheric dynamics and circulation regimes

- Equations of the atmospheric fluid
- Circulation patterns in terrestrial atmospheres
- Instabilities and wave activitiy
- Vortices

Energy redistribution

Annual average energy balance for Earth's atmosphere

Energy redistribution

At top of atmosphere, as a function of seasons

Solar insolation

Thermal radiation

Energy redistribution

The case of Mars : role of surface thermal inertia

Driving mechanism

Effect on the zonal wind

Mars Hadley cells

Venus and Titan : slow rotation Extension of Hadley cells from equator to the poles

Titan : impact of seasons

Superrotation

Observations : Venus

Venus Express/VeRa temperatures => thermal wind equation

Venus Express/VIRTIS cloud tracking

Superrotation

Observations : Titan

Cassini/CIRS thermal winds retrieval (Ls ~ 300°, northern winter)

Superrotation

Mechanism : angular momentum transport

Atmospheric dynamics and circulation regimes

- Equations of the atmospheric fluid
- Circulation patterns in terrestrial atmospheres
- Instabilities and wave activitiy
- Vortices

Convection

Convection

Static stability

$$S = \frac{dT}{dz} + \frac{g}{c_p}$$

Brunt-Väisälä

$$N_B^2 = \frac{g}{T}S = \frac{g}{\theta}\frac{d\theta}{dz}$$

Gravity waves

Mars

Venus

Gravity waves

Mars

Venus

Titan

Pathfinder entry profile

VenusExpress/VeRa

Huygens/HASI

Planetary-scale waves

Baroclinic waves

Planetary-scale waves

Barotropic waves

Barotropic instability criterion (colors) and angular momentum transport by waves (black line) in a climate model of Titan's stratosphere

Atmospheric dynamics and circulation regimes

- Equations of the atmospheric fluid
- Circulation patterns in terrestrial atmospheres
- Instabilities and wave activitiy
- Vortices

Small-scale vortices

Dust devils

Small-scale vortices

Tornadoes

Synoptic vortices

Earth hurricanes

Earth extra-tropical cyclones

Giant planet vortices

Jupiter (Voyager 1)

Giant planet vortices

Saturn (Cassini/ISS)

VENUS

TITAN

Saturn (Cassini/ISS)

