4.b

Detecting Gravitational Waves of ultra small frequencies

Pulsars as GW detectors

The Pulsar-Earth path can be used as the arm of a huge cosmic gravitational wave detector

Perturbation in space-time can be detected in timing residuals over a suitable long observation time span

Radio Pulsar

where

 $h_c(f)$ is the dimensionless strain at freq f σ_{TOA} is the rms uncertainty in Time of Arrival T is the duration of the dataspan

An instructive application

The radio galaxy 3C66 (at z = 0.02) was claimed to harbour a double SMBH with a total mass of 5.4 \cdot 10¹⁰ M_{sun} and an orbital period of order ~yr [Sudou et al 2003]

Timing residuals from PSR B1855+09 exclude such a massive double BH at 95 c.l.

The GW background from Massive BH binaries

The current paradigm is that [e.g. Ferrarese & Merrit 2000]

- mergers are an essential part in galaxy formation and evolution
- nuclei of most (all?) large galaxies host Massive BH(s) (MBH: i.e. mass larger than 10⁶ M_{sun})

There should be plenty of SMBH binaries in the early universe, sinking to the their galaxy center (due to dynamical friction?)

When reaching orbital separation less than about 1 pc, GW emission become the dominant term in energy loss, making the MBH binary to shrink faster and faster

The frequency of GW emitted by these systems is typically

$$f \sim 3 \text{nHz} \left[\frac{M}{10^9 M_{sun}} \right]^{1/2} \left[\frac{a}{0.01 \text{pc}} \right]^{-3/2}$$

Carlo grant to a contract of the contract of t

Secretaria material de trata per a como que table de la Calenda de Calenda de La como dela como de la como de

© ATNF

The GW background from Massive BH binaries

The expected amplitude spectrum form the ensemble of these MBH binaries is [e.g. Phinney 2001; Jaffe & Backer 2003]

$$h_c(f) \sim f^{-\alpha}; \alpha = 2/3$$

with a strain amplitude theoretically expected in the range

[e.g. Jaffe & Backer 2003, Sesana, Vecchio et al 2008

$$h_c \approx 10^{-16} \rightarrow 10^{-15} \text{ (but...)}$$

around frequency $f_{GWB} = 1 \text{ yr}^{-1}$

Max contribution from BH binaries

at Z≈1

A pulsar timing array (PTA)

Using a number of pulsars distributed across the sky it is possible to separate the timing noise contribution from each pulsar from the signature of the GW background, which manifests as a local (at Earth) distortion in the times of arrival of the pulses which is common to the signal from all pulsars

A pulsar timing array (PTA) for detecting a stocastic Background of GW (GWB)

Idea first discussed by Romani [1989] and Foster & Backer [1990]

- > Clock errors
 - All pulsars have the same TOA variations: Monopole signature
- Solar-System ephemeris errors<u>Dipole</u> signature
- Gravitational waves background Quadrupole signature

$$\zeta(\theta_{ab}) = \frac{3}{2} \left(\frac{1 - \cos \theta_{ab}}{2} \right) \log \left(\frac{1 - \cos \theta_{ab}}{2} \right) - \frac{1}{4} \left(\frac{1 - \cos \theta_{ab}}{2} \right) + \frac{1}{2} + \frac{1}{2} \delta_{ab}$$

Hellings & Downs [1983]: correlation that an isotropic and stocastic GWB leaves on the timing residuals of 2 pulsars a and b separeted by an angle θ_{ab} in sky

Can separate these effects provided there is a sufficient number of widely distributed pulsars

adapted from Manchester]

Pulsar timing arrays for stocastic GWB: a typical sensitivity curve

A too simple (interpretation of the) sensitivity curve...

Detailed simulations are required for more realistic sensitivity curves...

$$h_{c,GWB} \propto \frac{\sigma_{TOA}}{T_{span}^{5/3} \sqrt{N \cdot M(M-1)}}$$

for the GWB due to SMBH
N = number of epochs
M = number of pulsars

<u>Data analysis for a stocastic GWB</u>

Spherical harmonic decomposition

[Burke 1975, Dettweiler 1979, Jaffe & Backer 2003, Demorest et al 2005]

Two point correlation

Correlating the time derivative of the residuals [Hellings & Downs 1983]

Directly correlating the time residuals
[Jenet et al 2005]

Bayesian analysis

[van Haasteren, Levin, McDonald, Lu 2008]

Robust: deals easily with unevenly sampled data, variable number of tracked pulsars, etc.

Marginalisation: deals easily with all systematics of known functional form, including the timing model

Capable to simultaneously measure the <u>amplitude and the shape</u> of the GWB

Pulsar Timing array(s): the frequency space and the sources

Note the complementarity in explored frequencies with respect to the current and the future GW observatories, like advLIGO, advVIRGO and eLISA

- Expected sources:
 - Binary super-massiveblack holes in earlyGalaxy evolution
 - Cosmic strings
 - Cosmological sources
- Types of signals:
 - Stochastic (multiple)
 - Periodic (single)
 - Burst (single)

The PTA collaborations

EPTA: The partner institutions

University of Manchester, JBO, GB ASTRON, Un. Leiden, Un. Amsterdam NL INAF Osservatorio Astronomico di Cagliari, ITA Nancay Observatory, FR Max-Planck Institut fur Radioastronomie, GER

<u>Current best limits on GW background</u> <u>from SMBH binaries</u>

(with a GW spectral index -2/3 at f=1/(1 yr) for $H_o = 73 \text{ km s}^{-1} \text{ Mpc}^{-1}$)

Demorest et al., 2015: $A < 1.5 \times 10^{-15}$

Shannon et al., 2015: A < 1.0 $_{\rm X}$ 10⁻¹⁵ [$\Omega_{\rm GW}$ < 2.6 $_{\rm X}$ 10⁻¹⁰ at f=/(0.2 yr)]

Lentati et al., 2015: $A < 3 \times 10^{-15}$

(robust limit including additional effects)

Phased array of the 5 major European telescopes

Funded by the EU Research Council: 2.5 M€
People involved: 2 staff, 2 senior postDoc and 2 junior postDoc
Duration: 5 years since mid 2009

Sensitivity equivalent to illuminated Arecibo

Telescope	Diameter (m)	€
Arecibo	305	0.5
GBT	100	0.7
Parkes	64	0.6
LEAP	200	0.7

But able to see much more or the sky