Radiation processes and models

Julien Malzac *inap* CNRS, Université de Toulouse

- Lesson 1: Introduction to compact object physics
- Lesson 2: Radiation processes
- Lesson 3: Models for accreting black hole binaries: accretion flows
- Lesson 4: Models for accreting black hole binaries: compact jets

Radiation Processes

- Synchrotron/curvature radiation
- Bremsstrahlung
- **Compton scattering**
- Photon-photon e+-e- pair production

Cyclo-synchrotron radiation

✓ Radiation from particles gyrating the magnetic field lines $\nu_L = \frac{qB}{2\pi mc}$ $\nu_B = \frac{1}{\gamma} \frac{qB}{2\pi mc}$ $= 2.80 \times 10^6 \frac{B(G)}{\gamma}$ Hz

Cyclo-synchrotron radiation

Radiation from particles gyrating the magnetic field lines

$$\nu_L = \frac{qB}{2\pi mc} \qquad \qquad \nu_B = \frac{1}{\gamma} \frac{qB}{2\pi mc} = 2.80 \times 10^6 \frac{B(G)}{\gamma} \text{ Hz}$$

✓ Assumptions:

✓ B uniform at the Larmor scale (parallel and perp)

✓ ! Strong B curvature (pulsar and rapidly rotating neutron stars)

 \checkmark ! Small scale turbulence (at the Larmor scale)

$$r_L = p_\perp \frac{mc^2}{qB} = 1.70 \times 10^3 \frac{p_\perp}{B(G)} \text{ cm}$$

 $p = \gamma \beta = \gamma v/c$

✓ Small losses ($t_{cool} >> 1/\nu_B$)

✓ Classical limit:

- ✓ Otherwise: quantization of energies, Larmor radii...
- ✓ Observable cyclotron lines in accreting neutron stars...
- Emission/Absorption

$$B < B_c = \frac{m^2 c^3}{\hbar q} = 4.4 \times 10^{13} \text{ G}$$

Synchrotron Emitted Power

- ✓ Emission of an accelerated particle (erg/s): ✓ Non-relativistic: $P = \frac{2q^2}{3c^3}a^2$ ✓ Relativistic: $P = \frac{2q^2}{3c^3}\gamma^4\left(a_{\perp}^2 + \gamma^2 a_{\parallel}^2\right)$
- ✓ Circular motion: $a = a_{\perp} = \frac{\nu_B}{2\pi} v_{\perp}$ $P = 2c\sigma_T U_B p_{\perp}^2$

✓ Isotropic distribution of pitch angles: $p_{\perp} = p \sin \alpha$

$$P = \frac{4}{3}c\sigma_T U_B p^2$$

✓ Maximal loss limit: $\gamma mc^2/P > 1/\nu_B \implies \gamma^2 B < \frac{2q}{r_0^2} = 1.2 \times 10^{16} \text{ G}$

Synchrotron Emission Spectrum

- ✓ Particles nearly at rest:
 - ✓ Simple modulation of the electric field at ν_B : E(t) = sin(2 π ν_B t)
 - ✓ Spectrum = one line at $\nu_{\rm B}$

Synchrotron Emission Spectrum

observ

obsei

0

 $\langle \theta \rangle$

a

 $\vec{E}\propto\sin\theta$

✓ Simple modulation of the electric field at ν_B : E(t) = sin(2 π ν_B t)

✓ Spectrum = one line at $\nu_{\rm B}$

Relativistic particles:

✓ Relativistic beaming: $\delta\theta = 1/\gamma$

✓ Pulsed modulation of the electric field at v_B :

✓ Multiple harmonics of ν_B up to a critical frequency: $\nu_c = \frac{3}{2} \gamma^3 \nu_B \sin \alpha$

✓ Spectrum = many lines at $k\nu_B$

✓ For γ >>1: continuum

Synchrotron Emission Spectrum

 $\vec{E} \propto \sin \theta$

а

observ

0

✓ Simple modulation of the electric field at ν_B : E(t) = sin(2 π ν_B t)

✓ Spectrum = one line at $\nu_{\rm B}$

Relativistic particles:

✓ Relativistic beaming: $\delta\theta = 1/\gamma$

Pulsed modulation of the electric field at $v_{\rm B}$:

✓ Multiple harmonics of ν_B up to a critical frequency: $\nu_c = \frac{3}{2} \gamma^3 \nu_B \sin \alpha$

✓ Spectrum = many lines at $k\nu_B$

✓ For γ >>1: continuum

Spectrum of Relativistic Particles

 Relativistic particles have a continuous spectrum (erg/s/Hz)

- ✓ Pitch-angle dependent spectrum:
- $\frac{\partial P}{\partial \nu}(\alpha, p, \nu) = \frac{\sqrt{3}q^3 B}{mc^2} \sin \alpha F(\nu/\nu_c)$ $F(x) = x \int_x^\infty K_{5/3}(z) dz \qquad \nu_c = \frac{3}{2} \nu_B \gamma^3 \sin \alpha$
 - ✓ Pitch-angle averaged spectrum:

$$\frac{\partial P}{\partial \nu}(\gamma,\nu) = \frac{12\sqrt{3}\sigma_T c U_B}{\nu_L} G\left(\frac{\nu}{2\nu_c^*}\right)$$
$$G(x) = x^2 \left[K_{4/3}(x) K_{1/3}(x) - \frac{3x}{5} \left(K_{4/3}^2(x) - K_{1/3}^2(x) \right) \right]$$

Emission peaked at:

Maximal energy

$$\gamma^2 B < \frac{2q}{r_0^2}$$
 $h\nu = 3 \text{ mc}^2/\alpha_f = 70 \text{ MeV}$

Spectrum of Relativistic Particles

 $N_{\gamma} \propto \gamma^2 e^{-\gamma/\theta}$ for $\theta = k_B T/m_e c^2 > 1$

Spectrum peaking at $h\nu = h\nu_c^*(\theta) = 3/2 \ h\nu_L \ \theta^2$

Spectrum of Relativistic Particles

$$N_{\gamma} \propto \gamma^2 e^{-\gamma/\theta}$$
 for $\theta = k_B T/m_e c^2 > 1$

$$N_{\gamma} \propto \gamma^{-s}$$
 for $1 < \gamma_{\min} < \gamma < \gamma_{\max}$

Spectrum peaking at $h\nu = h\nu_c^*(\theta) = 3/2 \ h\nu_L \ \theta^2$

Power-law spectrum $P = \nu^{-\alpha}$ with slope: $\alpha = (s-1)/2$ cutoff: $h\nu = h\nu_c^*(\gamma_{max}) = 3/2 \ h\nu_L \gamma_{max}^2$

Synchrotron self-absorption

Spontaneous emission

True absorption

 $h \nu$

Stimulated emission (negative absorption)

Synchrotron self-absorption

True absorption

 $\int h\nu$

Stimulated emission (negative absorption)

Transition probabilities described by Einstein coefficients
 Absorption (cm⁻¹Hz⁻¹) can be expressed as a function of the emissivity:

$$\alpha_{\nu}(p,\nu) = \frac{c^2}{2mh\nu^3} \frac{1}{p\gamma} \left[\gamma p j_{\nu}\right]_{\gamma}^{\gamma+h\nu/mc^2}$$

$$\alpha_{\nu}(p,\nu) \approx \frac{1}{2m\nu^2} \frac{1}{p\gamma} \partial_{\gamma} \left(\gamma p j_{\nu}\right)$$

True absorption

Stimulated emission (negative absorption)

Synchrotron self-absorption

Spontaneous emission

True absorption

Stimulated emission (negative absorption)

Transition probabilities described by Einstein coefficients
 Absorption (cm⁻¹Hz⁻¹) can be expressed as a function of the

emissivity:

 α_1

$$(p,\nu) = \frac{c^2}{2mh\nu^3} \frac{1}{p\gamma} \left[\gamma p j_{\nu}\right]_{\gamma}^{\gamma+h\nu/mc^2}$$

True absorption

Stimulated emission (negative absorption)

✓ Radiative transfer problem: $I_{\nu} \approx \frac{j_{\nu}}{\alpha_{\nu}} (1 - e^{-\alpha_{\nu}L})$ ✓ Transition thick/thin at the turnover frequency defined by: $\alpha_{\nu}(\nu_t)L \approx 1$

 $2m\nu^2 p\gamma$

Self-absorbed Spectra

Thermal distribution

Power-law distribution

Curvature Radiation

Relativistic particles moving along curved magnetic field lines

Observed spectrum depends on energy and spatial distribution of particles and field lines in magnetosphere

Possibility of coherent emission amplification

Bremsstrahlung

Ion at rest, moving electron is deflected

Transverse acceleration: distant observer sees a pulse of electric field. **Spectrum:** $I_{\omega} = \frac{8Z^2e^6}{3\pi c^3m_e^2v_e^2b^2} = cst$

for
$$\omega < \omega_{\rm cut} \simeq (2\Delta t_{\rm int})^{-1} \sim \frac{v_e}{2b}$$

exponential cut off above that

Distribution of electron: integration over velocities and impact factors

(c)

Thermal Bremsstrahlung

Emissivity:
$$j_{\nu} \propto n_e n_p T^{-\frac{1}{2}} \exp(-\frac{h\nu}{kT})$$

✓ Total power: $J(T) \simeq 2.4 \times 10^{-27} \bar{g}_{ff}(T) n_e n_p T^{\frac{1}{2}} \text{ erg s}^{-1} \text{ cm}^{-3}$

Self absorption

Compton Scattering

In the electron rest frame:

Energy and momentum conservation:

Compton Scattering

Compton Scattering

For low energy photons ($h\nu_0 \ll mc^2$): Coherent scattering $h\nu_{0=} h\nu$

Total Cross Section

- Source with 2 interacting species:
- The simplest case:
 - \checkmark one species at rest, with number density n_1
 - \checkmark one species with one single velocity v₂, number density n₂
 - ✓ otherwise: change of frame...
- Number of interactions per unit time and volume:

$$\frac{dn}{dt} = \sigma n_1(v_2 n_2)$$

otal cross section

target density

incoming flux

Compton Total cross section

(in the particle rest frame)

 $\omega_0 = \frac{h\nu_0}{m_e c^2}$

The Total cross section

(in the plasma frame)

$$\sigma(\omega_{0}, p_{0}) \approx \sigma_{T} \frac{3}{4} \left[\frac{1+x}{x^{3}} \left(\frac{2x(1+x)}{1+2x} - \ln(1+2x) \right) + \frac{\ln(1+2x)}{2x} - \frac{1+3x}{(1+2x)^{2}} \right]$$

$$x = \gamma \omega = \gamma \frac{h\nu}{m_{e}c^{2}}$$

 \blacksquare Transition to KN regime for $\ \gamma\omega>1$

Spectrum of a single scattering

Spectrum of a single scattering

 $\checkmark \gamma^2 - 1 \ll \omega$: down-scattering

γ²-1 >> ω: up-scattering
 - Amplification factor:

 $A = \frac{\langle \omega \rangle}{\omega_0}$

- In the Thomson regime ($\gamma \omega \ll 1$):

Spectrum of a single scattering

Electron losses in Thomson regime

Average energy radiated by an electron in one interaction (Thomson limit):

$$\frac{\Delta E}{m_e c^2} = (A-1)\omega = \frac{4}{3}p^2\omega$$

Electron scattering rate

 $\frac{dn}{dt} = \sigma_{\rm T} c n_{ph}$

Radiated power:

$$P = \frac{dn}{dt} \Delta E$$

 $P = \frac{4}{3}c\sigma_T p^2 U_{\rm ph}$

Independent of energy distribution of target photons

Similar to Synchrotron losses

Single scattering off a power-law

Power-law particle distribution $N(\gamma) = \gamma^{-s}$ for $\gamma_{min} < \gamma < \gamma_{max}$

Spectrum: power-law: $F_{\nu} = \nu^{-\alpha}$

 $h\nu_{max} = \gamma_{max} mc^2$

Multiple Scatterings

- Photons can undergo successive scattering
- ✓ Medium of finite size L: Thomson optical depth: $\tau = \sigma_T N_e L$

Competition scattering/escape/absorption:
 τ = Mean number of scattering before escape (or τ²)
 small τ: inefficient Compton scattering
 large τ: efficient Compton scattering

Thermal Comptonization

Comptonization of soft photons on a thermal plasma of electrons (Maxwellian energy distribution)

Parametrized by temperature T and Thomson optical depth

 $\tau = n_e \sigma_T R$

 $F_E \propto E^{-\Gamma(kT, au)} \exp\left(-rac{E}{E_c(kT, au)}
ight)$ $E_c \simeq kT$ $\Gamma(kT_{
m e}, au)$ Spectral degeneracy: different $T_{
m e}$ and augive same Γ

Pair production/Photon annihilation

In the center of momentum of the 2 incoming photons
Conservation of momentum and energy: ω = γ
2 photons of energy hν
2 leptons of energy: γ (for all production direction)
Production threshold ω>1

Total cross section

In the lab frame

 $\checkmark \quad \text{Threshold:} \quad \gamma_{cm} = \omega_1 \omega_2 \frac{1 - \cos \theta}{2} \ge 1$

✓ Head-on collisions (θ=π): $ω_1 ω_2 > 1$ ✓ Trailing collisions (θ=0): $ω_1 ω_2 → ∞$

Total cross section

In the lab frame

Threshold: $\gamma_{cm} = \omega_1 \omega_2 \frac{1 - \cos \theta}{2} \ge 1$

- $\checkmark \quad \text{Head-on collisions } (\theta = \pi): \omega_1 \, \omega_2 > 1$
- ✓ Trailing collisions (θ =0): $\omega_1 \omega_2 \rightarrow \infty$
- ✓ Total cross section for isotropic photon field
 - ✓ Analytical (Gould&Schreder67, approx: Coppi&Blandford90)
 - ✓ Maximal absorption for: $\omega_2 \approx 1/\omega_1$
 - $\checkmark \quad \text{TeV} \leftrightarrow 0.1 \text{ eV}$
 - $\checkmark \quad \text{GeV} \leftrightarrow 100 \text{ eV}$

Total cross section

In the lab frame

Threshold: $\gamma_{cm} = \omega_1 \omega_2 \frac{1 - \cos \theta}{2} \ge 1$

- $\checkmark \quad \text{Head-on collisions } (\theta = \pi): \omega_1 \, \omega_2 > 1$
- $\checkmark \quad \text{Trailing collisions } (\theta=0): \omega_1 \, \omega_2 \to \infty$
- ✓ Total cross section for isotropic photon field
 - ✓ Analytical (Gould&Schreder67, approx: Coppi&Blandford90)
 - ✓ Maximal absorption for: $\omega_2 \approx 1/\omega_1$
 - \checkmark TeV \leftrightarrow 0.1 eV
 - $\checkmark \quad \text{GeV} \leftrightarrow 100 \text{ eV}$

Photon-photon absorption

$$\tau_{\gamma\gamma}(\omega) = L \int N_{\omega}(\omega_0) \sigma_{\gamma\gamma}(\omega_0, \omega) d\omega_0 \approx 0.2\sigma_T L \frac{N_{\omega}(1/\omega)}{\omega}$$

Photon absorption in gamma binaries

103 8.10¹⁰cm 8.10⁹ cm 8.10⁸ cm 1036 8.10⁷ cm 1037 (erg s⁻¹) Fermi 103 1035 10^{3} 1033 ← disk 1038 1010 1018 108 104 10* 108 ϵ , (eV)

Strong photon field
From the companion star
The accretion disk
Efficient photon-photon absorption
Ex: Cyg -X3:
GeV detection by Fermi (Abdo et al. 2009)
Anisotropic Absorption maps (Cerutti et al. 2011)
=> GeV production far from the BH (not coronal)

Conclusions

- At high energy
 - ✓ Total cross sections drop off
 - ✓ Differential cross sections become highly anisotropic
- Particle cooling:
 - $\checkmark \quad \text{Synchrotron: } \mathbf{P} \propto \sigma_{\mathrm{T}} \mathbf{p}^{2} \mathbf{U}_{\mathrm{B}}$
 - ✓ Compton in the Thomson regime: $P \propto \sigma_T p^2 U_{ph}$
 - $\checkmark \text{ Bremsstrahlung: } P \propto \sigma_T \alpha_f p U_i \quad (\text{with } U_i = n_i m_e c^2)$
- Photons:
 - ✓ Synchrotron:
 - ✓ Thin spectrum of 1 particle peaks at $v_c \propto \gamma^2 B$
 - ✓ Thin spectrum of a power-law distribution is a power-law
 - Absorption => Thick spectrum at low frequency
 - Compton
 - ✓ Amplification factor in the Thomson regime: $A = \gamma^2$
 - ✓ Mildly relativistic particles: power-law spectrum
 - ✓ Comptonization by a relativistic power-law distribution is a PL spectrum
 - $\gamma \gamma$ pair production:
 - $\checkmark \quad \text{Threshold at } \omega_1 \omega_2 \approx 1$
 - Most efficient photon absorption for $\omega_1 \omega_2 \approx 1$