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Radiation Processes
!

Synchrotron/curvature radiation 

Bremsstrahlung 

Compton scattering 

Photon-photon e+-e- pair production 

!

!

➡ Special thanks to Renaud Belmont



Cyclo-synchrotron radiation
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✓Radiation from particles gyrating the magnetic field lines



Cyclo-synchrotron radiation

✓Assumptions:
✓ B uniform at the Larmor scale (parallel and perp)
✓ ! Strong B curvature (pulsar and rapidly rotating neutron stars)
✓ ! Small scale turbulence (at the Larmor scale)

✓ Small losses (tcool >> 1/B)

✓ Classical limit: 
✓ Otherwise: quantization of energies, Larmor radii...
✓ Observable cyclotron lines in accreting neutron stars...

✓Emission/Absorption
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✓Radiation from particles gyrating the magnetic field lines
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Synchrotron Emitted Power

✓Emission of an accelerated particle (erg/s): 
✓ Non-relativistic: 
✓ Relativistic:

✓Circular motion: 

✓ Isotropic distribution of pitch angles: 

✓Maximal loss limit:                          => 
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Synchrotron Emission Spectrum

✓Particles nearly at rest:
✓ Simple modulation of the electric field at B: 

E(t) = sin(2t)

✓ Spectrum = one line at B
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Synchrotron Emission Spectrum

✓Particles nearly at rest:
✓ Simple modulation of the electric field at B: 

E(t) = sin(2t)

✓ Spectrum = one line at B
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r ✓Relativistic particles:

✓ Relativistic beaming:  = 1/

✓ Pulsed modulation of the electric field at B:

✓ Multiple harmonics of B up to a critical 
frequency:

✓ Spectrum = many lines at kB

✓ For >>1: continuum
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Synchrotron Emission Spectrum

✓Particles nearly at rest:
✓ Simple modulation of the electric field at B: 

E(t) = sin(2t)

✓ Spectrum = one line at B
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✓ Relativistic beaming:  = 1/

✓ Pulsed modulation of the electric field at B:

✓ Multiple harmonics of B up to a critical 
frequency:

✓ Spectrum = many lines at kB

✓ For >>1: continuum
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✓Relativistic particles have a continuous spectrum 
(erg/s/Hz)

✓Pitch-angle dependent spectrum:

✓Pitch-angle averaged spectrum:

Spectrum of Relativistic Particles
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Spectrum of Relativistic Particles
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Spectrum of Relativistic Particles
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Synchrotron self-absorption
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Synchrotron self-absorption

✓Transition probabilities described by Einstein coefficients

✓Absorption (cm-1Hz-1) can be expressed as a function of the 
emissivity: True absorption

Stimulated emission 
(negative absorption)
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Synchrotron self-absorption

✓Transition probabilities described by Einstein coefficients

✓Absorption (cm-1Hz-1) can be expressed as a function of the 
emissivity: True absorption

Stimulated emission 
(negative absorption)
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✓Radiative transfer problem:

✓Transition thick/thin at the turnover frequency defined by: 
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Self-absorbed Spectra

✓Thermal distribution ✓ Power-law distribution

For typical frequencies in X-ray binaries: 
Wardzinsky&Zdziarsky00
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Curvature Radiation

✓Similar to synchrotron with:   

✓ Relativistic particles moving along  curved magnetic field lines 

curvature radius 
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✓ Peak mono-energetic particle emission      
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✓ Observed spectrum depends on energy and spatial distribution of particles 
and field lines in magnetosphere 

!
✓  Possibility of coherent emission amplification



Bremsstrahlung

✓ Ion at rest, moving electron is deflected

✓ Spectrum:  

✓ Transverse acceleration:  distant observer sees a pulse of electric field.
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✓Distribution of electron: integration over velocities 
and impact factors   



Thermal Bremsstrahlung

✓ Emissivity: 
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✓Self absorption



Compton Scattering

✓ Energy and momentum conservation: h⇥
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Compton Scattering

✓ Energy and momentum conservation: h⇥
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Compton Scattering

✓ Energy and momentum conservation: h⇥
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Total Cross Section

✓ Source with 2 interacting species:

✓ The simplest case: 
✓ one species at rest, with number density n1

✓ one species with one single velocity v2, number density n2

✓ otherwise: change of frame...
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✓ Number of interactions per unit time and volume:



Compton Total cross section
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The Total cross section

Thomson-KN transition at x=1:
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Spectrum of a single scattering



✓ 2-1 << : down-scattering
 
✓ 2-1 >> : up-scattering

- Amplification factor: 

- In the Thomson regime (<<1):

Spectrum of a single scattering
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✓ 2-1 << : down-scattering
 
✓ 2-1 >> : up-scattering

- Amplification factor: 

- In the Thomson regime (<<1):

Spectrum of a single scattering
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✓ 2-1 << : down-scattering
 
✓ 2-1 >> : up-scattering

- Amplification factor: 

- In the Thomson regime (<<1):
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Electron losses in Thomson regime

✓ Average energy radiated by an electron in one interaction (Thomson 
limit):

✓ Radiated power: 

✓ Electron scattering rate 
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✓ Similar to Synchrotron losses 
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✓  Independent of energy distribution of target photons 



Single scattering off a power-law

✓ Power-law particle distribution N() = -s for min< < max

✓ Spectrum: power-law: F = 

hmax= maxmc2 =(s-1)/2 (like synchrotron)



Multiple Scatterings

✓ Photons can undergo successive scattering

✓ Medium of finite size L: Thomson optical depth: =TNeL

✓ Competition scattering/escape/absorption:
✓  = Mean number of scattering before escape (or 2)

✓ small : inefficient Compton scattering
✓ large : efficient Compton scattering

✓ y parameter = <photon energy change> before escape
✓ y= <Energy change per scattering> * <number scattering> 
✓ For thermal: y=4(1+4)

✓ Absorption processes add to escape => effective optical depth



✓Comptonization of soft photons on a thermal plasma of electrons 
(Maxwellian energy distribution)  

!
✓  Parametrized by temperature T and Thomson optical depth 

!
Spectral degeneracy:  different       
and        
give same 
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Thermal Comptonization



Pair production/Photon annihilation

✓ In the center of momentum of the 2 incoming photons

✓ Conservation of momentum and energy:
✓ 2 photons of energy h

✓ 2 leptons of energy:  (for all production direction)

✓ Production threshold >1

In the lab frame:
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Total cross section

✓ Threshold:  

✓ Head-on collisions (=): 1 2 > 1
✓ Trailing collisions (=0): 1 2 → ∞

�cm = !1!2
1� cos ✓
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In the lab frame



Total cross section

✓ Threshold:  

✓ Head-on collisions (=): 1 2 > 1
✓ Trailing collisions (=0): 1 2 → ∞ ��� ⇡ .65�T
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In the lab frame

✓ Total cross section for isotropic photon field
✓ Analytical (Gould&Schreder67, approx: Coppi&Blandford90)

✓ Maximal absorption for: 2 ≈ 1/1

✓ TeV ↔ 0.1 eV
✓ GeV ↔ 100 eV



Total cross section

✓ Threshold:  

✓ Head-on collisions (=): 1 2 > 1
✓ Trailing collisions (=0): 1 2 → ∞ ��� ⇡ .65�T
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In the lab frame

✓ Total cross section for isotropic photon field
✓ Analytical (Gould&Schreder67, approx: Coppi&Blandford90)

✓ Maximal absorption for: 2 ≈ 1/1

✓ TeV ↔ 0.1 eV
✓ GeV ↔ 100 eV

✓ Photon-photon absorption



Photon absorption in gamma binaries
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✓ Strong photon field 
✓ From the companion star
✓ The accretion disk

✓ Efficient photon-photon absorption 
✓ Ex: Cyg -X3: 
✓ GeV detection by Fermi (Abdo et al. 2009)

✓ Anisotropic Absorption maps (Cerutti et al. 2011)

✓ => GeV production far from the BH (not 
coronal)



Conclusions
✓ At high energy
✓ Total cross sections drop off
✓ Differential cross sections become highly anisotropic 

✓ Particle cooling:
✓ Synchrotron: P ∝ Tp2UB

✓ Compton in the Thomson regime: P ∝ Tp2Uph

✓ Bremsstrahlung: P ∝ T f p Ui      (with Ui= ni mec2)

✓ Photons:
✓ Synchrotron: 
✓ Thin spectrum of 1 particle peaks at c ∝ 2 B
✓ Thin spectrum of a power-law distribution is a power-law
✓ Absorption => Thick spectrum at low frequency

✓ Compton
✓ Amplification factor in the Thomson regime: A = 2

✓ Mildly relativistic particles: power-law spectrum
✓ Comptonization by a relativistic power-law distribution is a PL spectrum

✓  pair production: 

✓ Threshold at 12 ≈1

✓ Most efficient photon absorption for 12 ≈1


