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PROBLEMS WITH ULTRACAM

N

Only 3 arms

Not fast enough

Not large enough field of view
Limited by scintillation noise
Can’t do long exposures

Not sensitive enough in the red
Suffers from fringing

Suffers from pickup noise
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SCINTILLATION CORRECTION ‘
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CONJUGATE PLANE PHOTOMETRY

Prototype conjugate-plane photometer on the 2.5m NOT on La Palma
demonstrated that the technique works.

Normalised Intensity

Time (frames)




CONJUGATE PLANE PHOTOMETRY

Space-quality photometry from the ground?:

Conjugate-plane photometry: reducing scintillation in ground-
based photometry
Osborn et al, 2011, MNRAS, 411, 1223
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HIPERCAM

High PERformance CAMera.

Funded by ERC Advanced Grant for 3.5M¢€, started Jan
2014.

Collaboration between Sheffield, Warwick, Durham
and UKATC.

Visitor instrument, to be commissioned on the 4.2m
WHT and 10.4m GTC in 2017.

Provides an “order-of-magnitude” improvement in
performance over ULTRACAM.



OPTICS

* 5 arms covering
ulg,)r)llzi

* Single-shot optical SED
with no wasted light.




OPTICS
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CCDs & CONTROLLER

R\

Big chips are not necessarily
better, as they are slower.

Lots of outputs are not
necessarily better, as we study
point sources.

magnitude

magnitude

Too many compromises had to
be made to use EMCCDs, for
negligible benefit.

6 custom versions of CCD231-42 |
ordered from e2v.

In conjunction with an ESO NGC
CCD controller, we can easily
break the kHz frame-rate barrier.
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DEEP DEPLETION CCDs

Incoming photons

Incoming photons

p-type silicon
n-type silicon

Silicon dioxide insulating layer
Polysilicon electrodes

Anti-reflective (AR) coating
p-type silicon
n-type silicon

Silicon dioxide insulating layer
Polysilicon electrodes




FRINGE SUPPRESSION
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CCD HEADS

* CCDs to be cooled to 180K with two 6-stage peltier
coolers.

* Advantages: convenience, cost, no vibrations, low
mass/size CCD heads.



MECHANICAL STRUCTURE

HiIPERCAM will be made using additive
manufacturing techniques (i.e. 3D printing).

Exploiting Sheffield’s world-leading Advanced
Manufacturing Research Centre, a £100M+
collaboration between the University, Boeing
and Rolls Royce.

Components will be manufactured from invar
using laser sintering, providing a stiff,
lightweight, temperature invariant structure.

HIPERCAM




MECHANICAL STRUCTURE
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CPP IN HIPERCAM




ULTRACAM vs HIPERCAM

R\

ULTRACAM HiPERCAM
Number of simultaneous colours | 3 (u’g’r’,u’g’l’oru’g’z’) |5 (u’g’r’l’z’)
Readout noise 3.5e- @100 kHz 2.5e- @200 kHz
Dark current 360 e-/pix/hr 1 e-/pix/hr
Longest exposure time 20s 1800 s
Highest frame rate 300 Hz 1500 Hz
Field of view on 4m telescope 5’ (at 0.3"/pixel) 10’ (at 0.3"/pixel)
Probability of R=11 comparison | 50% 94%
Scintillation correction No Yes
Deep depletion No Yes

QE at 700/800/900/1000 nm (%)

84% / 61% / 29% / 5%

92% / 87% / 58% / 13%

Fringe suppression

No

Yes

Fringe amplitude at 900 nm

>10%

<1%

Dummy CCD outputs?

No

Yes



HIiPERCAM ON THE GTC

HIPERCAM

* And we hope to mount HIPERCAM on
the largest telescope in the world, the
10.4m GTC on La Palma.
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HiPERCAM SCIENCE QUESTIONS | QU

* What are the progenitors of Type la Supernovae?
* What are the properties of exoplanet atmospheres?

* What is the equation of state of the degenerate matter
found in white dwarfs and neutron stars?

* What is the nature of the flow of matter close to the event
horizon of black holes?

* What gravitational wave signals are likely to be detected by
the next generation of space and ground-based detectors?

* What are the properties of Kuiper Belt Objects?



The End.
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Atmospheric Scintillation in Astronomical Photometry

12 June 20156

ABSTRACT

Scintillation noise due to the Earth’s turly atmosphere can be a dominant noise
source in high-precision astronomical photom when observing bright targeis from
the ground. Here we describe the phenomenon of scintillation from its physical origins
to its effect on photometry. We show that Young's (1967) tillation-noise approx-
imation used by many astronomers tends to underestimate the median scintillation
noise at several major observatories around the world. We show that using median
atmospheric optical turbulence profiles, w hlch are now available for most sites, pro-
vides a better estimate of the expected scintillation noise and that real-time turbulence
profiles can be used to precisely characterise the seintillation noise compon f con-
temporaneous photometric measurements. This will enable & betier undersianding
and calibration of photometric noise sources and the cffectiveness
rection techniques. We also provide new equations for cale:
including for extremely large telescopes where the scintillation noise will actually be
lower than previously thought. These equations highlight the fact that scintillation
noise and shot noise have the same dependence on expos time and so if an obhserva-
tion is scintillation limited, it will be scintillation limited for all exposure tin
ratio of scintillation noise to shot noise is also only weakly dependent on T
diameter and so a bigger telescope may not yield a reduction in fractional scintillation
noise.
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Key words: planets and satellites: detection — atmospheric effects — instrumentation:
photometers — methods: observational — site testing — techniques: photometric
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1 INTRODUCTION
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High-precision photometry is key to several branches of as-
tropomical research, including (but not Umited to) the study
of extrasolar planets, astroseismology and the detection of
small Kuiper-belt objects within our Solar System. The dif-
ficulty with such observations is that, although the targets
are bright, the variations one needs to detect are often small
0.01% to ~0.1%). This is within the capabilities
of modern detectors. Howe when the light from the star
passes through the Ear tmosphere, regions of turbu-
e intensity fuctuations (see

alled scintillation. This scintillation, which in
es photometric variations in the range of ~0.1% to LO%,
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tion noise) are used in the reduction process.
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Figure 9. Theoretical long exposure scintillation noise as a func-
tion of exposure time and telescope diameter. The scintillation
noise was calculated for median atmospheric conditions on La
Palma and varies between 1% for small telescopes and short ex-
posure times, and 0.01% for larger telescopes and longer exposure
times.
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Figure 11. Theoretical parameter space plots for the ratio of the scintillation to shot noise in the short exposure regime (left) and the
long exposure regime (right), for varying telescope diameter and target stellar magnitude (V-band). The short exposure time is set to
2 ms. The long exposure time is irrelevant as both noise sources have the same exposure time dependence, making the ratio independent
of exposure time. The black dotted line shows where the scintillation noise equals the shot noise. For any telescope diameter / target
magnitude combinations below this line, the scintillation noise is greater than the shot noise and vice versa. The red line composed of
circles indicates a ratio of 2, i.e. when the scintillation noise is twice the shot noise. The blue line composed of triangles indicates the

point where the scintillation noise is an order of magnitude larger than the shot noise.
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