# HTRA Instrumentation I Phil Charles (Univ. of Southampton)

*Lecture 3:* HTRA future developments/new technologies

X-rays:

- AXTAR, LOFT
- XEUS/Athena
- Lobster concept

Visible/IR:

• MKIDS, STJs

Ultra-fast detectors

### Techniques and instruments:



Kanbach 2014



Kanbach 2014

## GASP – Galway Astronomical Stokes Polarimeter



See Shearer, Sheehan papers on its operation with L3CCDs and APDs (for highest time resolution pulsar work)

### Kanbach's OPTIMA photon-counting system

OPTIMA at the SKO 1.3m

Small array of fibre apertures (dia. 300 µm each) connected to APD photon counters





#### **OPTIMA schematic:**



### Jets/outflows in LMXB BHXRBs (OPTIMA)



- Note optical precedes X-ray
- No X-ray reprocessing, but genuine jet emission
- Optical response within 30ms





|                |                    | Time-Scale | Time Scale |
|----------------|--------------------|------------|------------|
|                |                    | Now        | ELT era    |
| Stellar flares |                    | Seconds/   | 10-100ms   |
| and pulsations |                    | minutes    |            |
| Stellar        | White Dwarfs       | 1-1000 µs  | 1-1000 µs  |
| Surface        | Neutron Stars      | -          | 0.1 µs     |
| Oscillations   |                    |            |            |
| Close Binary   | Tomography         | 100ms++    | 10ms+      |
| Systems        | Eclipse in/egress  | 10ms+      | < 1ms      |
| accretion &    | Disk flickering    | 10ms       | < 1ms      |
| turbulence     | Correlations       | 50ms       | < 1ms      |
|                | (e.g. X & optical) |            |            |
| Pulsars        | Magnetospheric     | 1 μs-      | ns         |
|                | Thermal            | 100ms      | ms         |
| AGN            |                    | Minutes    | Seconds    |

Shearer 2010: HTRA White Paper: science timescales

## AQuEYE and IQuEYE



#### Barbieri (Padova)

### Pushing to the shortest timescales:



#### Photons per Rotation for known optical pulsars (updating Shearer, 2009)

| Pulsar                                            | Period | Mag   | VLT  | ELT      |        |
|---------------------------------------------------|--------|-------|------|----------|--------|
|                                                   | (ms)   | (B,V) |      |          |        |
| Crab                                              | 33     | 16.5  | 3000 | 63000 ct | ts/rot |
| PSR0540-69                                        | 50     | 23    | 13   | 300 ct   | ts/rot |
| Vela                                              | 89     | 24    | 10   | 200 ct   | ts/rot |
| PSR0656+14                                        | 385    | 25.5  | 11   | 230 ct   | ts/rot |
| Geminga                                           | 237    | 26    | 4    | 90 ct    | ts/rot |
| Crab in M31 29.6                                  |        |       | 1    | 15 ct    | s/s    |
| Typical sky background m <sub>Sky</sub> ~ 21 / □" |        |       |      |          |        |
| in aperture ≈ seeing (0.7")                       |        |       | 600  | 15000 c  | ts/s   |
| small aperture (0.3")                             |        |       | 120  | 2400 c   | ts/s   |

#### N.B. note difference of *detecting* pulsations versus *resolving* them



#### Crab single rotations with current telescopes 1ms binning



... the Crab with a 8m or 39m telescope?

### Synthetic light-curve at $300\mu s$ resolution (Zampieri+14)



Crab lightcurve: VLT, single rotation, 100 phase bins

### And at $30\mu s$ resolution (Kanbach 2014)



# Optical polarisation from rotation to rotation (Słowikowska+09; NOT 14h run)



#### Optical response to Giant Radio Pulses: Strader et al., 2013 (ARCONS on 200" Hale Telescope) based on 7200 GRPs



Confirmation of Shearer+03; Collins+12

See Słowikowska+09

## **Binary eclipse measurements:**



Example: OPTIMA lightcurve (averaged) RXS J1845+4831 (mag 18-19): New polar

extremely short orbital period of 79m 04s and eclipse duration of 98.7s (Rau et al., 2014 in prep.)

## Goals: with VLT/ELT (10<sup>4</sup> / 2x10<sup>5</sup> cps):

- several ms resolution
- spectroscopic / polarimetric resolution of ingress/egress

Kanbach 2014

# X-ray developments



4000 cm<sup>2</sup> + All Sky Monitor



Rossi XTE (NASA)1995-

Millisecon Millisecon spinsi spinsi 8 B NS 8 B 6500 cm<sup>2</sup>, ASM, flexible operations

## LOFT payload (Zane+13, MSSL, Leicester)

Large area detector (LAD):

6 deployable panels
10m<sup>2</sup> collimated area,
2-30 keV, <u>SSD</u>+MCP,

- time res 10µs, -  $\Delta E \sim 260 \text{ eV}$  @6keV

Wide field Monitor (WFM):

- coded mask detector
  - 2-50 keV, 50% sky
- source localization 1'

- identify bright transients



Large Area of Silicon Drift Detectors heritage of the Inner Tracking System of the ALICE experiment at LHC (CERN)

INFN Trieste  $\rightarrow$  1.5 m<sup>2</sup> of SDDs at LHC (~300 units), operating since 2011.





LAD has a mass per unit area ~30kg/m2

(the largest predecessor, RXTE/PCA, has >100kg/m2)

#### LAD Collimator

Built at Leicester SRC basing on Heritage BC MIXS-C

Capillary plate, High Pb content glass

MCP covered with Al filter



### LOFT Large Area Detector

- Effective area 10 m<sup>2</sup> @ 8 keV
  - 0.25 10<sup>6</sup> c/s/Crab
  - 1σ timing feature becomes 20σ
     → detect QPOs in the time domain !
- 200-260 eV resolution
  - resolve relativistic Fe lines at huge S/N

 $\rightarrow$  see line profile fluctuate at GR timescales !

- See all [sub] msec spins
- Routine neutron star seismology
- Measure pulse profiles at enormous precision



# **AXTAR Basics**

Collimated 1.8–80 keV X-ray timing and spectral mission with much larger area than RXTE



#### Large Area Timing Array (LATA)

- 3.2 m<sup>2</sup> effective area
- + <600 eV energy resolution
- Low inclination LEO orbit

#### Sky Monitor (SM)

- Multiple coded-aperture cameras (40°x40° FOV each)
- + High duty cycle monitoring of sky
- + < 5 mCrab in 1 day

#### Flexible scheduling and rapid response

Targets from GI program

#### cf. US proposal – Ray, Chakrabarty+14

Cost Category: Small (<\$400M, excluding launch)



- Spectral band: 0.2–12 keV
  - Well matched to neutron stars
  - Overlaps RXTE and XMM-Newton
- \*\*
- Timing resolution: 100 nsec RMS
   absolute
- Energy resolution: 2% @ 6 keV
- Angular resolution: 6 arcmin (nonimaging FOV)
- Sensitivity, 5σ: 5.3 x 10<sup>-14</sup> erg/s/cm<sup>2</sup>
  - 0.5–10 keV in 10 ksec (Crab-like spectrum)

Uses SDDs (but << LOFT!)



LaMarr+14

Next generation X-ray imaging observatory (i.e. successor to Chandra, XMM)

• Constellation-X (NASA) + XEUS (ESA)  $\rightarrow$  IXO  $\rightarrow$  Athena



#### Instrument concepts (Parmar+10)

#### Optics

- Effective area 3 m<sup>2</sup> @ 1.25 keV, 0.65 m<sup>2</sup> at 6 keV with a goal of 1 m<sup>2</sup>. 150 cm<sup>2</sup> (goal 350 cm<sup>2</sup>) at 30 keV
- 5 arc sec HEW spatial resolution with a 20 m focal length

#### Instruments

- X-ray Microcalorimeter Spectrometer (XMS)
  - 0.3 to 7 keV with 2.5 eV over 2 arc min and 10 eV over 5 arc min FOV
  - Wide Field Imager (WFI)/Hard X-ray Imager (HXI)
    - 0.1 to 15 keV with <150 eV & 18 arc min FOV</li>
    - HXI extends band pass to 40 keV
- X-ray Grating Spectrometer (XGS)
  - Dispersive from 0.3 to 1 keV with R ~ 3000, 1000 cm<sup>2</sup> area with a goal of 3000 cm<sup>2</sup>
  - X-ray Polarimeter (XPOL)
    - Gas Imaging Pixel Detector
  - High Time Resolution Spectrometer (HTRS)
    - Bright source capability



### ATHENA INSTRUMENTS





#### WFI based on Si DEPFET technology

- >100 micron pixels, 140 eV FWHM @ 6 keV
- >10 mCrab without pile-up
- Field of view up to 40 x 40 arcminutes
- Investigating a second (defocussed) FAST chip providing 1 Crab source brightness with 40 µs time resolution and only 1% pile up



#### X-IFU based on TES microcalorimeter

- > 250 micron pixels, ~2 eV FWHM @ 6 keV
- Field of view 5 x 5 arcminutes (>32 x 32 array)
- Investigating optimised array with outer field having multiple pixels per TES readout
- US provision of sensor arrays and Japanese provision of part of the cooling chain baselined

### Transition Edge Sensor (TES) detector



- Micro-calorimeter connected to 0.05K heat sink
- E of X-ray photon moves superconductor → normal conductor
   → R changes
- Target performance: ~2.5eV spectral resolution, ~5" spatial res.
- Each TES in array forms part of LCR circuit
- Frequency multiplexed read-out
- Via array of SQUID and low-noise amps (Superconducting QUantum Interference Device)



Barret+15

# Athena

L3 mission Launch 2028 Still need wide-field monitoring of X-ray sky e.g. with Micro-Pore Optics (Chinese *Einstein Probe*) to improve by ~x10 over RXTE/ASM or MAXI

Willingale, Leicester



|                    | WXT                                              | FXT                                             |
|--------------------|--------------------------------------------------|-------------------------------------------------|
| Field-of-view      | 60°×60°                                          | 1°×1°                                           |
| Focal length       | 375 mm                                           | 1400 mm                                         |
| Energy band        | 0.5-4 keV                                        | 0.5-4 keV                                       |
| Effective area     | 3 cm <sup>2</sup> (@0.7 keV, central focal spot) | 60 cm² (@1 keV)                                 |
| Angular resolution | <5'                                              | <5'                                             |
| Sensitivity (@1ks) | About 1x10 <sup>-11</sup> erg/s/cm <sup>2</sup>  | About 3x10 <sup>-12</sup> erg/s/cm <sup>2</sup> |
| Timing resolution  | <b>1</b> 00 μs                                   | 1 s                                             |
| Energy resolution  | ~50% @ 4keV                                      | ~100 eV @ 1keV                                  |

# **Optical/NIR developments**

#### **Review of current HTRA instrumentation**

| Detector     | Time       | Quantum    | Ε/ΔΕ     | No. of             | Instrument    |
|--------------|------------|------------|----------|--------------------|---------------|
|              | Resolution | Efficiency |          | Pixels             |               |
| CCD          | 5ms+       | 90% +      | -        | >> 10 <sup>6</sup> | UltraCam[39]  |
| EMCCD        | lms+       | 15% +      | <u>-</u> | 106                | UltraSpec[39] |
| EMCCD        | lms+       | 15% +      | -        | 106                | GASP[40]      |
| pn CCD       | 0.01 ms+   | 90% +      | -        | 10 <sup>6</sup>    | [41]          |
| Active Pixel | a few µs   | 80% +      | -        | 105                | [42]          |
| Detectors    |            |            |          |                    |               |
| SPADs        | ns+        | 80% +      | -        | a few              | Optima[43]    |
|              | ns+        | 15%        |          | onea               | GASP[40]      |
|              | 100ps      | 50%+       | -        | a few              | Iqueye[44]    |
| STJ          | ns+        | 90% +      | 5        | 10s                | SCAM[45]      |
| TES          | ns+        | 90% +      | 20+      | 10s                | [46]          |
| MKID         | ns+        | 90% +      | 500+     | 10s                | [47]          |
| Photo-       | ns+        | <30%       | -        | $1 - 10^{6}$       | Many          |
| Cathodes     | Ims        | 40%        | -        | 106                | wavefront     |
|              |            |            |          |                    | sensor        |

Shearer et al., 2010, HTRA White Paper: HTRA in the ELT era

### MKIDs: Microwave Kinetic Inductance Detectors for optical/NIR (from Kieran O'Brien + Mazin papers)

- What are Microwave Kinetic Inductance Detectors (MKIDs)?
- Advantage: Easy to multiplex (unlike STJs, TES)

## ARCONS

- O'Brien+15 Palomar commissioning and Science run
- Future Instrumentation

## Microwave Kinetic Inductance Detectors

= extra inductance from stored KE in Cooper Pairs (based on Mattis-Bardeen theory from 1958)



Can work from  $0.1-5\mu m$ 

O'Brien+15

## Energy resolving detector

Energy Gap Silicon - 1.10000 eV Aluminum - 0.00018 eV

$$R = \frac{1}{2.355} \sqrt{\frac{\eta h\nu}{F\Delta}}$$

hv = 4.9 eV, R <~ 100 for  $\eta \sim 1$ 





#### Single photon event

Distribution of photon events

## Arrays of MKIDs



Each pixel tuned to different resonant frequency  $\rightarrow$  multiplexed readout with microwave probe signal 0.1-20 GHz

Mazin+13

# ARCONS (2011)

- The Array Camera for Optical and Near-IR Spectrophotometry
- 1024 pixel MKID array (70% active pixels)
- TiN lumped element pixels
- Lens coupled 223µm pixels
- 100mK cryogen-free ADR
- 0.23"/pixel plate scale
- 0.38-1.1µm passband
- 2000 cts/pixel/sec limit
- Energy resolution R=10-20 at 400nm
- Time resolution ~  $1\mu$ s



#### Mazin, et al. PASP, 123, 933

# **Optical design**



Simple optical design comprising off-the-shelf components, designed to block as much thermal infrared as possible.

# **Optical layout**



## **Results:**

- 'Dithered' reconstruction of 3 offset exposures of PG1633+099A
- V = 15.3 standard star
- 20 second integration
- S/N ~ 80
- Limit of I ~ 22.5 for 10-sigma in 1 hr

• Crab Pulsar:





## Arp 147

- Mosaic of 36 x 1 minute pointings.
- False colour image made from spectral information from each pixel

Science results: see Strader+ ApJL, 779, 12

Szypryt+ MNRAS, 439, 2765



## **Detectors for astronomy**

- Eyes
- Photographic plates
- Photomultipliers, MCPs
- FT CCDs, EMCCDs
- CMOS
- SPADs/Geiger-mode APD
- STJ
- TES

MKIDs

| sensitivity | Noise     | Time<br>resolution | Energy<br>resolution | Array size | Cost/unit |
|-------------|-----------|--------------------|----------------------|------------|-----------|
| Poor        | Good      | msec               | Poor                 | Good       | Free      |
| Fair        | Poor      | minutes            | none                 | Good       | Moderate  |
| Fair        | Good      | <µsec              | none                 | Poor       | High      |
| Excellent   | Good      | seconds            | none                 | Excellent  | Moderate  |
| Excellent   | Fair      | seconds            | none                 | Excellent  | Moderate  |
| Fair        | Good      | <µsec              | none                 | Poor       | High      |
| Fair        | Excellent | µsec               | Fair                 | Poor       | High      |
| Fair        | Excellent | µsec               | Fair                 | Poor       | High      |
| Fair        | Excellent | µsec               | Fair                 | Fair       | Moderate  |

O'Brien 15

## **MKIDS Instrument Concepts**

| 1.Classification of transients                                                      | 2. Accretion<br>onto compact<br>objects                                                     | 3. Dark<br>matter /energy                                            | 4. Exoplanets                                                    |
|-------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|----------------------------------------------------------------------|------------------------------------------------------------------|
| High<br>throughput,<br>low spectral<br>resolution<br>Integral Field<br>Spectroscopy | High time<br>resolution and<br>high spectral<br>resolution<br>single-object<br>spectroscopy | Highly<br>multiplexed,<br>low spectral<br>resolution<br>spectroscopy | Photon-<br>counting IFS<br>for<br>coronographic<br>planet finder |
| ARCONS-10K                                                                          | KIDSPEC                                                                                     | Mega-Z/Giga-z                                                        | Darkness                                                         |

## 1. Classification of Transients

Important step between discovery and follow-up

PTF: 1.5Million candidates/night

1000 'real' sources

300 variables

10 SNe

LSST: 100x volume of PTF

PTF: Josh Bloom LSST: LSST science book

## Classification spectra of transients

- Low resolution spectroscopy on small-medium sized telescopes is key
- Moderate (1'x1') field of view
- ARCONS-10K on a remotely controlled (/robotic) 2-m telescope(s) at a good site would give similar or better S/N with the addition of Y+J bands
- Additional variability information
- More efficient observing without need for fixed integration times



Source: Nick Konidaris, SED machine

 Classify large number of candidates to marshal 8-10m telescope follow-up. Optimize discovery potential of upcoming transient surveys

## 2. Accreting compact objects

### Single object

- Medium resolution (R > ~3000) to distinguish emission line velocity components (interacting binaries + ...)
- Wide passband (0.35-2.4µm) to capture full SED at same time
- Good temporal resolution (< 0.1s) to sample characteristic interacting binary time-scales
- Low noise to avoid penalty of time resolution
- Optimizes collecting power of large telescopes, eg VLT, ELT

# **KIDspec**

- Dual-arm (Vis+IR) spectrograph, with echelle grating in low order (<20) to achieve R~5-10,000</li>
- <u>Cross-disperser is replaced by energy resolution of</u> <u>MKIDs</u>
- Photon counting detector allows for excellent background subtraction (a problem for e.g. Xshooter/VLT)
- Combined with image slicer  $\rightarrow$  IFU Spectroscopy too

See also, Cropper et al., 2003

## 3. Era of surveys

- Current large surveys (eg. COSMOS) combine large area imaging in a few (5-10) filters with spectroscopy of a small fraction of the sample
- Photometric redshifts used to constrain clustering
- Some surveys using multiple narrow band filters, very expensive in terms of telescope time
- Too time consuming/expensive to perform spectroscopy of more than a subset of objects detected

## e.g. Giga-z

- Redshift machine
- Pre-cut mask covers 1deg FOV
- Array of 100,000 MKIDs



- R~30 spectra for ~80,000 objects per telescope pointing
- Grid of 10"x10" macro-pixel (individual 'patrol fields')
- Each patrol field mapped onto a single MKID
- Limiting magnitude: I = 25 in 15 mins
- Survey using 800 nights of 4-m telescope time  $\rightarrow 2 \times 10^9$  z

See Marsden+13, ApJ, 208, 8

# Sample galaxies



- HTRA is key to understanding the most extreme astrophysical environments
- HTRA is demanding of detector technologies and their advances across all wavelengths
- Major developments in micro-calorimeter varieties, particularly TES (X-ray), MKIDs (opt/NIR)
- Next steps require large-scale multiplexing
- MKIDs not just for HTRA
  - broad passband + read-noise free → "perfect detector" for many applications
- MKIDs for optical/IR now successfully demonstrated on-sky, but challenges remain
- Key property: scalability amongst E-sensitive detectors → excellent candidate for future instrumentation
- Potential for astronomy similar to transition from photographic plates to CCDs!