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✤ Z sources

✤ Atoll sources

✤ Low-L bursters

✤ msec X-ray pulsars

✤ Oddballs (Cir X-1)

NS LMXBs: source classes



✤ Weakly magnetic systems
✤ Fast spinning NS (few msec)
✤ Characteristic phenomena: X-ray bursts
✤ Fast aperiodic timing
✤ Source classes

NS LMXBs: source classes

Z sources 
LX 0.1-1.0 LEDD 
All persistent (?)

Atoll sources 
LX 0.01-1.0 LEDD 
Some transient 
type-I bursts

Low-L bursters 
LX <0.01 LEDD 
Some transient 
type-I bursts
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Timing properties



Quasi-Periodic Oscillations (QPO)

w = WK(rA)�Wspin

w µ L3/7
37

Beat 
frequency
Flux related:

✤  GX 5-1 first source
✤  Broad and slow features
✤ Not a pulsar
✤ No keplerian time scale
✤  Correlated with count rate (flux?)



Quasi-Periodic Oscillations (QPO)

Beat 
frequency
Flux related:

Ṁ



Three QPO types

HBO

NBO
FBO



They correspond to BH QPOs



RossiXTE

✤ Double peaks at high frequency
✤ Expected range for Keplerian
✤ Frequency changes
✤ Sco X-1 first, then other Z and atoll



Atoll sources (lower accretion)

✤ At low flux: flat-top noise + LFQPO
✤ Same as low-L bursters



kHz QPO: basic properties

• The RossiXTE satellite


• kHz QPOs in NS: 300-1200 Hz
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• 200-1200 Hz, Q up to 200, 


• (Often) two peaks, wandering in frequency


• Frequency separation around 300 Hz


• Related to the NS spin?



kHz QPO: basic properties

✤ Seen in nearly all Z and atoll sources
✤   Twin peaks move in 200-1200 Hz range
✤  At extreme frequencies, only one peak
✤ rms is variable



kHz QPO: basic properties

✤ Q factor can be as high as 200



kHz QPO: basic properties

✤ Frequency shift on “parallel tracks”



COLLAPSED MATTER

• Keplerian oscillations?


• Limit on EoS



kHz QPO: basic properties

✤ No preferred frequency or frequency ratio
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kHz QPO: basic properties

✤ Relation to source spin?



Burst oscillations

✤ Coherent oscillations
✤ Give characteristic frequency
✤ Lot of technical difficulties here



Burst oscillations



COLLAPSED MATTER

• Burst oscillations


• Limits on M and R


• No LOFT



Accreting msec pulsars

✤ In 1999 first one found
✤ 14 known to date
✤ Faint transients
✤ 200-600 Hz pulsations



Example: Swift J1749.4-2807

✤ Pulse: 518 Hz (1036 Hz harmonic)
✤ Orbit: 
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Orbit carpentry

✤ No barycentric correction



Different timing analysis

✤ October 2010: a new eclipsing transient accreting ms pulsar



Serendipitous moon occultation

✤ Requires precise absolute timing



I did not ask for the moon...

Positional accuracy: 40 0as



Transient pulsations

✤ Two cases in 2008
✤ Aquila X-1



Transient pulsations

✤ SAX J1748.9-2021



Burst oscillations & spin



BACK TO GENERAL RELATIVITY

• Three peaks in neutron stars


• One slow, two fast

• Keplerian frequency (fastest)


• Periastron precession (fast)


• Lense-Thirring precession (slow)


• @ a certain radius! 


• Amazing agreement, high NS masses

Model by Stella & Vietri (1999)



RELATIVISTIC FREQUENCIES

Méndez et al. (2007)



LOW FREQUENCIES

Psaltis et al. (1999); van Straaten et al. (2003)
see Marieke’s poster



Other models for QPOs
Resonance model

Special 3:2 ratio?

@ radius where resonance

relativistic frequencies

requires fixed frequencies (no NS QPO)

not much evidence

Kluzniak & Abramowicz (2001)



Other models for QPOs
Disco-seismic global oscillation model

global model

trapped g-mode (gravity driven)

Accretion-Ejection instability

similar

inner containment radius is poloidal disk

Rossby-wave instability

Nowak & Wagoner (1991)

Tagger et al. (1999)



Extension of RPM
RPM is too simple: only frequencies

What can give the oscillations?

Complications and connection to the accretion flow

Only for LFQPO for the moment



RELATIVISTIC PRECESSION 
AND TRUNCATED DISK 

• spectral evolution: inward-
outward movement of inner-
disk radius

• Type-C QPOs:   Lense-Thirring 
precession of the inner flow 

• broad band noise: Magneto-
Rotational Instability (MRI)
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1975; King et al. 2005). The Bardeen–Petterson transition radius
can be roughly defined as the point where viscosity can no longer
propagate warps in the disc outward quickly enough to prevent a
twisting of the disc due to differential precession.

However, we are considering instead a hot inner flow which is
geometrically thick so α < h/r. In this case, the warp is propagated
via bending waves. The local sound crossing time-scale is shorter
than the precession time-scale throughout the flow allowing the
material to be strongly coupled by pressure waves. Consequently,
the flow precesses as a solid body (Fragile et al. 2007) with its shape
influenced by the bending waves (Pringle 1992; Lubow, Ogilvie &
Pringle 2002; Ferreira & Ogilvie 2009). Undamped bending waves
have a characteristic wavelength of

λ ∼ πr9/4

(6a∗)1/2

(
h

r

)
. (3)

These waves are, therefore, smooth at large radii and oscillatory
at small radii due to the strong r dependence of the wavelength.
Fig. 12 in Fragile et al. (2007) and fig. 10 in Fragile et al. (2009)
show the tilt angle of the flow at varying radii for a = 0.9 and 0.5,
respectively. This tilt angle increases dramatically at small radii in
a manner similar to that of the bending waves. It could be that this
rapid change in disc tilt gives rise to additional stresses which lead
to the observed drop off in surface density. It is encouraging that
fig. 13 in Fragile et al. (2007) seems to support this assertion as it
shows that the viscosity parameter of the disc, α, increases rapidly
at small radii.

The largest radius at which the rate of change of disc tilt is
significant is r ∼ λ/4, i.e. at ri ∼ 2.5 (h/r)−4/5a2/5 (using equation 3)
as this is the first point at which the bending waves have room to
turn over. A more rigorous treatment by Lubow et al. (2002) gives
ri ∼ 3.0 (h/r)−4/5a2/5. Both of these expressions give ∼10 and 8 for
a = 0.9 and 0.5, respectively, for h/r = 0.2, in agreement with the
simulations (see Section 2.3).

Fig. 5 shows the precession frequency recalculated assuming the
inner radius as above. We see that the expected decrease in QPO
frequency with spin is offset by the increase in inner radius with
spin. Counterintuitively, the QPO probes smaller radii in the flow
for lower black hole spins. Fig. 5 is in fact remarkably like the
observed data in that it predicts a maximum frequency of ∼10 Hz
for all spins considered here (a > 0.3). It also predicts the frequency
to be mostly dependent on the outer radius of the flow, not spin,
which allows the QPO frequency to tightly correlate with any other
frequency picked out by this radius, e.g. the low-frequency break
in the broad-band power spectrum (Psaltis, Belloni & van der Klis
1999; Wijnands & van der Klis 1999; Psaltis & Norman 2000).

This is a very encouraging result, but we caution that many more
simulations are needed to quantify the behaviour of the inner radius
as a function of spin, and to assess the effect of misalignment angle
(both current simulations are for 15◦). Such simulations also mean
that the simplified form of the surface density profile in equation (2)
can be replaced by the observed precession frequency of the flow.
However, the two current simulations show the drawback of this
approach as this is also sensitive to the outer boundary condition.
Our model sets the outer radius of the precessing flow by the inner
edge of the truncated disc. The flow can only freely precess in the
region where there is no thin disc blocking the mid-plane. Instead,
the current simulations only include the hot flow, and its effective
outer radius is larger for the a = 0.5 run than in the a = 0.9 and
the precession frequency directly observed from the simulations
is roughly a factor of 2 higher for a = 0.9 than for 0.5. Thus,
the simulations need also to include an outer-boundary condition

Figure 5. Precession frequency versus outer radius of a hot flow with scale-
height h/r = 0.2 and inner radius set by the bending wave region ri =
3.0(h/r)−4/5a2/5 (Lubow et al. 2002) for spins of a = 0.3 (black), a = 0.5
(red), a = 0.7 (green), a = 0.9 (blue) and a = 0.998 (magenta). The expected
increase in QPO frequency with a is mostly cancelled out by the increased
radial extent of the bending wave region, and the maximum QPO frequency
is ∼10 Hz, as observed.

in order to properly explore parameter space, and to consider the
additional torque on the flow from the interaction between the thin
disc and hot flow, which adds a great deal of complexity.

3 D ISCUSSION

The Lense–Thirring frequency of the inner flow precessing as a solid
disc does not match observed LF QPO frequencies if we assume that
the inner radius of the flow is set by the last stable orbit. However,
recent numerical simulations show that the surface density profile of
a misaligned flow drops substantially at radii which are significantly
larger than rlso for a = 0.9 and 0.5. We postulate that this radius
is set by the shape of the bending waves which distort the disc.
This radius increases with a in a way that counteracts most of the
expected increase in QPO frequency with spin at a given ro. This
results in a maximum value of ∼5–10 Hz for a 10 M⊙ black hole
of almost any spin, as observed.

Clearly, this conclusion depends on the outcome of future numer-
ical simulations. It also depends on the flow being misaligned! The
Bardeen–Peterson effect dictates that a misaligned thin disc will
gradually align with the black hole at small enough radii (Bardeen
& Peterson 1975). Most analytical estimates predict that the disc
should be more or less aligned at typical values of the truncation
radius (e.g. Fragile et al. 2001). This, therefore, implies that the flow
should be aligned if most of the material for the hot flow accretes
through the outer disc which, in turn, implies that it should not
precess! However, the thin disc alignment should be rather different
for a truncated thin disc. We intend to explore this effect in future
work.

These caveats aside, we have a very attractive model for the origin
of the low-frequency QPO in black hole binaries. This is made even
more compelling as it ties the QPO to the hot flow, so should directly
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1975; King et al. 2005). The Bardeen–Petterson transition radius
can be roughly defined as the point where viscosity can no longer
propagate warps in the disc outward quickly enough to prevent a
twisting of the disc due to differential precession.

However, we are considering instead a hot inner flow which is
geometrically thick so α < h/r. In this case, the warp is propagated
via bending waves. The local sound crossing time-scale is shorter
than the precession time-scale throughout the flow allowing the
material to be strongly coupled by pressure waves. Consequently,
the flow precesses as a solid body (Fragile et al. 2007) with its shape
influenced by the bending waves (Pringle 1992; Lubow, Ogilvie &
Pringle 2002; Ferreira & Ogilvie 2009). Undamped bending waves
have a characteristic wavelength of

λ ∼ πr9/4

(6a∗)1/2
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)
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These waves are, therefore, smooth at large radii and oscillatory
at small radii due to the strong r dependence of the wavelength.
Fig. 12 in Fragile et al. (2007) and fig. 10 in Fragile et al. (2009)
show the tilt angle of the flow at varying radii for a = 0.9 and 0.5,
respectively. This tilt angle increases dramatically at small radii in
a manner similar to that of the bending waves. It could be that this
rapid change in disc tilt gives rise to additional stresses which lead
to the observed drop off in surface density. It is encouraging that
fig. 13 in Fragile et al. (2007) seems to support this assertion as it
shows that the viscosity parameter of the disc, α, increases rapidly
at small radii.

The largest radius at which the rate of change of disc tilt is
significant is r ∼ λ/4, i.e. at ri ∼ 2.5 (h/r)−4/5a2/5 (using equation 3)
as this is the first point at which the bending waves have room to
turn over. A more rigorous treatment by Lubow et al. (2002) gives
ri ∼ 3.0 (h/r)−4/5a2/5. Both of these expressions give ∼10 and 8 for
a = 0.9 and 0.5, respectively, for h/r = 0.2, in agreement with the
simulations (see Section 2.3).

Fig. 5 shows the precession frequency recalculated assuming the
inner radius as above. We see that the expected decrease in QPO
frequency with spin is offset by the increase in inner radius with
spin. Counterintuitively, the QPO probes smaller radii in the flow
for lower black hole spins. Fig. 5 is in fact remarkably like the
observed data in that it predicts a maximum frequency of ∼10 Hz
for all spins considered here (a > 0.3). It also predicts the frequency
to be mostly dependent on the outer radius of the flow, not spin,
which allows the QPO frequency to tightly correlate with any other
frequency picked out by this radius, e.g. the low-frequency break
in the broad-band power spectrum (Psaltis, Belloni & van der Klis
1999; Wijnands & van der Klis 1999; Psaltis & Norman 2000).

This is a very encouraging result, but we caution that many more
simulations are needed to quantify the behaviour of the inner radius
as a function of spin, and to assess the effect of misalignment angle
(both current simulations are for 15◦). Such simulations also mean
that the simplified form of the surface density profile in equation (2)
can be replaced by the observed precession frequency of the flow.
However, the two current simulations show the drawback of this
approach as this is also sensitive to the outer boundary condition.
Our model sets the outer radius of the precessing flow by the inner
edge of the truncated disc. The flow can only freely precess in the
region where there is no thin disc blocking the mid-plane. Instead,
the current simulations only include the hot flow, and its effective
outer radius is larger for the a = 0.5 run than in the a = 0.9 and
the precession frequency directly observed from the simulations
is roughly a factor of 2 higher for a = 0.9 than for 0.5. Thus,
the simulations need also to include an outer-boundary condition

Figure 5. Precession frequency versus outer radius of a hot flow with scale-
height h/r = 0.2 and inner radius set by the bending wave region ri =
3.0(h/r)−4/5a2/5 (Lubow et al. 2002) for spins of a = 0.3 (black), a = 0.5
(red), a = 0.7 (green), a = 0.9 (blue) and a = 0.998 (magenta). The expected
increase in QPO frequency with a is mostly cancelled out by the increased
radial extent of the bending wave region, and the maximum QPO frequency
is ∼10 Hz, as observed.

in order to properly explore parameter space, and to consider the
additional torque on the flow from the interaction between the thin
disc and hot flow, which adds a great deal of complexity.

3 D ISCUSSION

The Lense–Thirring frequency of the inner flow precessing as a solid
disc does not match observed LF QPO frequencies if we assume that
the inner radius of the flow is set by the last stable orbit. However,
recent numerical simulations show that the surface density profile of
a misaligned flow drops substantially at radii which are significantly
larger than rlso for a = 0.9 and 0.5. We postulate that this radius
is set by the shape of the bending waves which distort the disc.
This radius increases with a in a way that counteracts most of the
expected increase in QPO frequency with spin at a given ro. This
results in a maximum value of ∼5–10 Hz for a 10 M⊙ black hole
of almost any spin, as observed.

Clearly, this conclusion depends on the outcome of future numer-
ical simulations. It also depends on the flow being misaligned! The
Bardeen–Peterson effect dictates that a misaligned thin disc will
gradually align with the black hole at small enough radii (Bardeen
& Peterson 1975). Most analytical estimates predict that the disc
should be more or less aligned at typical values of the truncation
radius (e.g. Fragile et al. 2001). This, therefore, implies that the flow
should be aligned if most of the material for the hot flow accretes
through the outer disc which, in turn, implies that it should not
precess! However, the thin disc alignment should be rather different
for a truncated thin disc. We intend to explore this effect in future
work.

These caveats aside, we have a very attractive model for the origin
of the low-frequency QPO in black hole binaries. This is made even
more compelling as it ties the QPO to the hot flow, so should directly
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1975; King et al. 2005). The Bardeen–Petterson transition radius
can be roughly defined as the point where viscosity can no longer
propagate warps in the disc outward quickly enough to prevent a
twisting of the disc due to differential precession.

However, we are considering instead a hot inner flow which is
geometrically thick so α < h/r. In this case, the warp is propagated
via bending waves. The local sound crossing time-scale is shorter
than the precession time-scale throughout the flow allowing the
material to be strongly coupled by pressure waves. Consequently,
the flow precesses as a solid body (Fragile et al. 2007) with its shape
influenced by the bending waves (Pringle 1992; Lubow, Ogilvie &
Pringle 2002; Ferreira & Ogilvie 2009). Undamped bending waves
have a characteristic wavelength of

λ ∼ πr9/4

(6a∗)1/2
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)
. (3)

These waves are, therefore, smooth at large radii and oscillatory
at small radii due to the strong r dependence of the wavelength.
Fig. 12 in Fragile et al. (2007) and fig. 10 in Fragile et al. (2009)
show the tilt angle of the flow at varying radii for a = 0.9 and 0.5,
respectively. This tilt angle increases dramatically at small radii in
a manner similar to that of the bending waves. It could be that this
rapid change in disc tilt gives rise to additional stresses which lead
to the observed drop off in surface density. It is encouraging that
fig. 13 in Fragile et al. (2007) seems to support this assertion as it
shows that the viscosity parameter of the disc, α, increases rapidly
at small radii.

The largest radius at which the rate of change of disc tilt is
significant is r ∼ λ/4, i.e. at ri ∼ 2.5 (h/r)−4/5a2/5 (using equation 3)
as this is the first point at which the bending waves have room to
turn over. A more rigorous treatment by Lubow et al. (2002) gives
ri ∼ 3.0 (h/r)−4/5a2/5. Both of these expressions give ∼10 and 8 for
a = 0.9 and 0.5, respectively, for h/r = 0.2, in agreement with the
simulations (see Section 2.3).

Fig. 5 shows the precession frequency recalculated assuming the
inner radius as above. We see that the expected decrease in QPO
frequency with spin is offset by the increase in inner radius with
spin. Counterintuitively, the QPO probes smaller radii in the flow
for lower black hole spins. Fig. 5 is in fact remarkably like the
observed data in that it predicts a maximum frequency of ∼10 Hz
for all spins considered here (a > 0.3). It also predicts the frequency
to be mostly dependent on the outer radius of the flow, not spin,
which allows the QPO frequency to tightly correlate with any other
frequency picked out by this radius, e.g. the low-frequency break
in the broad-band power spectrum (Psaltis, Belloni & van der Klis
1999; Wijnands & van der Klis 1999; Psaltis & Norman 2000).

This is a very encouraging result, but we caution that many more
simulations are needed to quantify the behaviour of the inner radius
as a function of spin, and to assess the effect of misalignment angle
(both current simulations are for 15◦). Such simulations also mean
that the simplified form of the surface density profile in equation (2)
can be replaced by the observed precession frequency of the flow.
However, the two current simulations show the drawback of this
approach as this is also sensitive to the outer boundary condition.
Our model sets the outer radius of the precessing flow by the inner
edge of the truncated disc. The flow can only freely precess in the
region where there is no thin disc blocking the mid-plane. Instead,
the current simulations only include the hot flow, and its effective
outer radius is larger for the a = 0.5 run than in the a = 0.9 and
the precession frequency directly observed from the simulations
is roughly a factor of 2 higher for a = 0.9 than for 0.5. Thus,
the simulations need also to include an outer-boundary condition

Figure 5. Precession frequency versus outer radius of a hot flow with scale-
height h/r = 0.2 and inner radius set by the bending wave region ri =
3.0(h/r)−4/5a2/5 (Lubow et al. 2002) for spins of a = 0.3 (black), a = 0.5
(red), a = 0.7 (green), a = 0.9 (blue) and a = 0.998 (magenta). The expected
increase in QPO frequency with a is mostly cancelled out by the increased
radial extent of the bending wave region, and the maximum QPO frequency
is ∼10 Hz, as observed.

in order to properly explore parameter space, and to consider the
additional torque on the flow from the interaction between the thin
disc and hot flow, which adds a great deal of complexity.

3 D ISCUSSION

The Lense–Thirring frequency of the inner flow precessing as a solid
disc does not match observed LF QPO frequencies if we assume that
the inner radius of the flow is set by the last stable orbit. However,
recent numerical simulations show that the surface density profile of
a misaligned flow drops substantially at radii which are significantly
larger than rlso for a = 0.9 and 0.5. We postulate that this radius
is set by the shape of the bending waves which distort the disc.
This radius increases with a in a way that counteracts most of the
expected increase in QPO frequency with spin at a given ro. This
results in a maximum value of ∼5–10 Hz for a 10 M⊙ black hole
of almost any spin, as observed.

Clearly, this conclusion depends on the outcome of future numer-
ical simulations. It also depends on the flow being misaligned! The
Bardeen–Peterson effect dictates that a misaligned thin disc will
gradually align with the black hole at small enough radii (Bardeen
& Peterson 1975). Most analytical estimates predict that the disc
should be more or less aligned at typical values of the truncation
radius (e.g. Fragile et al. 2001). This, therefore, implies that the flow
should be aligned if most of the material for the hot flow accretes
through the outer disc which, in turn, implies that it should not
precess! However, the thin disc alignment should be rather different
for a truncated thin disc. We intend to explore this effect in future
work.

These caveats aside, we have a very attractive model for the origin
of the low-frequency QPO in black hole binaries. This is made even
more compelling as it ties the QPO to the hot flow, so should directly
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1975; King et al. 2005). The Bardeen–Petterson transition radius
can be roughly defined as the point where viscosity can no longer
propagate warps in the disc outward quickly enough to prevent a
twisting of the disc due to differential precession.

However, we are considering instead a hot inner flow which is
geometrically thick so α < h/r. In this case, the warp is propagated
via bending waves. The local sound crossing time-scale is shorter
than the precession time-scale throughout the flow allowing the
material to be strongly coupled by pressure waves. Consequently,
the flow precesses as a solid body (Fragile et al. 2007) with its shape
influenced by the bending waves (Pringle 1992; Lubow, Ogilvie &
Pringle 2002; Ferreira & Ogilvie 2009). Undamped bending waves
have a characteristic wavelength of

λ ∼ πr9/4

(6a∗)1/2
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These waves are, therefore, smooth at large radii and oscillatory
at small radii due to the strong r dependence of the wavelength.
Fig. 12 in Fragile et al. (2007) and fig. 10 in Fragile et al. (2009)
show the tilt angle of the flow at varying radii for a = 0.9 and 0.5,
respectively. This tilt angle increases dramatically at small radii in
a manner similar to that of the bending waves. It could be that this
rapid change in disc tilt gives rise to additional stresses which lead
to the observed drop off in surface density. It is encouraging that
fig. 13 in Fragile et al. (2007) seems to support this assertion as it
shows that the viscosity parameter of the disc, α, increases rapidly
at small radii.

The largest radius at which the rate of change of disc tilt is
significant is r ∼ λ/4, i.e. at ri ∼ 2.5 (h/r)−4/5a2/5 (using equation 3)
as this is the first point at which the bending waves have room to
turn over. A more rigorous treatment by Lubow et al. (2002) gives
ri ∼ 3.0 (h/r)−4/5a2/5. Both of these expressions give ∼10 and 8 for
a = 0.9 and 0.5, respectively, for h/r = 0.2, in agreement with the
simulations (see Section 2.3).

Fig. 5 shows the precession frequency recalculated assuming the
inner radius as above. We see that the expected decrease in QPO
frequency with spin is offset by the increase in inner radius with
spin. Counterintuitively, the QPO probes smaller radii in the flow
for lower black hole spins. Fig. 5 is in fact remarkably like the
observed data in that it predicts a maximum frequency of ∼10 Hz
for all spins considered here (a > 0.3). It also predicts the frequency
to be mostly dependent on the outer radius of the flow, not spin,
which allows the QPO frequency to tightly correlate with any other
frequency picked out by this radius, e.g. the low-frequency break
in the broad-band power spectrum (Psaltis, Belloni & van der Klis
1999; Wijnands & van der Klis 1999; Psaltis & Norman 2000).

This is a very encouraging result, but we caution that many more
simulations are needed to quantify the behaviour of the inner radius
as a function of spin, and to assess the effect of misalignment angle
(both current simulations are for 15◦). Such simulations also mean
that the simplified form of the surface density profile in equation (2)
can be replaced by the observed precession frequency of the flow.
However, the two current simulations show the drawback of this
approach as this is also sensitive to the outer boundary condition.
Our model sets the outer radius of the precessing flow by the inner
edge of the truncated disc. The flow can only freely precess in the
region where there is no thin disc blocking the mid-plane. Instead,
the current simulations only include the hot flow, and its effective
outer radius is larger for the a = 0.5 run than in the a = 0.9 and
the precession frequency directly observed from the simulations
is roughly a factor of 2 higher for a = 0.9 than for 0.5. Thus,
the simulations need also to include an outer-boundary condition

Figure 5. Precession frequency versus outer radius of a hot flow with scale-
height h/r = 0.2 and inner radius set by the bending wave region ri =
3.0(h/r)−4/5a2/5 (Lubow et al. 2002) for spins of a = 0.3 (black), a = 0.5
(red), a = 0.7 (green), a = 0.9 (blue) and a = 0.998 (magenta). The expected
increase in QPO frequency with a is mostly cancelled out by the increased
radial extent of the bending wave region, and the maximum QPO frequency
is ∼10 Hz, as observed.

in order to properly explore parameter space, and to consider the
additional torque on the flow from the interaction between the thin
disc and hot flow, which adds a great deal of complexity.

3 D ISCUSSION

The Lense–Thirring frequency of the inner flow precessing as a solid
disc does not match observed LF QPO frequencies if we assume that
the inner radius of the flow is set by the last stable orbit. However,
recent numerical simulations show that the surface density profile of
a misaligned flow drops substantially at radii which are significantly
larger than rlso for a = 0.9 and 0.5. We postulate that this radius
is set by the shape of the bending waves which distort the disc.
This radius increases with a in a way that counteracts most of the
expected increase in QPO frequency with spin at a given ro. This
results in a maximum value of ∼5–10 Hz for a 10 M⊙ black hole
of almost any spin, as observed.

Clearly, this conclusion depends on the outcome of future numer-
ical simulations. It also depends on the flow being misaligned! The
Bardeen–Peterson effect dictates that a misaligned thin disc will
gradually align with the black hole at small enough radii (Bardeen
& Peterson 1975). Most analytical estimates predict that the disc
should be more or less aligned at typical values of the truncation
radius (e.g. Fragile et al. 2001). This, therefore, implies that the flow
should be aligned if most of the material for the hot flow accretes
through the outer disc which, in turn, implies that it should not
precess! However, the thin disc alignment should be rather different
for a truncated thin disc. We intend to explore this effect in future
work.

These caveats aside, we have a very attractive model for the origin
of the low-frequency QPO in black hole binaries. This is made even
more compelling as it ties the QPO to the hot flow, so should directly
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Figure 2. Schematic diagram of the geometry considered. The inner flow
(grey with blue angular momentum vector) precesses about the black
hole angular momentum vector whilst the outer disc (red/orange) remains
aligned with the binary partner. The flow extends between ri and ro.
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Figure 3. Precession frequency of an inner flow of varying outer radius.
The solid black, red, green, blue and magenta lines represent spin values of
a∗ = 0.3, a∗ = 0.5, a∗ = 0.7, a∗ = 0.9 and a∗ = 0.998 respectively.
The green dashed line represents a point particle for a∗ = 0.7. The mini-
mum radius is the last stable orbit as a function of spin. We see that, as in
the case of point particle Lense-Thirring, the peak frequency is both higher
than observed values and has too strong a spin dependence.

the other prescription for the resultant QPO frequency even at the
largest radii, and that this difference decreases monotonically as ro

decreases.
Figure 3 shows the precession frequency plotted against ro

for a number of spins with ri = rlso. These frequencies are al-
ways higher at a given ro as the effective radius is a surface density
weighted average from ri to ro We still, however, see the same
two problems encountered in section 2.1, namely, that the peak fre-
quency is too high and varies too strongly with spin.

2.3 Inner radius

So far we have considered a flow with its inner radius at the last
stable orbit. Instead, the precession timescale is set by where the
surface density drops significantly, as the region interior to this will
not contribute significantly to the moment of inertia. Full general
relativistic simulations of the magneto-rotational instability (MRI,
the underlying source of the stresses which transport angular mo-
mentum) show that this drops sharply at around 1.5× rlso (e.g. Fig
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Figure 4. Surface density as a function of radius recovered from numerical
simulations of a misaligned flow (Fragile et al 2007) with a∗ = 0.5 (red)
and a∗ = 0.9 (blue). Data points have been fit by a double law which
breaks at ri. We find ri(a∗ = 0.5) ∼ 8 and ri(a∗ = 0.9) ∼ 9.

4. in Krolik, Hawley & Hirose 2005) for thick flows aligned with
the black hole spin.

However, we are considering Lense-Thirring precession so
the key issue is that the flow is misaligned. The extra torques on
the flow give extra contributions to the stresses. Simulations (e.g.
Fragile et al 2007) have shown this to increase the inward veloc-
ity, and therefore decrease the density of the flow. Figure 4 shows
the surface density profile obtained from two simulations, both of
a flow misaligned by 15o but with differing black hole spin. The
blue points are for a∗ = 0.9 (Fragile et al 2007) and the red points
are for a∗ = 0.5 (Fragile et al 2009). We have fit the data with a
smoothly broken power law function Σoxα/(1+xγ)(ζ+α)/γ where
x = r/ri. This gives xα and x−ζ for r << ri and r >> ri,
respectively, while γ controls the sharpness of the break. We fix
ζ = 0 (see Section 2.2) and obtain ri ∼ 9 for a∗ = 0.9 and
ri ∼ 8 for a∗ = 0.5, both of which are significantly larger than
rlso − 1.5 rlso for untilted flows.

Ideally, we would now like to re-plot figure 3 using the inner
radius for a misaligned flow. However, we only have two simula-
tion points for ri which is clearly inadequate for our purposes. We
therefore make an analytical approximation in the next section in
order to address this point.

2.3.1 Solid disc with inner radius set by bending waves

The additional torques will be strongest where the flow is most mis-
aligned, so these should track the shape of the flow. This is set by
bending waves, which communicate the warp and twist in initially
circular and coplanar orbits, against viscous damping. Analytic ap-
proximations to the resulting shape can be calculated assuming lin-
ear perturbations in an initially thin disc (e.g. Ferreira & Ogilvie
2008). The global structure then depends on the ratio of the viscos-
ity parameter, α, relative to the disc semi-thickness, H = hRg . For
α > h/r, warped disturbances via Lense-Thirring precession are
propagated by viscous decay which eventually drags the inner disc
into alignment with the black hole spin, while the outer disc aligns
with the orbital plane of the companion star (Bardeen & Peterson
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Truncated disk model 
Done, Gierliński, Kubota 2007

Lense-Thirring precession & MRI 
Stella & Vietri 1998a,b, 1999

Ingram et al 2009, Ingram & Done 2010, Ingram & Done 2011



RELATIVISTIC PRECESSION 
AND TRUNCATED DISK 

Truncated disk model 

Gilfanov (2010) 

Soft State 

Hard State 

~6Rg 

~60Rg 

Truncated disk model 
Done, Gierliński, Kubota 2007

Lense-Thirring precession & MRI 
Stella & Vietri 1998a,b, 1999

Ingram et al 2009, Ingram & Done 2010, Ingram & Done 2011



ULXs
Still the question of mass: IMBH or BHB?

A lot of discussion on the topic

Spectral methods, heated discussion

Timing can be a way

Need to identify features

Comparison with something we do not know well



ULX: TIMING APPROACH

• Systematic studies (few)


• rms-flux relation  
(NGC 5408 X-1)


• Still missing: hardness-rms diagram - variability hard to measure


• Things will get better in time

Heil et al. (2009)



ULX: TIMING APPROACH - QPOs

• Precise frequencies


• Typical of galactic binaries


• Direct comparison


• Relatively rare


• M82 X-1


• It has all required signatures

Strohmayer & Mushotsky (2003)

Mucciarelli et al. (2006)



ULX: TIMING APPROACH - QPOs

• Fast frequency variations


• Associated noise (22% rms)


• Long-term changes (?)

Mucciarelli et al. (2006)



ULX: TIMING APPROACH - QPOs

• Correlation?


• Which QPO?


• HFQPO? Does not fit (and yet it moves..!)


• Type C: the worst type for mass estimate

Wijnands & van der Klis (1999)



ULX: TIMING APPROACH - QPOs

• NGC 5408


• 20 mHz QPO + break 3.5 mHz


• Two peaks?


• Watch out for ratios

Strohmayer et al. (2007)



• Using correlations: 
 
   noise ➩ QPO 
   LX ➩ Ṁ

A MULTI-STEP ATTEMPT

Casella et al. (2008)

Belloni et al. (2002)

Q
PO

  

Noise

Accretion rate

M
as

s 
* Q

PO

Körding et al. (2007)

➪ Mass



• Dubious detections

NOW MANY MORE CLAIMS 

M 82

NGC 1313



HARD STATE / SOFT STATE

•Hard state: variable
•Soft state: quiet  
 

•Variability in the Compton component
•Disk does not vary
•Closed issue?



SOFT STATE
• Variability is large at high energies
• Disk is not variable
•“Removing it” works



HARD STATE

• Disk is present below 1 keV
• For low NH we can see it  
 

• Variability is stronger at low ν
• Lags are complex

Uttley et al. (2011)



HARD STATE

• < 1 Hz: disk more variable and leads
• Long time delay due to viscous propagation

• < 1 Hz: Compton more variable and leads
• Short time delay due to light travel time

The disk varies only when you don’t see it… 



NATURE OF LHS SIGNAL

• Shot noise (multiple)?
• res-flux relation
• lognormal distribution

Gleissner et al. (2004)

Uttley et al. (2005)

• It cannot be shot noise
• Non-linearity
• Compatible with propagation models



PROPAGATION MODEL



REVERBERATION MAPPING

Time 

In
te

ns
ity

 

Continuum 

Line emission 

300 days 

UV continuum 

Opt. continuum 

Ly α 

Hβ 

Lag ~20 days 

Optical time lags in AGN can be used to map scales of light-days 

X-rays can map <light-mins in AGN, and <light-ms in 
XRBs! 



ABSOLUTE DISTANCES

Reverberation allows distances to be measured in km, 
not R/M: highly complementary to spectral fitting 
 
Spectral (i.e. redshift)+lag information can give 
dynamics of a system 



GOING TO THE INNER PARTS

N. of photons over light-crossing time higher for AGN
But for BHBs one can go to lower frequencies

and disk is in X-rays



GOING TO THE INNER PARTS

Low frequencies: hard lag ->propagation
High frequencies: soft lag -> reverberation

1H 0707-495 

De Marco et al. (2013)



IRON LINE COMPLEX

Clean area of spectrum

Zoghbi et al. (2012) Uttley et al. (2014)



RESPONSE TO A FLARE



THE END


