

Black-hole binaries

Tomaso M. Belloni (INAF - Osservatorio Astronomico di Brera) (Visiting Professor, Univ. of Southampton)

OUTLINE

- Lecture I: Accretion onto compact objects, X-ray binaries, black hole candidates, X-ray pulsars
- Lecture II: High-energy emission and spectra
- Lecture III: Time variability on all scales
- Lecture IV: Radio emission, jets, accretion/ejection
- ♠ Lecture V: BH parameters & GR, AGN connection
- ♠ Lecture VI: Neutron-Star binaries + ULX + more

First radio measurements

- As usual, Cyg X-1
- Radio emission is state related

AGN Radio jets

- Observed since the the 80's
- From radio lobes...
- ... to relativistic jets

Superluminal motion

- Radio "blobs" faster than light
- Relativistic explanation
- Jet is beamed towards us

$$v_{app} = \frac{\beta c \sin \theta}{1 - \beta \cos \theta}$$

The great annihilator

- Same source with 511 keV line
- Double jets like AGN
- Dubbed a "microquasar"

GRS 1915+105

- Very peculiar source
- Superluminal jets
- Double!

$$\beta \cos \theta = \frac{\mu_{app} - \mu_{rec}}{\mu_{app} + \mu_{rec}}$$

Mirabel & Rodríguez (1994)

GRS 1915+105

Limit on distance

$$D \le \frac{c}{\sqrt{\mu_{app}\mu_{rec}}} \le 13.7 \text{kpc}$$

- From HI: 12.5 kpc
- $v=0.98c; \theta=66^{\circ}$
- Flux ratio:

$$\frac{S_{app}}{S_{rec}} = \left(\frac{1 + \beta \cos \theta}{1 - \beta \cos \theta}\right)^{k - \alpha}$$

Fender et al. (1999)

Other sources

- Many detections of moving jets
- Many detections of radio flares

Many detections of persistent

radio emission

Jet-driven nebulae

- Important for estimate of power in the jet
- ♦ SS 433: >10³⁹ erg/s

- Cyg X-1: one-sided
- Not many nebulae compared to AGN

X-ray jets

- As in AGN
- Chandra detections
- Optically thin synchrotron
- In situ acceleration
- Production of TeV particles?
- Remnant jet

Relation to states

- Strong connection with jets
- Strong connection with radio

A picture emerges

Compact jets

- Hard state
- Small-scale elongations
- $^{\prime\prime\prime}$ Inverted spectrum $F_{\nu} \propto \nu^{\alpha}$ $\alpha \sim 0.0-0.3$
- Self-absorbed synchrotron
- Similar yo LLAGN
- Small Γ (later)

Self-absorbed synchrotron

- Optically thick,stratified
- Steady jet, smoothly expanding
- Frequency peakchanges with position
- Tricky to image at one frequency

Soft state: quenching

- Soft state
- No detection in many..
- Some detection in others...
- .. but steep spectrum

No core emission?

Fender, Homan & Belloni (2009)

Correlations

- Radio-X correlation
- Break @ HSS
- Three decades

Gallo et al. (2003)

Correlation & hysteresis?

- Not exactly there
- Hysteresis effect
- Also in infrared

Second branch

- Some sources
- What is different??

Corbel et al. (2013)

Also quiescence!

- A0620-00 in quiescence
- Right on correlation
- Radio as a proxy for accretion rate?

Gallo et al. (2006)

Advective flows

- Lx vs. M
- Remember Lecture 2

Timing correlation

Timing feature vs. M

How fast is the jet?

- From the correlation
- Spread means little beaming
- \clubsuit Therefore $\Gamma \sim 1-2$

Origin of the emission

- We have the hard "corona" component in X rays
- Where is the corona? It could be the base of the jet itself

Markoff (2009)

Relativistic ejections

- A different type of jet?
- \clubsuit Can we measure their Γ ?
- We measure β

Fender, Belloni & Gallo (2004)

lower limits

Miller-Jones et al. (2006)

18-III-1994

Back to GRS 1915+105

Major ejection: X-ray related

Oscillations

- * X-ray oscillations: instability
- Radio/IR correlates: 1 to 1 to X

Pooley & Fender (1997)

Multi-λ picture

- X-ray oscillations
- Relativistic expanding jet

Specific timing connection?

Mirabel et al. (1998)

Hard-soft?

- ♠ GRS 1915+105 has three states: two soft and one hard
- Radio oscillations only when hard is involved

Klein-Wolt et al. (1999)

Recap on ejections

- High Lorentz factor
- In GRS 1915+105, associated to X-ray events
- X-ray events are hard-to-soft

- When do they take place in a normal transient?
- Hard, soft or intermediate?

Transient ejections

- Major flares or ejections
- Always intermediate
- Only in hard to soft
- Precisely at HIMS-SIMS transition?
- Noise disappears jet appears
- Not causal

Fender, Belloni & Gallo (2004)

The jet line

- Major ejection (flare) crossing the line
- Only right to left
- Not on reverse transition
- Some: multiple crossings
- GRS 1915+105: many crossings

Fender, Belloni & Gallo (2004)

This leads to a toy model

One jet to rule them all

- Jet accelerates
- Then quenched

- Internal shocks(GRB model)
- Not on reverse

One jet to rule them all

- It fits everything
- It does not need complications
- Only one jet

Can shocks power it?

Internal shocks

- Yes, they can
- Power scaling works
- Moreover...
- Jet could be dominating power..
- .. outside soft states

Fender, Belloni & Gallo (2004)

Failed outbursts

- M LHS only, no transitions
- # HIMS but no jet
- Jet (and state transition) can be called off

Jets and winds

- GRS 1915+105
- All Chandra observations
- Hard: emission line
- Soft: wind absorption lines
- Take away more power
- → ~1000 km/s

Neilsen & Lee (2009)

Jets and winds

Inclination effects

Ponti et al. (2012)

Jets and winds

Ponti et al. (2012)

The full picture

JET LINE AREA:

- 2 50% L_{Edd}.
- High-frequency QPOs (after) .
- Type A & B QPOs (after).
- See radio ejecta (fast) each "crossing" of jet line.
- → RMS drop ("The Zone") associated with ~0.2 Hz lowest fregency Lorentzian, close to ejecta time.

HIMS:

- Disk starts near ISCO.
- Transition starts around 2 50% L_{Edd}.
- Type C QPOs.
- IR drops.
- Radio starts going optically thin and variable (new ejecta?).

SOFT STATE:

Optically nuclear thin jet radio emission observed initially, but quenched by at least 20-50x by full transition.

Detected radio flux not nuclear?

- ■Type C QPOs.
- Non-thermal power law extending to ~MeV.
- ■Thin disk ~0.1-1.0 L_{Edd} at ISCO.

HARD STATE:

- Disk moves in to ~ few R_g by 10% L_{Edd}.
- Lorentzian/broad noise components.
- High RMS variability.
 - Flat spectrum jet up to IR/opt.
 - Compact jet sometimes resolved.
 - Radio/IR/X-ray correlations.
 - Reflection "bump".

Spectral Hardness (spectral slope, soft=steep, hard=flat)

T. Belloni A. Celotti

D. Maitra
S. Markoff

S. Corbel I. Mo R. Fender M. N

I. McHardy M. Nowak

E. Gallo P.-O. Petrucci M. Hanke K. Pottschmidt

E. Kalemci J. Wilms

HIMS:

Same as upper branch but:

- → No optically thin radio flare.
- Radio recovers close to hard state.
- Lower flux level (hysteresis).

QUIESCENCE

- ◆Thin disk recessed to > 10² R_a.
- ■BB component seen in UV/Optical.
- Disk 10-100x more luminous than LX. By ~10⁻⁴ L_{Edd}.
- No iron lines?

Belloni et al. (2010)

Probing the Accretion/Outflow Connection in X-Ray Binaries and Active Galactic Nuclei

The full picture

Fender & Belloni (2012)

Neutron star binaries

Hard-state correlation: similar to black holes, but radio-quiet (factor 30)

Migliari & Fender (2006)

Plus ejections

Neutron star blasts

Fender et al. (2004)

- Circinus X-1
- Neutron-star binary
- * X-ray flare...
- … radio brightening

- $\Gamma > 15!!$
- No relation to vesc

White dwarfs!

- SS Cygni
- Dwarf nova
- Radio flare

At transition!

Kording et al. (2008)

More white dwarfs!

- RS Oph
- Recurrent nova
- Ejection
- Around 1 month after

* v comparable to vesc

Rupen et al. (2007)

Timing white dwarfs

Dwarf-nova oscillations & QPO

Warner, Woudt & Pretorius (2003)

They fit the correlation

What this means..

.. tomorrow

Fast timing

Optical measurements

Fast timing

Now more and more

Durant et al. (2011)

Veledina et al. (2015)

First IR QPO

M GX 339-4

Kalamkar et al. (2015)

