

Black-hole binaries

Tomaso M. Belloni (INAF - Osservatorio Astronomico di Brera) (Visiting Professor, Univ. of Southampton)

OUTLINE

- Lecture I: Accretion onto compact objects, X-ray binaries, black hole candidates, X-ray pulsars
- **♦ Lecture II: High-energy emission and spectra**
- Lecture III: Time variability on all scales
- Lecture IV: Radio emission, jets, accretion/ejection
- ♠ Lecture V: BH parameters & GR, AGN connection
- ♠ Lecture VI: Neutron-Star binaries + ULX + more

Thin disk spectrum $f = 1 - \left(\frac{R_{\star}}{R}\right)^{1/2}$

$$f = \left[1 - \left(\frac{R_{\star}}{R}\right)^{1/2}\right]^{1/4}$$

- Model for thin disks (1973)
- Optically thick disk
- Each radius a blackbody with

$$T(R) = \left\{ \frac{3GM\dot{M}}{8\pi R^3 \sigma} \right\}^4 f$$

- ** T(R) as effective temperature
- Total spectrum is

$$F_{\nu} = \frac{4\pi h \cos i\nu^{3}}{c^{2}D^{2}} \int_{R_{\star}}^{R_{out}} \frac{RdR}{e^{h\nu/kT(R)} - 1}$$

First observations

W Uhuru satellite

Cygnus X-1 shows variations

Tananbaum et al. (1972)

Sources are too hard

Early observations

- Cygnus X-1
- Spectrum is not a disk!
- Break above 100 keV
- Comptonization

Comptonization

- Thermal hot electrons
- 4 Cyg X-1: kT_e ~ 60 keV, τ~ 1

Comptonization parameter

$$y = \frac{4kT_e}{mc^2} \max(\tau, \tau^2)$$

Comptonization

Model degenerate (geometry, temperature, optical depth)

Energy (keV.

Energy (keV)

Hybrid models

Non-thermal electrons - no high-energy cutoff

$$\Delta E \simeq \gamma^2 E$$

$$n(\gamma) \propto \gamma^{-s} \to F(\nu) \propto \nu^{-\frac{s-1}{2}}$$

Hybrid models

- A hard tail observed in some systems
- Small percentage of non-thermal photons

Hybrid models

- Seen in a few systems
- Must be non-thermal

- Always difficult measurements
- Long exposures needed

Full spectrum?

- Two components
- Comptonization
- Disk (seen?)
- Spectrum is even more complex

A little detour

X-ray spectra @ low res.

Detector response is not diagonal (why?)

Thick disk is dead...?

- Not at all
- When spectrum is soft: it fits well!
- With a disk-blackbody model no f

$$f(E) = \frac{8\pi r_{in}^2 \cos \theta}{3D^2} \int_{T_{out}}^{T_{in}} \left(\frac{T}{T_{in}}\right)^{-11/3} B(E, T) \frac{dT}{T_{in}}$$

Spherical equivalence

$$L_d = \int_{r_{in}}^{r_{out}} 4\pi r \sigma T^4(r) dr \simeq 4\pi r_{in} \sigma T_{in}^4$$

Disk blackbody

- Wery soft spectrum
- Did I mention absorption?

Plus of course detector response

More complex model

- Effect of Comptonization
- $^{ top}$ Hardening factor $f_{col} = t_{col}/t_{eff} \sim 1.7$
- Constant?
- One has to be very careful
- Real life is even more complex

frame dragging, Doppler boosting, gravitational redshift, light bending, limb darkening, self-reirradiation

kT-Luminosity

♠ If it looks like a BB and quacks like a BB...

Done, Gierliński & Kubota (2006)

GRS 1915+105

- Weird source
- Radius oscillations

Non-thermal Compton.?

- Disk is not alone
- Non-thermal?
- Bulk motion?
- Single scatterings?

Bulk motion Compton.

Recap

Two flavors of spectra

Soft

ADAF/ADIOS etc models

Inner disk radius

Recent claims that disk radius is always small

Very sensitive to model Very sensitive to N_H

Inner disk radius?

Same source, same data, inconclusive results

Very sensitive to model Very sensitive to N_H

Technical caveat

- $^{\prime\prime\prime}$ Inner disk radius is (Norm) $^{1/2}$ $R_{in}=D\sqrt{N\cos i}$
- Small radius -- small normalization
- Small radius -- absence of detection
- Temperature is also low

- ♠ I see a small radius = I don't see the disk very well
- All this under absorption

Recent results

- Inner disk radius from a sample
- \clubsuit Above 0.01 L_{Edd} , $R_{in} < 10 R_g$
- ♠ Between 0.001 and 0.01 in starts to recede
- \blacksquare Remember L vs kT

Cabanac et al. (2009)

Additional components

- Disk reflectshard radiation
- Additionalcomponent present
- What does it look like?

Compton reflection

- Reflection bump
- \clubsuit Fluorescent K_{α} lines
- Iron line dominates
- 6.4 keV / 6.7 keV
- Narrow line+bump
- ** Related to hard flux and covering factor $\Omega/2\pi$

Reynolds & Nowak (2002)

Compton reflection

- Some examples
- Hard spectra but also soft spectra
- Φ $\Omega/2\pi$ depends on inner radius

Compton reflection

- R correlates with spectral slope
- Inner disk moves in
- More soft-photon input
- Steeper spectrum
- More angle, more reflection
- Does the disk move in?

Fluorescence lines

- Narrow lines expected
- Relativistic distortions:
 - Doppler effect
 - Relativistic aberration
 - light bending
 - redshift

Fluorescence lines

- Broad line expected
- Broadening can be used

- Relativistic effects
- GR evidence

(Fifth lecture + Steiner)

Tricky points

- Ratio plots
- These are "not" lines

Need very broad baseline and very good model for the continuum

The full model

- Thermal disk
- Comptonization
- Additional hard
- Emission line
- Iron edge
- Reflection component

Absorption (intrinsic?). Absorption lines (narrow)

Intermediate states

- Disk + hard component
- Both strong (hard 20-80%)
- Short-lived states
- Thermal or non-thermal?

- Transition complex
- Softening ok, but hardening?

High-energy features

- * 1E 1740.7-2942 with SIGMA
- 1990: rise 1d, duration 10d
- Broad line

High-energy features

- GS 1124-68
- Transient source
- Transientline

High-energy features

- Bright and narrow line
- ♠ If e⁺-e⁻:
- 7% redshift ≈ 7Rg
- No Doppler broadening
- No Comptonization

- 4h L₅₁₁ > 10³⁵ erg/s \rightleftharpoons N(e⁺) > 10⁴¹ s⁻¹
- What can it be?

High-energy features

- Annihilation in cold disk with back-scattering
- [♣] ⁷Li decay
- Pairs and annihilation in jets
- ψ γ - γ scattering from jet-disk in the line of sight

- Seen only for 12 hours: why?
- The possible answer later this week

Quiescence

- As we have seen:
 - \bullet Outburst: L_x ~ 10^{37-39} erg/s
 - \clubsuit Quiescence: $L_x \sim 10^{30-33} \text{ erg/s}$
- Important for accretion rate swing
- What do they look like in quiescence?
- Does the surface make a difference?
- A 0620-00: optical bright X-ray dim

Quiescent spectra

BH: GS 2023+338

"Canonical" NS spectrum
BB/NS atm, kT=0.1-0.3 keV plus
Power law, index 1-2

Black-hole binary spectrum Power law, index 1-2 or Opt. thin plasma kT = 2-3 keV

Quiescent luminosity

- Clear segregation in luminosity
- Larger min-max swing in BH
- Why?
- Different mass to energy conversion efficiency?
- Advective flows

Advection flows

- For low rates, higherfraction of energystored in accretion flow
- BH lose energy in the hole (reduced eff.)
- NS have a surface (standard eff.)

Advection flows

Measurements

Accretion rate from radio measurements

NS LMXB Energy spectra

- NS have surfaces boundary layer
- Spectrum must be different
- Contributions overlap
- Different states
- For soft state, two main models:
 - Eastern model
 - Western model

Eastern model

Mitsuda et al. (1989)

- Thermal component: DBB from disk
- Compton component: BL photons on inner disk

Western model

White et al. (1988)

- Thermal component: BB from BL
- Compton component: unsaturated Comptonized disk

BL luminosity in both models is lower than disk luminosity

Hard state

- Spectrum more similar to BH hard states
- Comptonized component ~few tens keV
- Soft component, BB?

Lin et al. (2007)

- Mard state: BB plus broken power law
- M Soft state: DBB (disk), BB (BL) + broken power law

As we will see, the problem is complex and variable

Additional complications

- Hard tails discovered in soft states
- Dominate above 30 keV
- ♣ 10% flux, power law flat or steep

Not even clear for BHs

