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POISSON NOISE EFFECTS

• Counting detector

• Counting noise

• Background negligible

• Independent arrival times

• Exponential waiting time 
between photons
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POWER SPECTRUM 
NORMALIZATION

•With this choice, noise power a χ2 with 
2 d.o.f.

•Most noises do

• Average power is 2. I can calculate statistics

•Noise & signal independent:

•Not always so... (count rate!)

•More complex: deadtime

P =
2

Nphot
|a|2

Leahy Norm.



POWER OF POWER SPECTRUM



NOISY NOISE
✤ Power spectrum of noise 

is very noisy!

✤ Increasing length or Δt 
not useful

✤ Two ways out:

✤ a) Frequency rebinning 
by M

✤ b) Time slicing by W 
and averaging powers

M=10

2 with 2MW dof
2MW distribution scaled by MW

Mean: 2
Standard dev: 



FULL POWER SPECTRUM
✤ RXTE light curve

✤ t = 1/16 seconds

✤ T = 3325 seconds

✤ Something can be seen 
by eye in the light curve

✤ Full power spectrum

✤ High-power signal, no 
coherent peak



LOG SPACE AND REBINNING
✤ Log-log plot more appropriate 

for all frequencies

✤ Errors are 100%

✤ Frequency rebinning (M)

✤ Log-rebinning:

✤ Error bars, better shape

✤ Poisson level below scale



NORMALIZATION
✤ Leahy normalization very useful for 

statistics

✤ Power ∝ square intensity

✤ Remove it by dividing by square 
intensity: rms (Belloni) 
normalization 

✤ Caveat: from Leahy to rms2

✤ Meaning: squared rms per decade

✤ Root of integral gives fractional rms



A NOTE ABOUT REBINNING

✤ Coherent peak: narrow power distribution - least 
rebinning - the longer the observation span, the better

✤ Broad peak: broad power distribution - rebinning helps 
- length of observation not crucial

✤ Very important for maximizing sensitivity



W: WELCH POWER 
SPECTRUM

✤ If signal stationary

✤ Slice the signal

✤ Power spectrum of slices

✤ Add the W slices

✤ Sliding slices are also possible 
(statistics?)

✤ Windowing is also possible



TIME-FREQUENCY ANALYSIS
✤ If signal is not stationary

✤ No average of power spectra

✤ Image: time-frequency-power

✤ Uncertainty principle



THE UNCERTAINTY PRINCIPLE

• You cannot beat it

• It’s a big limitation
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THE EASY WAY OUT
• Spectrogram (from short-term Fourier Transform)

• Sliding window to select time (window can be chosen)

•Obtain a time-frequency image

st(⌧) = s(⌧)h(⌧ � t)
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AN EXAMPLE
•Quasi-Periodic Oscillation T = 128 s



AN EXAMPLE
•Quasi-Periodic Oscillation T = 4 s



NON-OVERLAPPING
• Sliding window to select time st(⌧) = s(⌧)h(⌧ � t)

t = ⌧



NON-OVERLAPPING
• Sliding window to select time st(⌧) = s(⌧)h(⌧ � t)

t < ⌧



SHIFT ‘N’ ADD TECHNIQUE
✤ Used for twin high-frequency peaks

✤ You see one, not the other

✤ The one you see moves

✤ Correct for the movement, align the spectra in an 
additive way

✤ More complex: multiplicative technique (tricky to 
implement)



LINEAR SHIFT AND ADD
• Good to recover features at a constant distance in ν



INSTRUMENTAL DEAD TIME
✤ After a photon, dead time

✤ Introduces correlations between photons (no Poisson!)

✤ It must be as small as possible and well-known and 
modeled

✤ Two types of dead time:

✤ Paralyzable

✤ Non-paralyzable

Every incident event causes a dead time td

 even if it’s not detected

Only a detected event causes a dead time td



PARALYZABLE DEAD TIME

✤ If incident rate rin is very high, no detected counts at all!

✤ Detected rate: 

✤ In RXTE/PCA, for binning time



PARALYZABLE DEAD TIME

rin = 20 kcts/s
r0 = 16.385 kcts/s
td = tb = 10 µs
N = 1024



NON-PARALYZABLE DEAD 
TIME

✤ If incident rate rin is very high, one count every td

✤ Detected rate: 

✤ Formula is even more complicated, result is similar

✤ Depression of noise level @ low frequencies 
(correlation)

✤ Peak @ td (quasi-periodicity)



PARALYZABLE DEAD TIME: 
SCO X-1

r0 = 105 cts/s
td = 10 µs

Source noise

kHz QPOs



FITTING POWER SPECTRA
✤ Fit with typical minimization (χ2)

✤ Rebinning is important for χ2

✤ Error estimation vs. significance

✤ Limit in power an NOT rms

✤ Coherent peaks: distribution of powers and number 
of trials



NUMBER OF TRIALS
✤ Important statistical concept

✤ Should be done correctly, but if P is small can be 
approximated

✤ IMPORTANT: how to estimate Ntrials 

✤ For Power Spectra: number of independent 
frequencies



CONTINUUM COMPONENTS

✤ Very important for accreting 
sources

✤ Slope is limited by the window

✤ Window overflow

✤ Γ=-2 is the steepest value

✤ If an issue (pulsar noise): 
       exotic methods

Power law Γ=-2

Power law Γ=-1

Lorentzian

Sinc



MAIN TYPES OF SIGNALS

✤ Coherent pulsation

✤ Broad-band noise

✤ Broad peak (QPO)

✤ “Peaked-noise”
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THE LORENTZIAN (ZERO-
CENTERED)

✤ Power spectrum of a one-
sided exponential

✤ Good for modeling broad-
band noise components 
(flat-top)



THE LORENTZIAN
✤ Centroid of Lorentzian not at 

zero

✤ Good for modeling Quasi-
Periodic Peaks



THE QUALITY FACTOR Q

✤ To quantify the coherence of a component

Q=10, 5, 2.5, 1.25 0.625



Q=0: THE PEAK WITHOUT 
QUALITY

✤ Here ν0 = 0, equal N

✤ Notice position of the break

✤ Factor of two higher Δ



BETTER REPRESENTATION

✤ In νPν the effect is the 
same

✤ Better value is Δ/2

✤ But... how do I treat things
homogeneously and how
do I treat peaked noise?



CHARACTERISTIC 
FREQUENCY

✤ We can use the peak in  νPν



LORENTZIAN 
DECOMPOSITION

✤ With these tools we can fit power spectra



NO PHYSICAL BACKING (YET)

✤ Power spectrum of a 
damped oscillator

✤ Also called Cauchy 
distribution

✤ Even if it looks like a 
Lorentzian, it might not be 
a Lorentzian



DEALING WITH GAPS
✤ Some solutions are obvious:

✤ Welch method (skip gaps)

✤ Zero padding (or local average)

✤ Other methods are available: Lomb-Scargle

✤ Good for general uneven sampling

✤ Equivalent to linear least-square fit to sin+cos

✤ Statistically robust



LOMB-SCARGLE 
PERIODOGRAM

✤ hj sampled at tj

✤ where:                              ensures shift independence

✤ Powerful method: it can go beyond “Nyquist”



BEWARE OF TRENDS!

✤ A trend is a modification to the window

✤ Must be de-trended

✤ Same about possible 
drop outs

No trend

Trend



CROSS-SPECTRUM
✤ Power spectrum: amplitudes of the FFT

✤ We throw away the phases

✤ If we take two time series f(t) & g(t), the phases make 
more sense

✤ Cross-spectrum:

✤ If f=g, it becomes the power spectrum

✤ What is it useful for?



PHASE/TIME LAGS
✤ The phases give us the phase delay between the two 

time series

✤ Not easy to interpret, can be linked to physical 
models

✤ Time lags: phase φ/ν
✤ Additional technical 

details (not shown)



AUTO/CROSS-CORRELATION

✤ The power spectrum is the FT of the autocorrelation

✤ Autocorrelation is real and even, power spectrum is 
real and even

✤ The cross spectrum is the FT of the crosscorrelation

✤ Power- an cross-spectrum contain more information (if 
you can afford them because of statistics)

Corr(g, g) =
� ⇥

�⇥
g(t + �)g(�)d� �⇥ |G(f)|2



AUTOCORRELATION
✤ Uncorrelated noise: ACF is zero everywhere but at 
τ=0 [variance]

✤ Biased ACF: dividing by N

✤ Unbiased ACF: dividing by N-|m|

Corr(g, g) =
� ⇥

�⇥
g(t + �)g(�)d� �⇥ |G(f)|2



CROSSCORRELATION

✤ Uncorrelated series: CCF is zero everywhere

✤ Simple shift: peak somewhere

Lag = 20



WHEN DO I HAVE A LAG?

✤ “The CCF peaks at 0, therefore there is no measurable 
lag”

✤ NO!

✤ CCF is a superposition of
sinusoids of different periods

✤ Any asymmetry implies a lag



COHERENT SIGNALS: 
BARYCENTRIC CORR.

✤ The Earth moves and rotates, the satellite also moves

✤ This has an effect on the period (doppler modulation)..

✤ .. and on the absolute phase

✤ Times are corrected to the barycenter of the solar 
system

✤ Standard routines and ephemeris

✤ Not relevant for aperiodic signals



PERIOD FOLDING I: Χ2 TEST

✤ Photon arrival times tj

✤ For trial period produce phases 

✤ Put photon in appropriate phase bin

✤ Test vs. constancy (χ2)

✤ If time bins and not times, easy to generalize

✤ Problem: binning and statistics (few photons?)



PERIOD FOLDING II: Z2 TEST
✤ Photon arrival times tj

✤ For trial period produce phases

✤ Compute

where n is the desired number of harmonics

✤ Z is distributed as a χ2 with 2n d.o.f.

✤ Good for small number of photons [Rayleigh test]



COMPLICATIONS
✤ There can be a significant period derivative

✤ If your pulsar is in a binary system, there is Doppler 
effect

✤ Easy to lose a pulsation

✤ Power spectrum smeared, 
folding as well

✤ Must factorize possible orbit in the solution

✤ Many free parameters



MORE ON  TIME-FREQUENCY
Bowhead whale



ALTERNATIVE TECHNIQUES
• The Wigner Distribution

• Signal in the past by the signal in the future!

• Problem: only for Gaussian chirps W is everywhere positive

• You can beat the uncertainty principle, but at the cost..

• ... of generatin additional monstruosities
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THE WIGNER DITRIBUTION

Signal: sum of two chirps



THE WIGNER DITRIBUTION
Comparison with the spectrogram



COHEN’S KERNEL
ALL time-frequency representations come from: 

C(t,!) = 1
4⇡2

R R R
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Where φ(θ,τ) is the kernel

Changing the kernel you change the representation

The properties of the representation depend on the 
proprties of the kernel





A WORD ON WAVELETS
• The resolution element in time-frequency cannot be made 

smaller than the minimum

• However, there is no reason
why it should be of the
same shape

• You can adapt it to what
you need where you
need it Time
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