XXVI Winter School of Astrophysics November 3-14th 2014

### **Bayesian Cosmology**



### **Roberto Trotta**

Imperial Centre for Inference and Cosmology Imperial College London <u>www.robertotrotta.com</u>





"If you need statistics, you ought to have done a better experiment"

Attributed to Rutherford

- Increasingly complex models and data: "chi-square by eye" simply not enough
- "If it's real, better data will show it": but all the action is in the "discovery zone" around 3-4 sigma significance. This is a moving target.
- Don't waste time explaining effects which are not there
- Plan for the future: which is the best strategy? (survey design & optimization)
- In some cases, there will be no better data! (cosmic variance)

From a data-starved to a data-choked discipline!



Velocity-Distance Relation among Extra-Galactic Nebulae.

Radial velocities, corrected for solar motion, are plotted against distances estimated from involved stars and mean luminosities of nebulae in a cluster. The black discs and full line represent the solution for solar motion using the nebulae individually; the circles and broken line represent the solution combining the nebulae into groups; the cross represents the mean velocity corresponding to the mean distance of 22 nebulae whose distances could not be estimated individually. Source: Edwin Hubble, PNAS

#### Hubble (1929)

"Union 2" compilation (2010)



**Imperial College** 

London

1994

2001-2010









Square Kilometer Array (2024-) 10s of billions of galaxies

1000

# The cosmological concordance model

The ACDM cosmological concordance model is built on three pillars:

### 1.INFLATION:

A burst of exponential expansion in the first ~10<sup>-32</sup> s after the Big Bang, probably powered by a yet unknown scalar field.

### 2.DARK MATTER:

The growth of structure in the Universe and the observed gravitational effects require a massive, neutral, non-baryonic yet unknown particle making up ~25% of the energy density.

### 3. DARK ENERGY:

The accelerated cosmic expansion (together with the flat Universe implied by the Cosmic Microwave Background) requires a smooth yet unknown field with negative equation of state, making up ~70% of the energy density.

The next 5 to 10 years are poised to bring major observational breakthroughs in each of those topics!

## Cosmic Microwave Background analysis



WMAP7 internal linear combination map

#### The observed anisotropies are a superposition of:

- 1. Initial conditions (inflation/early Universe physics)
- 2. Temperature/potential fluctuations at decoupling
- 3. Line-of-sight effects (ISW, SZ, lensing)

Temperature fluctuations:

$$\frac{\delta T}{T}(\vec{n}) = \sum_{\ell=0}^{\infty} \sum_{m=-\ell}^{\ell} a_{\ell m} Y_{\ell m}(\vec{n})$$

2-point correlation function  $\xi(\theta) = \left\langle \frac{\delta T}{T}(\vec{n}) \frac{\delta T}{T}(\vec{n}') \right\rangle$   $= \frac{1}{4\pi} \sum_{\ell} (2\ell + 1) C_{\ell} P_{\ell}(\vec{n} \cdot \vec{n}')$ 

Angular power spectrum (assumes isotropy)

 $C_{\ell} = \langle |a_{\ell m}|^2 \rangle$ 

The power spectrum contains the full statistical information IF fluctuations are Gaussian

**Imperial College** 

London









# Origin of the CMB



## Cosmic sound



## BAO: correlation between galaxies' position

Primordial sound waves introduce extra correlation between galaxies on scales ~ 150 Mpc: this corresponds to (on average) 1 extra galaxy at this preferential separation



## Low redshift cosmological probes

Imperial College London



Roberto Trotta

# Putting it all together...



Combined constraints on total matter ( $\Omega_{M}=\Omega_{B}+\Omega_{CDM}$ ) and dark energy ( $\Omega_{\Lambda}$ ) content (dark energy equation of state parameter w = pressure/energy density):



March, RT et al (2012)

## Where are we today?

ICIC

|                                      | Planck          |                                                                      | Planck+lensing  |                                                                      | Planck+WP       |                                 |
|--------------------------------------|-----------------|----------------------------------------------------------------------|-----------------|----------------------------------------------------------------------|-----------------|---------------------------------|
| Parameter                            | Best fit        | 68% limits                                                           | Best fit        | 68% limits                                                           | Best fit        | 68% limits                      |
| $\Omega_{ m b}h^2$                   | 0.022068        | $0.02207 \pm 0.00033$                                                | 0.022242        | $0.02217 \pm 0.00033$                                                | 0.022032        | $0.02205 \pm 0.00028$           |
| $\Omega_{ m c}h^2$                   | 0.12029         | $0.1196 \pm 0.0031$                                                  | 0.11805         | $0.1186 \pm 0.0031$                                                  | 0.12038         | $0.1199 \pm 0.0027$             |
| 100 <i>θ</i> <sub>MC</sub>           | 1.04122         | $1.04132 \pm 0.00068$                                                | 1.04150         | $1.04141 \pm 0.00067$                                                | 1.04119         | $1.04131 \pm 0.00063$           |
| τ                                    | 0.0925          | $0.097 \pm 0.038$                                                    | 0.0949          | $0.089 \pm 0.032$                                                    | 0.0925          | $0.089^{+0.012}_{-0.014}$       |
| <i>n</i> <sub>s</sub>                | 0.9624          | $0.9616 \pm 0.0094$                                                  | 0.9675          | $0.9635 \pm 0.0094$                                                  | 0.9619          | $0.9603 \pm 0.0073$             |
| $\ln(10^{10}A_{\rm s})$              | 3.098           | $3.103 \pm 0.072$                                                    | 3.098           | $3.085 \pm 0.057$                                                    | 3.0980          | $3.089^{+0.024}_{-0.027}$       |
| $\overline{\Omega_{\Lambda}}$        | 0.6825          | $0.686 \pm 0.020$                                                    | 0.6964          | $0.693 \pm 0.019$                                                    | 0.6817          | $0.685^{+0.018}_{-0.016}$       |
| $\Omega_m$                           | 0.3175          | $0.314 \pm 0.020$                                                    | 0.3036          | $0.307 \pm 0.019$                                                    | 0.3183          | $0.315^{+0.016}_{-0.018}$       |
| $\sigma_8$                           | 0.8344<br>11.35 | $\begin{array}{r} 0.834 \pm 0.027 \\ 11.4^{+4.0}_{-2.8} \end{array}$ | 0.8285<br>11.45 | $\begin{array}{c} 0.823 \pm 0.018 \\ 10.8^{+3.1}_{-2.5} \end{array}$ | 0.8347<br>11.37 | $0.829 \pm 0.012$<br>11.1 ± 1.1 |
| $H_0$                                | 67.11           | $67.4 \pm 1.4$                                                       | 68.14           | $67.9 \pm 1.5$                                                       | 67.04           | $67.3 \pm 1.2$                  |
| $10^{9}A_{s}$                        | 2.215           | $2.23\pm0.16$                                                        | 2.215           | $2.19_{-0.14}^{+0.12}$                                               | 2.215           | $2.196^{+0.051}_{-0.060}$       |
| $\Omega_{ m m}h^2\ldots\ldots\ldots$ | 0.14300         | $0.1423 \pm 0.0029$                                                  | 0.14094         | $0.1414 \pm 0.0029$                                                  | 0.14305         | $0.1426 \pm 0.0025$             |
| $\Omega_{ m m}h^3\ldots\ldots\ldots$ | 0.09597         | $0.09590 \pm 0.00059$                                                | 0.09603         | $0.09593 \pm 0.00058$                                                | 0.09591         | $0.09589 \pm 0.00057$           |
| <i>Y</i> <sub>P</sub>                | 0.247710        | $0.24771 \pm 0.00014$                                                | 0.247785        | $0.24775 \pm 0.00014$                                                | 0.247695        | $0.24770 \pm 0.00012$           |
| Age/Gyr                              | 13.819          | $13.813 \pm 0.058$                                                   | 13.784          | $13.796 \pm 0.058$                                                   | 13.8242         | $13.817 \pm 0.048$              |



ICIC

ICIC



#### The rise of Bayesian methods in astrophysics

Roberto Trotta







log a



## CMB decomposition

Imperial College London



ICIC



## Angular projection

ICIC







ICIC







### Normal parameters: good

ICIC





Roberto Trotta

### "Physical" parameters: bad





Roberto Trotta

### Cosmomc: example

ICIC



# $P(\theta|d, I) \propto P(d|\theta, I) P(\theta|I)$

- Once the RHS is defined, how do we evaluate the LHS?
- Analytical solutions exist only for the simplest cases (e.g. Gaussian linear model)
- Cheap computing power means that numerical solutions are often just a few clicks away!
- Workhorse of Bayesian inference: Markov Chain Monte Carlo (MCMC) methods. A procedure to generate a list of samples from the posterior.



# $P(\theta|d, I) \propto P(d|\theta, I) P(\theta|I)$

- A Markov Chain is a list of samples θ<sub>1</sub>, θ<sub>2</sub>, θ<sub>3</sub>,... whose density reflects the (unnormalized) value of the posterior
- A MC is a sequence of random variables whose (n+1)-th element only depends on the value of the n-th element
- Crucial property: a Markov Chain converges to a stationary distribution, i.e. one that does not change with time. In our case, the posterior.
- From the chain, expectation values wrt the posterior are obtained very simply:

$$\langle \theta \rangle = \int d\theta P(\theta | d) \theta \approx \frac{1}{N} \sum_{i} \theta_{i}$$
$$\langle f(\theta) \rangle = \int d\theta P(\theta | d) f(\theta) \approx \frac{1}{N} \sum_{i} f(\theta_{i})$$



### • Once $P(\theta|d, I)$ found, we can report inference by:

- Summary statistics (best fit point, average, mode)
- Credible regions (e.g. shortest interval containing 68% of the posterior probability for θ). Warning: this has **not** the same meaning as a frequentist confidence interval! (Although the 2 might be formally identical)
- Plots of the marginalised distribution, integrating out nuisance parameters (i.e. parameters we are not interested in). This generalizes the propagation of errors:

$$P(\theta|d, I) = \int d\phi P(\theta, \phi|d, I)$$



# Credible regions: Bayesian approach

- Use the prior to define a metric on parameter space.
- **Bayesian methods:** the best-fit has no special status. Focus on region of large posterior probability mass instead.
  - Markov Chain Monte Carlo (MCMC)
  - Nested sampling
  - Hamiltonian MC
- Determine posterior credible regions: e.g. symmetric interval around the mean containing 68% of samples

### **68% CREDIBLE REGION**




#### Gaussian case

Imperial College London



Roberto Trotta

# MCMC estimation

- Marginalisation becomes trivial: create bins along the dimension of interest and simply count samples falling within each bins ignoring all other coordinates
- Examples (from **superbayes.org**) :

2D distribution of samples from joint posterior



ICIC





- Several (sophisticated) algorithms to build a MC are available: e.g. Metropolis-Hastings, Hamiltonian sampling, Gibbs sampling, rejection sampling, mixture sampling, slice sampling and more...
- Arguably the simplest algorithm is the **Metropolis (1954) algorithm:** 
  - pick a starting location  $\theta_0$  in parameter space, compute  $P_0 = p(\theta_0|d)$
  - pick a candidate new location  $\theta_c$  according to a proposal density  $q(\theta_0, \theta_c)$
  - evaluate  $P_c = p(\theta_c | d)$  and accept  $\theta_c$  with probability  $\alpha = \min\left(\frac{P_c}{P_0}, 1\right)$
  - if the candidate is accepted, add it to the chain and move there; otherwise stay at  $\theta_0$  and count this point once more.

## Practicalities

- Except for simple problems, achieving good MCMC convergence (i.e., sampling from the target) and mixing (i.e., all chains are seeing the whole of parameter space) can be tricky
- There are several diagnostics criteria around but none is fail-safe. Successful MCMC remains a bit of a black art!
- Things to watch out for:
  - Burn in time
  - Mixing
  - Samples auto-correlation

## MCMC diagnostics

10

20 Z<sub>76</sub>

30

2 з

3 4 A<sub>i</sub>[10<sup>-5</sup>]

5

10

722

104

108

Steps

104

10\*

Steps

ICIC

**Imperial College** London

Burn in Mixing Power spectrum 10<sup>0</sup> 1000 1000 103 10 (d)u] -10 10 10 722 L (N) 0.03 Ω\_h<sup>a</sup> 0.1 0.2 0.3 60 100 80 0.02  $\Omega_{a}h^{2}$ 1000 1000 10 10 (d)ur] -109 10<sup>2</sup> 104 10<sup>-3</sup> 10<sup>-2</sup> 10<sup>-1</sup>  $10^{0}$ 

00 200 A<sub>s</sub>[10<sup>-5</sup>]

300

100

(see astro-ph/0405462 for details)

k m<sub>1/2</sub> (GeV)

## Non-Gaussian example

ICIC

Imperial College London



Constrained Minimal Supersymmetric Standard Model (4 parameters) Strege, RT et al (2013)



## Supernovae Type la

### Type la supernovae

- Supernovae: core-collapse thermonuclear explosions of stars, emitting a large (~ 10<sup>51</sup> erg, cf L<sub>galaxy</sub> ~ 10<sup>44</sup> erg/s) amount of energy (photons + neutrinos).
- Supernovae type Ia (SNIa): characterized by the lack of H in their spectrum, outcome of a CO white dwarf (WD) in a close binary system accreting mass above the Chandrasekhar limit (1.4 solar masses).
- The nature of the donor star is still disputed: Single Degenerate (WD + Main sequence or Red giant or a He star companion) vs Double Degenerate (WD + WD merger) scenarios (or both)



Single degenerate

Double degenerate











ICIC



For references, see Chapter 8 in Schneider, Extragalactic Astronomy and Cosmology: An Introduction, Springer (2006).



## SNIa lightcurves

CfA3 185 multi-band optical nearby SNIa

850

**SNLS** 







2001v.

12





ICIC

### Brightness-width relationship

#### Imperial College London



## PS1 data

- Most recent data set from PAN-STARRS1 survey
- 146 spectroscopically confirmed SNIa
- Cosmological fit: 112
  PS1 at high-z (blue) + 201 low-z SNIa (red)

ICIC





- Standard analysis minimizes the likelihood (typically, C minimized with  $\alpha$ ,  $\beta$  fixed,
- then a,  $\beta$  minimized with C fixed), arbitrarily defined as:  $-2 \log \mathcal{L} = \chi^{2} = \sum_{i} \frac{(\mu(z_{i}, \mathcal{C}) - [\hat{m}_{B,i} - M + \alpha \hat{x}_{1,i} - \beta \hat{c}_{i}])^{2}}{\sigma_{int}^{2} + \sigma_{fit}^{2}}$   $\sigma_{fit}^{2} = \sigma_{m_{B}}^{2} + \alpha^{2} \sigma_{x_{1}}^{2} + \beta^{2} \sigma_{c}^{2} + \text{correlations}$

 $\sigma_{\rm int}^2$  represents the "intrinsic" (residual) scatter determined by requiring Chi<sup>2</sup>/dof ~ 1

Imperial College

London

$$-2\log \mathcal{L} = \chi^2 = \sum_{i} \frac{\left(\mu(z_i, \mathcal{C}) - \left[\hat{m}_{B,i} - M + \alpha \hat{x}_{1,i} - \beta \hat{c}_i\right]\right)^2}{\sigma_{\text{int}}^2 + \sigma_{\text{fit}}^2}$$

- Form of the likelihood function is unjustified
- α, β appear in the variance, too this is a problem of simultaneous estimation of the mean and of the variance. Chi<sup>2</sup> not the correct distribution.
- Incorrectly normalized missing  $-\frac{1}{2}\log(\sigma_{int}^2 + \sigma_{fit}^2)$  term in front. Adding this in results in a (known) 6-sigma bias of  $\beta$ .
- Chi<sup>2</sup>/dof ~ 1 prescription prevents by construction model checking and hypothesis testing
- Marginalization (and use of fast Bayesian MCMC methods) impossible (profile likelihood "fudge" necessary)

#### **Principled Bayesian solution required!**





For each SNIa, this relation holds **exactly** between **latent** (unobserved) variables:



## Advantages of multi-layer model

- The Bayesian hierarchical approach allows us to:
  - model explicitly the **population-level** intrinsic variability of SNIa
  - investigate the impact of multiple SNIa populations (e.g., different progenitor models)
  - determine/include correlations with other observables (galaxy mass, metallicity, age, spectral lines, etc) to reduce residual scatter in Hubble diagram
  - obtain a principled data likelihood that can be used with Bayesian MCMC/ MultiNest (marginal posteriors, Bayesian evidence for model selection)
  - derive a fully marginalized posterior on the residual (after colour and stretch correction) intrinsic scatter in the SNIa intrisic magnitude
  - investigate possible **SNIa evolution** (e.g.,  $\beta(z)$ ) and other systematics

Imperial College London

 ... lies the fundamental problem of linear regression in the presence of measurement errors on both the dependent and independent variable and intrinsic scatter in the relationship (e.g., Gull 1989, Gelman et al 2004, Kelly 2007):

$$\mu_i = m_{B,i} - M_i + \alpha x_{1,i} - \beta c_i$$

analogous to

$$y_i = b + ax_i$$

$$\begin{split} x_i \sim p(x|\Psi) &= \mathcal{N}_{x_i}(x_\star, R_x) & \text{Population} \\ y_i|x_i \sim \mathcal{N}_{y_i}(b + ax_i, \sigma^2) & \text{Intrinsic variability} \\ \hat{x}_i, \hat{y}_i|x_i, y_i \sim \mathcal{N}_{\hat{x}_i, \hat{y}_i}([x_i, y_i], \Sigma^2) & \text{measurement error} \end{split}$$

#### **INTRINSIC VARIABILITY**

#### + MEASUREMENT ERROR



- Modeling the latent distribution of the independent variable accounts for "Malmquist bias"
- An observed x value far from the origin is more probable to arise from up-scattering (due to noise) of a lower latent x value than down-scattering of a higher (less probable) x value



# The key parameter is noise/population variance $\sigma_x \sigma_y/R_x$

 $\sigma_x \sigma_y / R_x \text{ small}$   $y_i = b + a x_i$   $\sigma_x \sigma_y / R_x \text{ large}$ 





Bayesian marginal posterior identical to profile likelihood

Bayesian marginal posterior broader but less biased than profile likelihood

#### Roberto Trotta

# Tests on simulated SNIa data

- Simulated N=288 SNIa with similar characteristics as SDSS +ESSENCE+SNLS+HST +Nearby sample
- Reconstruction of cosmological parameters over 100 realizations, comparing Bayesian hierarchical method with standard Chi<sup>2</sup>.

ICIC

# Simulated SNIa realization (colour coded according to "survey")





## Posterior sampling

- In the Bayesian hierarchical approach, we have
  - 3 cosmological parameters:  $H_0$ ,  $\Omega_M$ ,  $\Omega_K$  (w=1) or  $H_0$ ,  $\Omega_M$ , w ( $\Omega_K$ =0)
  - 2 stretch/colour correction parameters: α, β
  - 6 population-level parameters: M<sub>0</sub>, σ<sup>2</sup>, x<sup>\*</sup>, R<sub>x</sub>, c<sup>\*</sup>, R<sub>c</sub>
  - 3N (=864) latent variables M<sub>i</sub>, x<sub>1i</sub>, c<sub>i</sub>
- Analytical marginalization over all latent variables and linear population-level parameters is possible in Gaussian case (no selection effects). Sampling of the remaining parameters via MultiNest.
- Alternatively, Gibbs sampling can be used to sample over all parameters (conditional distributions are Gaussian in the absence of selection effects. Including them introduces additional accept/reject step).





Red/empty: Chi<sup>2</sup> (68%, 95% CL)

Blue/filled: Bayesian (68%, 95% credible regions)

Bayesian posterior is noticeably different from the Chi<sup>2</sup> CL: which one is "best"?



**Imperial College** 

London

- Coverage of Bayesian 1D marginal posterior CR and of 1D Chi<sup>2</sup> profile likelihood CI computed from 100 realizations
- Bias and mean squared error (MSE) defined as

 $\hat{\theta}$  is the posterior mean (Bayesian) or the maximum likelihood value (Chi<sup>2</sup>).



bias = 
$$\langle \hat{\theta} - \theta_{\text{true}} \rangle$$
  
MSE = bias<sup>2</sup> + Var

#### **Results:**

**Coverage:** generally improved (but still some undercoverage observed)

**Bias:** reduced by a factor ~ 2-3 for most parameters

**MSE:** reduced by a factor 1.5-3.0 for all parameters

### Cosmology results

Imperial College London



**Marginal posteriors** 







## Combined constraints

ICIC

Imperial College London

• Combined cosmological constraints on matter and dark energy content:



 Developed by K. Mandel (Mandel et al, 2009, 2011) and collaborators: fully Bayesian approach to LC fitting, including random errors, population structure, intrinsic variations/correlations, dust extinction and reddening, incomplete data



#### Some results from BayeSN

#### **Dust absorption for each SNIa**



## Hubble diagram: residual scatter reduced by ~2 using optical+NIR LC



#### **Population level analysis of correlations**



#### **Inclusion of NIR LC**



### The complete hierarchical model



Red arrows/boxes indicate elements/data that have never been explored before in such a multi-level setting

Principled Bayesian model selection

### The 3 levels of inference

#### Imperial College London



$$P(\theta|d, M) = \frac{P(d|\theta, M)P(\theta|M)}{P(d|M)} \quad \text{odds} = \frac{P(M_0|d)}{P(M_1|d)} \quad P(\theta|d) = \sum_i P(M_i|d)P(\theta|d, M_i)$$

## Examples of model comparison questions London

#### ASTROPARTICLE

Gravitational waves detection Do cosmic rays correlate with AGNs? Which SUSY model is 'best'? Is there evidence for DM modulation? Is there a DM signal in gamma ray/ neutrino data?

#### COSMOLOGY

Is the Universe flat? Does dark energy evolve? Are there anomalies in the CMB? Which inflationary model is 'best'? Is there evidence for modified gravity? Are the initial conditions adiabatic?

# Many scientific questions are of the model comparison type

#### **ASTROPHYSICS**

**Exoplanets** detection

Is there a line in this spectrum?

Is there a source in this image?

## ICIC

$$P(\theta|d, M) = \frac{P(d|\theta, M)P(\theta|M)}{P(d|M)}$$

Bayesian evidence or model likelihood

The evidence:

$$P(d|M) = \int_{\Omega} d\theta P(d|\theta, M) P(\theta|M)$$

Posterior probability for the model M:

$$P(M|d) = \frac{P(d|M)P(M)}{P(d)}$$

When comparing two models:

 $\frac{P(M_0|d)}{P(M_1|d)} = \frac{P(d|M_0)}{P(d|M_1)} \frac{P(M_0)}{P(M_1)}$ 

#### The Bayes factor:

$$B_{01} \equiv \frac{P(d|M_0)}{P(d|M_1)}$$

# **Posterior odds = Bayes factor × prior odds**

## An in-built Occam's razor



- The Bayesian evidence balances quality of fit vs extra model complexity.
- It rewards highly predictive models, penalizing "wasted" parameter space.
- The prior here is important: it quantifies the predictive power of the model.


# The evidence as predictive probability

• The evidence can be understood as a function of d to give the predictive probability under the model M:



**Imperial College** 

London

## Nested models

M<sub>0</sub>:  $\theta = 0$ M<sub>1</sub>:  $\theta \neq 0$  with prior p( $\theta$ ) **Do we need the extra "complexity"?** 



$$\lambda \equiv \frac{\hat{\theta} - \theta^{\star}}{\delta \theta}$$

$$\ln B_{01} \approx \ln \frac{\Delta \theta}{\delta \theta} - \frac{\lambda^2}{2}$$

$$\swarrow$$
vasted parameter mismatch of space prediction with (favours simpler observed data)

model)

(favours more complex model)

# Model selection for nested models



In Bayesian model comparison, the prior scale never goes away.

Also, the **alternative hypothesis** needs to be formulated from the outset (Jaynes: *"there is no point in rejecting a model unless one has a better alternative"*)

One should look at the scale of the prior and hope that the result is **robust** for "reasonable" prior choices

$$T_{10} \equiv \log_{10} \frac{\Delta \theta}{\delta \theta}$$

Trotta (2008)

**Imperial College** 

London

## Scale for the strength of evidence

ICIC



 A (slightly modified) Jeffreys' scale to assess the strength of evidence (Notice: this is empirically calibrated!)

| InB   | relative odds | favoured model's<br>probability | Interpretation       |
|-------|---------------|---------------------------------|----------------------|
| < 1.0 | < 3:1         | < 0.750                         | not worth mentioning |
| < 2.5 | < 12:1        | 0.923                           | weak                 |
| < 5.0 | < 150:1       | 0.993                           | moderate             |
| > 5.0 | > 150:1       | > 0.993                         | strong               |

# Astro example: how many sources?

Feroz and Hobson (2007)



x (pixels)

# ICIC

**Imperial College** 

London

# Astro example: how many sources?



**Imperial College** 

London

# Astro example: how many sources?

### **Imperial College** London

### Feroz and Hobson (2007)

ICIC



# **Bayesian reconstruction**

7 out of 8 objects correctly identified. Mistake happens because 2 objects very close.



Cluster detection from Sunyaev-Zeldovich effect in cosmic microwave background maps



Feroz et al 2009

Background + 3 point radio sources Background + 3 point radio sources + cluster



Posterior odds: R = P(cluster | data)/P(no cluster | data) $R = 0.35 \pm 0.05$   $R \sim 10^{33}$ 

Cluster parameters also recovered (position, temperature, profile, etc)

Evidence:  $P(d|M) = \int_{\Omega} d\theta P(d|\theta, M) P(\theta|M)$ Bayes factor:  $B_{01} \equiv \frac{P(d|M_0)}{P(d|M_1)}$ 

- Usually a computational demanding multi-dimensional integral!
- Several numerical/semi-analytical techniques available:
  - Thermodynamic integration or Population Monte Carlo
  - Laplace approximation: approximate the likelihood to second order around maximum gives Gaussian integrals (for normal prior). Can be inaccurate.
  - Savage-Dickey density ratio: good for nested models, gives the Bayes factor
  - Nested sampling: clever & efficient, can be used generally

- This methods works for nested models and gives the Bayes factor analytically.
- **Assumptions:** nested models (M<sub>1</sub> with parameters  $\theta$ ,  $\Psi$  reduces to M<sub>0</sub> for e.g.  $\Psi = 0$ ) and separable priors (i.e. the prior P( $\theta$ ,  $\Psi$ |M<sub>1</sub>) is uncorrelated with P( $\theta$ |M<sub>0</sub>))

• Result:



## Nested sampling

Imperial College London



(animation courtesy of David Parkinson)

ICIC

An algorithm originally aimed primarily at the Bayesian evidence computation (Skilling, 2006):

$$X(\lambda) = \int_{\mathcal{L}(\theta) > \lambda} P(\theta) d\theta$$
$$P(d) = \int d\theta L(\theta) P(\theta) = \int_0^1 L(X) dX$$

Roberto Trotta

### MultiNest Feroz and Hobson (2007)





Gaussian mixture model:

True evidence: log(E) = -5.27 **Multinest:** Reconstruction:  $log(E) = -5.33 \pm 0.11$ Likelihood evaluations ~  $10^4$  **Thermodynamic integration:** Reconstruction:  $log(E) = -5.24 \pm 0.12$ Likelihood evaluations ~  $10^6$ 



| D  | Ν      | efficiency | likes per<br>dimension |
|----|--------|------------|------------------------|
| 2  | 7000   | 70%        | 83                     |
| 5  | 18000  | 51%        | 7                      |
| 10 | 53000  | 34%        | 3                      |
| 20 | 255000 | 15%        | 1.8                    |
| 30 | 753000 | 8%         | 1.6                    |

# The inflationary paradigm

- Imperial College London
- Is a high energy phase of accelerated expansion in the early Universe

$$ds^{2} = -dt^{2} + a^{2}(t) d\vec{x}^{2} \qquad \ddot{a} > 0$$

- Solves the Hot Big Bang horizon and flatness problem
- Can be implemented with a single scalar field

ICIC

$$S = -\int d^4x \sqrt{-g} \left[ \frac{1}{2} g^{\mu\nu} \partial_\mu \phi \partial_\nu \phi + V(\phi) \right]$$
$$\Rightarrow \begin{cases} \rho = \frac{1}{2} \left( \dot{\phi} \right)^2 + V(\phi) \\ p = \frac{1}{2} \left( \dot{\phi} \right)^2 - V(\phi) \end{cases}$$

$$\ddot{a}/a = -\frac{1}{6M_{\rm P}^2} \left(\rho + 3p\right) \quad \Longrightarrow \quad V\left(\phi\right) \gg \dot{\phi}^2$$

### The horizon problem

# T = 2.72 K



### The horizon problem





Patches separated by more than 1 deg should not have the same temperature!



## Slow-roll approximation





Field evolution



## Reheating



# From inflation to CMB fluctuations

- At the end of inflation, the quantum fluctuations in the inflaton field are transferred via reheating to the matter/radiation content of the Universe
- Single-field inflation = adiabatic fluctuations (ie, curvature perturbations)
- The power spectrum (= Fourier transform of the 2-point correlation function) can be computed as a function of the slow roll parameters:

$$\mathcal{P}_{\zeta}(k) \propto a_0\left(\epsilon_n\right) + a_1\left(\epsilon_n\right) \ln\left(rac{k}{k_*}\right) + rac{1}{2}a_2\left(\epsilon_n\right) \ln^2\left(rac{k}{k_*}\right) + \dots$$

- ... and is one of the key observables in the Cosmic Microwave Background (CMB) maps.
- Eg. two key quantities ("summary statistics") are

Tensor modes (gravity waves)

Spectral index 
$$n_{\rm S} = \left. \frac{\mathrm{d} \ln P}{\mathrm{d} \ln k} \right|_{k_*}$$
  
 $n_{\rm S}^{\rm Planck} \sim 0.96$ 

$$r = \frac{P_h(k_*)}{P_v(k_*)} = 16\epsilon_{1*} + \cdots$$

r < 0.1 (from Planck)

## COSMIC MICROWAVE BACKGROUND



Data from the Planck satellite, 2013

| nr (95%CL)αf_nl $1/R$ (95%CLCOBE 2 $1.21\pm0.57$ COBE 4 $1.20\pm0.3$ WMAP 1 $1.20\pm0.11$ <0.81-0.077±0.05 $40\pm49$ <32%WMAP 3 $0.984\pm0.029$ <0.65-0.055±0.03 $30\pm42$ -WMAP 5 $0.960\pm0.013$ <0.43-0.037±0.028 $51\pm30$ <16%WMAP 7 $0.968\pm0.012$ <0.36-0.034±0.026 $32\pm21$ <13%WMAP 9 $0.9608\pm0.008$ <0.13-0.019\pm0.025 $37.2\pm19.9$ <15%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                   | Tilt               | Tensors   | Running            | Non-Gauss.      | Isocurvature |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|--------------------|-----------|--------------------|-----------------|--------------|
| COBE 2 $1.21\pm0.57$ Image: Marked |                   | n                  | r (95%CL) | α                  | f <sub>nl</sub> | I/R (95%CL)  |
| COBE 4       1.20±0.3       Image: Mode with the symbol withe symbol with the symbol with the symbol withe symbol with the sy                   | COBE 2            | 1.21±0.57          |           |                    |                 |              |
| WMAP 1 $1.20\pm0.11$ $<0.81$ $-0.077\pm0.05$ $40\pm49$ $<32\%$ WMAP 3 $0.984\pm0.029$ $<0.65$ $-0.055\pm0.03$ $30\pm42$ WMAP 5 $0.960\pm0.013$ $<0.43$ $-0.037\pm0.028$ $51\pm30$ $<16\%$ WMAP 7 $0.968\pm0.012$ $<0.36$ $-0.034\pm0.026$ $32\pm21$ $<13\%$ WMAP 9 $0.9608\pm0.008$ $<0.13$ $-0.019\pm0.025$ $37.2\pm19.9$ $<15\%$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | COBE 4            | $1.20 \pm 0.3$     |           |                    |                 |              |
| WMAP 3       0.984±0.029       <0.65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | WMAP 1            | $1.20 \pm 0.11$    | <0.81     | $-0.077 \pm 0.05$  | $40 \pm 49$     | <32%         |
| WMAP 5 $0.960 \pm 0.013$ $< 0.43$ $-0.037 \pm 0.028$ $51 \pm 30$ $< 16\%$ WMAP 7 $0.968 \pm 0.012$ $< 0.36$ $-0.034 \pm 0.026$ $32 \pm 21$ $< 13\%$ WMAP 9 $0.9608 \pm 0.008$ $< 0.13$ $-0.019 \pm 0.025$ $37.2 \pm 19.9$ $< 15\%$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | WMAP 3            | $0.984 \pm 0.029$  | <0.65     | $-0.055 \pm 0.03$  | 30±42           |              |
| WMAP 7       0.968±0.012       <0.36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | WMAP 5            | $0.960 \pm 0.013$  | <0.43     | $-0.037 \pm 0.028$ | 51±30           | <16%         |
| WMAP 9 0.9608+0.008 <0.13 -0.019+0.025 37.2+19.9 <15%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | WMAP 7            | $0.968 \pm 0.012$  | <0.36     | $-0.034 \pm 0.026$ | 32±21           | <13%         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | WMAP 9            | $0.9608 \pm 0.008$ | <0.13     | $-0.019 \pm 0.025$ | 37.2±19.9       | <15%         |
| Planck 2013 0.9603±0.007 <0.11 -0.013±0.009 2.7±5.8 <3.6%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Planck 2013       | $0.9603 \pm 0.007$ | <0.11     | -0.013±0.009       | 2.7±5.8         | <3.6%        |
| OWMAP1       15.7       7.4       5.5       8.4       8.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | OWMAP1<br>OPlanck | 15.7               | 7.4       | 5.5                | 8.4             | 8.9          |





**Imperial College** London







Inflation of "Inflationary" papers





# [1303.3787]

### ASPIC = Accurate Slow-roll Predictions for Inflationary Cosmology

 $Encyclop {\it \earrow} dia \ Inflationaris$ 

#### Jérôme Martin,<sup>a</sup> Christophe Ringeval<sup>b</sup> and Vincent Vennin<sup>a</sup>

<sup>a</sup>Institut d'Astrophysique de Paris, UMR 7095-CNRS, Université Pierre et Marie Curie, 98bis boulevard Arago, 75014 Paris (France)

<sup>b</sup>Centre for Cosmology, Particle Physics and Phenomenology, Institute of Mathematics and Physics, Louvain University, 2 Chemin du Cyclotron, 1348 Louvain-la-Neuve (Belgium)

E-mail: jmartin@iap.fr, christophe.ringeval@uclouvain.be, vennin@iap.fr

Keywords: Cosmic Inflation, Slow-Roll, Reheating, Cosmic Microwave Background, Aspic

### ≈ 70 models

- ≈ 700 slow roll formulas
- ≈ 320 pages



















Roberto Trotta



Theoretical prediction

$$C_{\ell}^{\mathrm{th}}\left( heta_{\mathrm{s}}, heta_{\mathrm{reh}}, heta_{\mathrm{inf}}
ight) = \int_{0}^{+\infty} rac{\mathrm{d}k}{k} j_{\ell}(kr_{\ell\mathrm{ss}})T(k; heta_{\mathrm{s}})\mathcal{P}_{\zeta}(k; heta_{\mathrm{reh}}, heta_{\mathrm{inf}}),$$

- $\theta_s$ : Standard LCDM parameters + nuisance (18)
- $\Theta_{\text{reh}}$ : Reheating parameter (1)
- $\theta_{inf}$ : Inflationary potential parameters of interest (1-3)

Marginal likelihood

$$\mathcal{E} = \int \mathrm{d}\theta_{\rm s} \mathrm{d}\theta_{\rm reh} \mathrm{d}\theta_{\rm inf} \mathcal{L}\left(\theta_{\rm s}, \theta_{\rm reh}, \theta_{\rm inf}\right) \pi\left(\theta_{\rm s}, \theta_{\rm reh}, \theta_{\rm inf}\right)$$

Strategy: numerical marginalization over  $\theta_{s}$  and definition of a "Planck effective likelihood" via fast interpolators



# Effective likelihood

ICI

- The likelihood only depends on inflationary physics via the phenomenological parameters P<sub>\*</sub> (amplitude) and slow-roll parameters ε<sub>n</sub>
- Map the likelihood onto the phenomenological parameters, then numerically marginalize out the standard cosmological parameters

$$\begin{split} \mathcal{E} &= \int \mathrm{d}\theta_{\rm s} \mathrm{d}\theta_{\rm reh} \mathrm{d}\theta_{\rm inf} \mathcal{L}\left[\theta_{\rm s}, P_*(\theta_{\rm reh}, \theta_{\rm inf}), \epsilon_n(\theta_{\rm reh}, \theta_{\rm inf})\right] \pi(\theta_{\rm s}) \pi(\theta_{\rm reh}, \theta_{\rm inf}) \\ &= \int \mathrm{d}\theta_{\rm reh} \mathrm{d}\theta_{\rm inf} \mathcal{L}_{\rm eff}\left[P_*(\theta_{\rm reh}, \theta_{\rm inf}), \epsilon_n(\theta_{\rm reh}, \theta_{\rm inf})\right] \pi(\theta_{\rm reh}) \pi(\theta_{\rm inf}), \end{split}$$

- For each inflationary model, map the potential parameters onto the functionals P\* (and εn. Now the remaining parameter space is at most 4 dimensional.
- Dramatic speed-up: < 1 µs/likelihood evaluation, ~ 1 CPU hour for the full marginal likelihood.
## Comparison

ICIC



| — | $\mathcal{L}_{\mathrm{eff}}$ |
|---|------------------------------|
|   | CamSpec                      |

- Comparison with the traditional method shows excellent agreement in the marginal posterior distributions for the slow-roll parameters
- Speed-up is of several orders of magnitude
- Full marginal likelihood can now be obtained with O(100,000) likelihood evaluations in a 4D parameter space



## Priors for inflationary parameters

- The choice of priors for the inflaton potential parameters is crucial for the outcome of the Bayesian model comparison
- Prior shape and width controls the strength of the Occam's razor effect
- Should therefore be motivated by theoretical scenario (i.e. underlying physics)
- 70 potential shapes (and associated parameters): some are split by making different choices of priors, giving a total of 193 "models"
- General rule: for parameters whose order of magnitude is unknown, we use priors uniform in the log of the quantity.
- Priors are proper boundaries specified by theoretical/physical consideration
- Uniform prior on log of reheating parameter R, ensuring that reheating takes place after inflation and before BBN (and that the mean EOS satisfies -1/3 < w < 1).</li>
- Prior on reheating parameter R and normalization are common to all models their impact does not matter for the outcome of model comparison (SDDR for nested models).

## Bayesian model comparison of 193 models Higgs inflation as reference model











Schwarz-Terrero-Escalante Classification:

J.Martin, C.Ringeval, R.Trotta, V.Vennin ASPIC project

Displayed Evidences: 193





### Strength of evidences



### Models classification

#### Imperial College London



#### Model classes vs constraints

#### Imperial College London



## Cosmological model comparison

ICIC



| Competing model                                                                                                                               | $\Delta N_p$                     | r ln B                                                                                                                | Ref                                                                    | Data                                                                                                                      | Outcome                                                                                                                                                                                                                                                                        |
|-----------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|-----------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Initial conditions<br>Isocurvature modes                                                                                                      |                                  |                                                                                                                       |                                                                        |                                                                                                                           |                                                                                                                                                                                                                                                                                |
| CDM isocurvature<br>+ arbitrary correlations<br>Neutrino entropy<br>+ arbitrary correlations<br>Neutrino velocity<br>+ arbitrary correlations | $^{+1}_{+4}_{+1}_{+4}_{+1}_{+4}$ | $ \begin{array}{c} -7.6 \\ -1.0 \\ [-2.5, -6.5]^p \\ -1.0 \\ [-2.5, -6.5]^p \\ -1.0 \end{array} $                     | [58]<br>[46]<br>[46]<br>[46]<br>[46]                                   | WMAP3+, LSS<br>WMAP1+, LSS, SN Ia<br>WMAP3+, LSS<br>WMAP1+, LSS, SN Ia<br>WMAP3+, LSS<br>WMAP1+, LSS, SN Ia               | Strong evidence for adiabaticity<br>Undecided<br>Moderate to strong evidence for adiabaticity<br>Undecided<br>Moderate to strong evidence for adiabaticity<br>Undecided                                                                                                        |
| Primordial power spectr<br>No tilt $(n_s = 1)$                                                                                                | -1                               | $^{+0.4}_{[-1.1, -0.6]^p}$<br>-0.7<br>-0.9<br>$[-0.7, -1.7]^{p,d}$<br>-2.0<br>-2.6<br>-2.9<br>$< -3.9^c$              | [47]<br>[51]<br>[58]<br>[70]<br>[186]<br>[185]<br>[70]<br>[58]<br>[65] | WMAP1+, LSS<br>WMAP1+, LSS<br>WMAP1+, LSS<br>WMAP1+<br>WMAP3+<br>WMAP3+, LSS<br>WMAP3+, LSS<br>WMAP3+, LSS<br>WMAP3+, LSS | Undecided<br>Undecided<br>Undecided<br>Undecided<br>$n_s = 1$ weakly disfavoured<br>$n_s = 1$ weakly disfavoured<br>$n_s = 1$ moderately disfavoured<br>$n_s = 1$ moderately disfavoured<br>$n_s = 1$ moderately disfavoured<br>Moderate evidence at best against $n_s \neq 1$ |
| Running                                                                                                                                       | +1                               | $(-0.6, 1.0]^{p,d}$<br>$< 0.2^c$                                                                                      | [186]<br>[166]                                                         | WMAP3+, LSS<br>WMAP3+, LSS<br>WMAP3+, LSS                                                                                 | No evidence for running<br>Running not required                                                                                                                                                                                                                                |
| Running of running<br>Large scales cut–off                                                                                                    | +2<br>+2                         | $< 0.4^c$<br>[1.3, 2.2] <sup>p,d</sup>                                                                                | [166]<br>[186]                                                         | WMAP3+, LSS<br>WMAP3+, LSS                                                                                                | Not required<br>Weak support for a cut–off                                                                                                                                                                                                                                     |
| Matter-energy content<br>Non-flat Universe                                                                                                    | +1                               | -3.8<br>-3.4                                                                                                          | [70]<br>[58]                                                           | WMAP3+, HST<br>WMAP3+, LSS, HST                                                                                           | Flat Universe moderately favoured<br>Flat Universe moderately favoured                                                                                                                                                                                                         |
| Coupled neutrinos                                                                                                                             | $^{+1}$                          | -0.7                                                                                                                  | [193]                                                                  | WMAP3+, LSS                                                                                                               | No evidence for non–SM neutrinos                                                                                                                                                                                                                                               |
| Dark energy sector<br>$w(z) = w_{\text{eff}} \neq -1$<br>$w(z) = w_0 + w_1 z$                                                                 | +1                               | $\begin{array}{c} [-1.3,-2.7]^p \\ -3.0 \\ -1.1 \\ [-0.2,-1]^p \\ [-1.6,-2.3]^d \\ [-1.5,-3.4]^p \\ -6.0 \end{array}$ | [187]<br>[50]<br>[51]<br>[188]<br>[189]<br>[187]<br>[50]               | SN Ia<br>SN Ia<br>WMAP1+, LSS, SN Ia<br>SN Ia, BAO, WMAP3<br>SN Ia, GRB<br>SN Ia<br>SN Ia                                 | Weak to moderate support for $\Lambda$<br>Moderate support for $\Lambda$<br>Weak support for $\Lambda$<br>Undecided<br>Weak support for $\Lambda$<br>Weak to moderate support for $\Lambda$<br>Strong support for $\Lambda$                                                    |
| $w(z) = w_0 + w_a \left(1 - a\right)$                                                                                                         | +2                               | -1.8<br>-1.1<br>$[-1.2, -2.6]^d$                                                                                      | [188]<br>[188]<br>[189]                                                | SN Ia, BAO, WMAP3<br>SN Ia, BAO, WMAP3<br>SN Ia, GRB                                                                      | Weak support for $\Lambda$<br>Weak support for $\Lambda$<br>Weak to moderate support for $\Lambda$                                                                                                                                                                             |
| $ \begin{array}{l} {\bf Reionization\ history}\\ {\rm No\ reionization\ }(\tau=0)\\ {\rm No\ reionization\ and\ no\ tilt} \end{array} $       | $^{-1}_{-2}$                     | $^{-2.6}_{-10.3}$                                                                                                     | [70]<br>[70]                                                           | WMAP3+, HST<br>WMAP3+, HST                                                                                                | $\tau \neq 0$ moderately favoured<br>Strongly disfavoured                                                                                                                                                                                                                      |
|                                                                                                                                               |                                  |                                                                                                                       |                                                                        |                                                                                                                           |                                                                                                                                                                                                                                                                                |

InB < 0: ACDM remains the "best" model from a Bayesian perspective!

# Cosmological model selection

- Is the spectrum of primordial fluctuations scale-invariant (n = 1)?
- Model comparison:
   n = 1 vs n ≠ 1 (with inflation-motivated prior)
- Results:

n  $\neq$  1 favoured with odds of 17:1 (Trotta 2007) n  $\neq$  1 favoured with odds of 15:1 (Kunz, Trotta & Parkinson 2007) n  $\neq$  1 favoured with odds of 7:1 (Parkinson 2007 et al 2006)





# Example of reasonable sensitivity analysis London

• The favoured model (non-scale invariant CMB spectrum) is robust for physically reasonable changes (motivated by inflation) in the prior width



#### Inflationary range

# Small field vs large field inflation







- In cosmology/High Energy Physics, there are many situations with nested models with extra unknown parameters for the fundamental theory.
- Little or nothing is known about the metric to be imposed on such a parameter space
- "The concept of total ignorance about θ does not have any precise meaning" (Bob Cousins)
- Often, deviations are looked for using arbitrarily parameterized alternative models (not tied to any specific physics), e.g. Gaussian Processes.
- Occam's razor factor may be arbitrary. HOWEVER: if the range of your prior is arbitrary (by many orders of magnitude) then arguably the physics behind it is not strongly predictive...
- In some cases, the upper bound formalism might be useful (Jim Berger and collaborators)

- Imperial College London
- What if we do not know how to set the prior? For nested models, we can still choose a prior that will maximise the support for the more complex model:



• The absolute upper bound: put all prior mass for the alternative onto the observed maximum likelihood value. Then

$$B < \exp(-\chi^2/2)$$

• More reasonable class of priors: symmetric and unimodal around  $\Psi$ =0, then ( $\alpha$  = significance level)

$$B < \frac{-1}{\exp(1)\alpha \ln \alpha}$$

## If the upper bound is small, no other choice of prior will make the extra parameter significant.

Sellke, Bayarri & Berger, *The American Statistician*, 55, 1 (2001)

**Imperial College** 

London

# How to interpret the "number of sigma's"

ICIC



| р      | sigma | Absolute<br>bound on<br>InB (B) | "Reasonable"<br>bound on InB<br>(B) |
|--------|-------|---------------------------------|-------------------------------------|
| 0.05   | 2     | 2.0<br>(7:1)                    | 0.9<br>(3:1)                        |
| 0.003  | 3     | weak<br>4.5<br>(90:1)           | undecided<br>3.0<br>(21:1)          |
| 0.0003 | 3.6   | 6.48<br>(650:1)                 | 5.0<br>(150:1)<br>strong            |

| p-value            | $\bar{B}$ | $\ln \bar{B}$ | sigma | category           |
|--------------------|-----------|---------------|-------|--------------------|
| 0.05               | 2.5       | 0.9           | 2.0   |                    |
| 0.04               | 2.9       | 1.0           | 2.1   | 'weak' at best     |
| 0.01               | 8.0       | 2.1           | 2.6   |                    |
| 0.006              | 12        | 2.5           | 2.7   | 'moderate' at best |
| 0.003              | 21        | 3.0           | 3.0   |                    |
| 0.001              | 53        | 4.0           | 3.3   |                    |
| 0.0003             | 150       | 5.0           | 3.6   | 'strong' at best   |
| $6 \times 10^{-7}$ | 43000     | 11            | 5.0   |                    |

### **Rule of thumb:**

a n-sigma result should be interpreted as a n-1 sigma result





$$P(\theta|d) = \sum_{i} P(M_i|d) P(\theta|d, M_i)$$

- Aim: model-independent constraints that account for model uncertainty
- Model posterior: flat models are preferred by Bayesian model selection → probability gets concentrated onto those models
- Consequence: constraints on the curvature, number of Hubble spheres and size of the Universe can be stronger after Baysian model averaging!
- Number of Hubble spheres N<sub>U</sub> > 251 (99%)
   ~8 times stronger
   Radius of curvature > 42 Gpc (99%)
   1.5 times stronger
  - 1.5 times stronger



## Some references

- R. Trotta, "Bayes in the sky: Bayesian inference and model selection in cosmology" Contemporary Physics, 49, 2 (2008), 71-104 (arXiv: 0803.4089)
- Bayesian methods in cosmology, Hobson et al (eds), CUP (2010)
- Kelly, Some Aspects of Measurement Error in Linear Regression of Astronomical Data, Astrophys.J. 665 (2007) 1489-1506, arXiv:0705.2774
- Tom Loredo's Bayesian papers: http://www.astro.cornell.edu/staff/loredo/bayes/tjl.html
- G. D'Agostini, Probability and Measurement Uncertainty in Physics a Bayesian Primer (1995), hep-ph/9512295
- E.T. Jaynes, Probability Theory: The Logic of Science, CUP (2003)
- D. MacKay, Information theory, Inference & Learning Algorithms, CUP (2003) (available for free on the web for onscreen viewing)
- P. Gregory, Bayesian logical data analysis for the physical sciences, CUP (2003)
- Hu & Dodelson, Cosmic Microwave Background Anisotropies, Ann.Rev.Astron.Astrophys.40:171-216,2002
- Schneider, Extragalactic Astronomy and Cosmology: An Introduction, Springer (2006).

# Thank you!

www.robertotrotta.com