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Why do we need statistics?

• Increasingly complex models and data: "chi-square by eye" simply not enough

• "If it's real, better data will show it":  

but all the action is in the "discovery zone" around 3-4 sigma significance. This is a 
moving target.


• Don't waste time explaining effects which are not there 

• Plan for the future: which is the best strategy? (survey design & optimization)

• In some cases, there will be no better data!  (cosmic variance)

"If you need statistics, you ought to have done a better experiment" 
!

Attributed to Rutherford
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The future of cosmology is in Astrostatistics

Hubble (1929)

From a data-starved to a data-choked discipline!

“Union 2” compilation (2010)
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CfA redshift survey (1985)!
1100 galaxies



Sloan Digital Sky Survey (2000-2008)!
1M galaxies



Square Kilometer Array  (2024-)!
10s of billions of galaxies
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The cosmological concordance model 

1.INFLATION:  
A burst of exponential expansion in the first ~10-32 s after the Big Bang, probably 
powered by a yet unknown scalar field. 


2.DARK MATTER:  
The growth of structure in the Universe and the observed gravitational effects 
require a massive, neutral, non-baryonic yet unknown particle making up ~25% of 
the energy density.


3.DARK ENERGY:  
The accelerated cosmic expansion (together with the flat Universe implied by the 
Cosmic Microwave Background) requires a smooth yet unknown field with negative 
equation of state, making up ~70% of the energy density.

The next 5 to 10 years are poised to bring major 
observational breakthroughs in each of those topics!

The ΛCDM cosmological concordance model is built on three pillars:
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Cosmic Microwave Background analysis

WMAP7 internal linear combination map

Angular power spectrum (assumes isotropy)
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The power spectrum contains the full statistical information  
IF fluctuations are Gaussian

The observed anisotropies are a superposition of: 
!

1. Initial conditions (inflation/early Universe physics) 
2. Temperature/potential fluctuations at decoupling 
3. Line-of-sight effects (ISW, SZ, lensing)



1012 bits

50x106 pixels 2500 harmonics

6 parameters model
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Origin of the CMB 

Big Bang (t=0)

Photon baryons plasma  
(t<380,000 yrs)
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BAO: correlation between galaxies’ position

12 Padmanabhan et al

Figure 13. The unreconstructed [left] and reconstructed [right] DR7 angle averaged correlation function. The error bars are the standard
deviation of the 160 LasDamas simulations. These errors are however highly correlated from bin to bin and therefore no conclusions as
to significance should be drawn from these figures. The solid line is the best fit model to these data. As in the simulations, the acoustic
feature appears sharpened.

LasDamas simulations. The amplitude of the intermediate-
scale correlation function decreases due to the correction of
redshift-space distortions, while the transition into the BAO
feature at ⇠80� 100 Mpc/h is sharpened.

The correlated nature of the errors makes it di�cult to
quantitatively assess the impact of reconstruction on these
data. Figure 14 plots the �2 surface for ↵ both before and
after reconstruction. We note that the �2 minimum after re-
construction is visibly narrower, indicating an improvement
in the distance constraints. This improvement is also sum-
marized in the first two lines of Table 4 which shows that
reconstruction reduces the distance error from 3.5% to 1.9%.
These distance constraints are also consistent with the errors
estimated from the LasDamas simulations.

Figure 14 also plots the �2 surface for a template with-
out a BAO feature, using the “no-wiggle” form of Eisenstein
& Hu (1998). The lack of a well defined minimum either
before or after reconstruction indicates that our distance
constraints are indeed coming from the presence of a BAO
feature and not any broad band features in the correlation
function. The di↵erence in �2 between the templates with
and without a BAO feature also provides an estimate of the
significance of the BAO detection in these data. Reconstruc-
tion improves this detection significance from 3.3� (consis-
tent with previous measurements) to 4.2�. This is not the
only measure of the detection significance possible; Paper II
discusses these in more detail.

As before, we would like to demonstrate the robustness
of the results to the various parameters of the reconstruc-
tion algorithm. Table 4 lists the recovered distances varying
the smoothing scale, input bias, growth rate (f), and prior
power spectrum; for each of these cases, we recover distances
consistent with the fiducial choices of parameters.

Our final test is the impact of the assumed fiducial cos-
mology. We consider two cases in Table 4: flat ⇤CDM cos-
mologies with ⌦M = 0.2 and 0.35. In both of these cases,
we adjust the Hubble constant and the baryon density ⌦b

to keep the physical densities ⌦bh
2 and ⌦Mh2 equal to

their WMAP7 values. This prescription leaves the CMB un-
changed, but alters the distance-redshift relation. We find
that the estimated values of ↵ are significantly di↵erent from

the fiducial case. However, note that the physical observable
is not ↵, but DV /rs = ↵(DV /rs)

fid

. Comparing this across
the three cosmologies (second column, Table 4), we find it
insensitive to the choice of cosmology.

The distance information from these BAO measure-
ments may be summarized into a probability distribution
p(DV /rs), plotted in Figure 15 and summarized in the sec-
ond column of Table 4. Unlike ↵, these measurements no
longer make reference to a fiducial cosmology. One may how-
ever freely convert between p(↵) and p(DV /rs) by multiply-
ing the latter by (DV /rs)

fid

. We use the results in Figure 15
to explore the cosmological consequences of these measure-
ments in Paper III. If we assume a perfectly measured sound
horizon, these measurements can be converted into a dis-
tance measurement in Gpc. Using a sound horizon of 152.76
Mpc, we get a distance to z = 0.35 of 1.356 ± 0.025 Gpc.
Note that these numbers do not have h�1 factors in them.
Of course, the sound horizon is not perfectly measured and
its uncertainty must be taken into account when fitting for
cosmologies. Paper III discusses the methodologies and re-
sults in detail.

6 DISCUSSION

We present the results of the density field reconstruction
on the BAO feature on the SDSS DR7 LRG data. This is
the first application of reconstruction on a galaxy redshift
survey, resulting in a 1.8 factor reduction in the distance
error to a z = 0.35, equivalent to a tripling of the survey
volume. This is the first in a series of three papers; Paper II
describes the fitting of the correlation function, while Paper
III explores the cosmological implications of these results.

Our principal results and conclusions are :

(i) We modify the Eisenstein et al. (2007a) reconstruction
algorithm to account for the e↵ects of survey boundaries and
redshift-space distortions and test it on the mock catalogs
from the LasDamas suite of simulations. These mock cat-
alogs have been designed to both match the SDSS survey
geometry as well as the redshift distribution and clustering
properties of the SDSS LRG sample.

c� 0000 RAS, MNRAS 000, 000–000

Baryonic acoustic oscillations (z~0.35)

ΛCDM

Baryonic Acoustic Oscillations from 
~50,000 LRGs 

1.9% distance accuracy to z=0.35 
~4 sigma significance after reconstruction

SDDS-III DR8 
14,000 sq deg 

Pa
dm

an
ab

ha
n 

et
 a

l (2
01

2)

Primordial sound waves introduce extra correlation between galaxies on scales ~ 150 Mpc: 
this corresponds to (on average) 1 extra galaxy at this preferential separation 



Roberto Trotta 

W
M

A
P

 te
a
m

 

12 Padmanabhan et al

Figure 13. The unreconstructed [left] and reconstructed [right] DR7 angle averaged correlation function. The error bars are the standard
deviation of the 160 LasDamas simulations. These errors are however highly correlated from bin to bin and therefore no conclusions as
to significance should be drawn from these figures. The solid line is the best fit model to these data. As in the simulations, the acoustic
feature appears sharpened.

LasDamas simulations. The amplitude of the intermediate-
scale correlation function decreases due to the correction of
redshift-space distortions, while the transition into the BAO
feature at ⇠80� 100 Mpc/h is sharpened.

The correlated nature of the errors makes it di�cult to
quantitatively assess the impact of reconstruction on these
data. Figure 14 plots the �2 surface for ↵ both before and
after reconstruction. We note that the �2 minimum after re-
construction is visibly narrower, indicating an improvement
in the distance constraints. This improvement is also sum-
marized in the first two lines of Table 4 which shows that
reconstruction reduces the distance error from 3.5% to 1.9%.
These distance constraints are also consistent with the errors
estimated from the LasDamas simulations.

Figure 14 also plots the �2 surface for a template with-
out a BAO feature, using the “no-wiggle” form of Eisenstein
& Hu (1998). The lack of a well defined minimum either
before or after reconstruction indicates that our distance
constraints are indeed coming from the presence of a BAO
feature and not any broad band features in the correlation
function. The di↵erence in �2 between the templates with
and without a BAO feature also provides an estimate of the
significance of the BAO detection in these data. Reconstruc-
tion improves this detection significance from 3.3� (consis-
tent with previous measurements) to 4.2�. This is not the
only measure of the detection significance possible; Paper II
discusses these in more detail.

As before, we would like to demonstrate the robustness
of the results to the various parameters of the reconstruc-
tion algorithm. Table 4 lists the recovered distances varying
the smoothing scale, input bias, growth rate (f), and prior
power spectrum; for each of these cases, we recover distances
consistent with the fiducial choices of parameters.

Our final test is the impact of the assumed fiducial cos-
mology. We consider two cases in Table 4: flat ⇤CDM cos-
mologies with ⌦M = 0.2 and 0.35. In both of these cases,
we adjust the Hubble constant and the baryon density ⌦b

to keep the physical densities ⌦bh
2 and ⌦Mh2 equal to

their WMAP7 values. This prescription leaves the CMB un-
changed, but alters the distance-redshift relation. We find
that the estimated values of ↵ are significantly di↵erent from

the fiducial case. However, note that the physical observable
is not ↵, but DV /rs = ↵(DV /rs)

fid

. Comparing this across
the three cosmologies (second column, Table 4), we find it
insensitive to the choice of cosmology.

The distance information from these BAO measure-
ments may be summarized into a probability distribution
p(DV /rs), plotted in Figure 15 and summarized in the sec-
ond column of Table 4. Unlike ↵, these measurements no
longer make reference to a fiducial cosmology. One may how-
ever freely convert between p(↵) and p(DV /rs) by multiply-
ing the latter by (DV /rs)

fid

. We use the results in Figure 15
to explore the cosmological consequences of these measure-
ments in Paper III. If we assume a perfectly measured sound
horizon, these measurements can be converted into a dis-
tance measurement in Gpc. Using a sound horizon of 152.76
Mpc, we get a distance to z = 0.35 of 1.356 ± 0.025 Gpc.
Note that these numbers do not have h�1 factors in them.
Of course, the sound horizon is not perfectly measured and
its uncertainty must be taken into account when fitting for
cosmologies. Paper III discusses the methodologies and re-
sults in detail.

6 DISCUSSION

We present the results of the density field reconstruction
on the BAO feature on the SDSS DR7 LRG data. This is
the first application of reconstruction on a galaxy redshift
survey, resulting in a 1.8 factor reduction in the distance
error to a z = 0.35, equivalent to a tripling of the survey
volume. This is the first in a series of three papers; Paper II
describes the fitting of the correlation function, while Paper
III explores the cosmological implications of these results.

Our principal results and conclusions are :

(i) We modify the Eisenstein et al. (2007a) reconstruction
algorithm to account for the e↵ects of survey boundaries and
redshift-space distortions and test it on the mock catalogs
from the LasDamas suite of simulations. These mock cat-
alogs have been designed to both match the SDSS survey
geometry as well as the redshift distribution and clustering
properties of the SDSS LRG sample.
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4 K. Mehta et al.

Figure 2. 6dFGS, reconstructed SDSS DR7, and WiggleZ BAO
data points. The black line represents the ΛCDM prediction us-
ing WMAP7 data only (Komatsu et al. 2011). The shaded gray
region is the effect of varying Ωmh2 within the 1σ measurement
errors of WMAP7. We see that the BAO data is consistent with
the ΛCDM cosmological model.

on this plot with the width set by the uncertainty in Ωmh2.
In this figure, we explore the effects of varying the equation
of state parameter, w and the curvature of the Universe ΩK

respectively. The blue region corresponds to a flat Universe
with w = −0.7, while the red region corresponds to a Uni-
verse with a cosmological constant and ΩK = 0.01. Ωm is
adjusted to keep the sound horizon constant. From this fig-
ure, we see that changing w mostly changes the slope of the
line on this plot while a non-zero ΩK mostly changes the
vertical offset. The relative distance measure from compar-
ing the flux of SN are constrain only the slope of the lines,
while the BAO data can measure an absolute distance and
hence the vertical offset. This explains why SN data is more
effective at constraining w, while the BAO data is more ef-
fective at constraining ΩK . The Riess et al. (2011) direct H0

measurement is also plotted in this figure assuming the fidu-
cial sound horizon value. While the sound horizon varies by
about 1% within the WMAP7 results, this effect is subdom-
inant to the quoted errors on H0. We explore the apparent
tension between the BAO measurement and the direct mea-
surement of H0 in Section 3.9.

Conventionally, the Hubble constant has been mea-
sured by building a distance ladder from local measurements
out to measuring the cosmological Hubble flow. Conversely,
the CMB and BAO data build an inverse distance ladder
starting from a distance measurement at the recombina-
tion epoch. The CMB data provides an accurate measure-
ment of the distance to the recombination redshift and our
BAO data provides a measurement of distance to z = 0.35,
thereby building an inverse distance ladder. The combina-
tion of these two datasets has the power to distinguish be-
tween different cosmological models. The supernovae data
extrapolate the distance measurements to lower redshift
and, therefore, precisely measure the expansion of the Uni-
verse at z = 0, which is the Hubble constant, H0. In the
following sections we use a combination of these datasets
to explore a variety of cosmological models, and we use the

Figure 3. Plot of DV /rs normalized by the fiducial value. The
open square is the Percival et al. (2010) BAO measurement. The
black line is the WMAP7 ΛCDM model, red line shows the ef-
fect of varying w and the blue line, the effect of varying ΩK .
The shaded regions around these lines correspond to 1σ uncer-
tainty in Ωmh2 around the WMAP7 measurement. We see that
the BAO data has the power to distinguish between various cos-
mological models. The H0 point is the direct H0 measurement
from Riess et al. (2011).

CMB+BAO+SN dataset to obtain robust measurements of
H0 and Ωm.

3.2 ΛCDM: The Vanilla Model

The WMAP7 measurements of the CMB give us very good
measurements of the various parameters in the “vanilla cos-
mology” model, also known as the ΛCDM model. Adding
BAO measurement to the WMAP7 results improves the
measurement of Ωm by about 40% and H0 by almost 30%.
With reconstruction, we measure Ωm = 0.280 ± 0.014 and
H0 = 69.8 ± 1.2 km/s/Mpc giving us a 1.7% measurement
of the Hubble constant. Figure 4 shows the 68% and 95%
confidence level contours for H0 vs Ωm and we can see the
improvement in these parameters by adding the BAO data.
Table 1 shows the values for Ωmh2, Ωm, and H0 for various
cosmological models and the corresponding datasets used.

The acoustic standard ruler is calibrated by the WMAP
measurement of Ωmh2. Komatsu et al. (2011) shows that
allowing for a running spectral index, dns/d ln k increases
the errors on Ωmh2. Thus, we explore the effects of varying
the running spectral index, dns/d ln k with the CMB and
CMB+BAO datasets. We note that the nuisance param-
eters used in our BAO fitting techniques (PaperII) make
our measurement of DV /rs insensitive to the running spec-
tral index. Table 2 shows the effect of varying the running
spectral index on cosmological parameters. We see that the
running spectral index is consistent with 0: dns/d ln k =
−0.024± 0.020 using the CMB+BAO dataset. We find that
including this parameter in the case of CMB data only, the
Ωmh2 measurements are degraded by a factor of 1.4 from
Ωmh2 = 0.1341 ± 0.0056 to 0.1393 ± 0.0080. This corre-
sponds to an increased uncertainty in the measurements of
Ωm, H0, and the spectral index ns. Adding the BAO data
improves the measurement of Ωmh2, Ωm, H0, and ns and
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Putting it all together...
Combined constraints on total matter (ΩM=ΩB+ΩCDM) and dark energy (ΩΛ) 
content (dark energy equation of state parameter w = pressure/energy density):

Assuming Λ (w=-1) Assuming flatness (ΩΛ+ΩM=1)

CMB

CMB
BAO

BAO

SNIa

SNIa

Combined

Combined

March, RT et al (2012)
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Where are we today?
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From Planck (2013)
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Bayes in the sky



Cosmology 
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CMB decomposition 

+ acoustic
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Temperature fluctuations
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Angular projection
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Matter-radiation equality
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Cosmological constant density
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Baryon density 
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Normal parameters: good 

Kosowsky et al (2002)
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"Physical" parameters: bad  

Kosowsky et al (2002)
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Cosmomc: example 

Bridle & Lewis (2003)
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The general solution

• Once the RHS is defined, how do we evaluate the LHS?

• Analytical solutions exist only for the simplest cases (e.g. Gaussian linear model)

• Cheap computing power means that numerical solutions are often just a few clicks 

away! 

• Workhorse of Bayesian inference: Markov Chain Monte Carlo (MCMC) methods. A 

procedure to generate a list of samples from the posterior. 

P (�|d, I) � P (d|�, I)P (�|I)
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MCMC estimation

• A Markov Chain is a list of samples θ1, θ2, θ3,... whose density reflects the 
(unnormalized) value of the posterior 


•  A MC is a sequence of random variables whose (n+1)-th element only depends on 
the value of the n-th element 


• Crucial property: a Markov Chain converges to a stationary distribution, i.e. one that 
does not change with time. In our case, the posterior. 


• From the chain, expectation values wrt the posterior are obtained very simply: 

P (�|d, I) � P (d|�, I)P (�|I)

⇥�⇤ =
⇥

d�P (�|d)� � 1
N

�
i �i

⇥f(�)⇤ =
⇥

d�P (�|d)f(�) � 1
N

�
i f(�i)



Roberto Trotta 

Reporting inferences

• Once P(θ|d, I) found, we can report inference by: 


• Summary statistics (best fit point, average, mode)


• Credible regions (e.g. shortest interval containing 68% of the posterior probability 
for θ). Warning: this has not the same meaning as a frequentist confidence interval! 
(Although the 2 might be formally identical)


• Plots of the marginalised distribution, integrating out nuisance parameters (i.e. 
parameters we are not interested in). This generalizes the propagation of errors: 

P (�|d, I) =
�

d⇥P (�, ⇥|d, I)



Roberto Trotta 

Credible regions: 
Bayesian approach
• Use the prior to define a metric on parameter space. 


• Bayesian methods: the best-fit has no special status. Focus on region of large 
posterior probability mass instead. 


• Markov Chain Monte Carlo (MCMC) 


• Nested sampling


• Hamiltonian MC 


• Determine posterior credible regions:  
e.g. symmetric interval around the  
mean containing 68% of samples 

SuperBayeS
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Gaussian case
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MCMC estimation

• Marginalisation becomes trivial: create bins along the dimension of interest and 
simply count samples falling within each bins ignoring all other coordinates 


• Examples (from superbayes.org) : 

2D distribution of samples  
from joint posterior
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The simplest MCMC algorithm

• Several (sophisticated) algorithms to build a MC are available: e.g. Metropolis-
Hastings, Hamiltonian sampling, Gibbs sampling, rejection sampling, mixture 
sampling, slice sampling and more... 


• Arguably the simplest algorithm is the Metropolis (1954) algorithm:  

• pick a starting location θ0 in parameter space, compute P0 = p(θ0|d)


• pick a candidate new location θc according to a proposal density q(θ0, θc)


• evaluate Pc = p(θc|d) and accept θc with probability


• if the candidate is accepted, add it to the chain and move there; otherwise stay 
at θ0 and count this point once more.

� = min
�

Pc
P0

, 1
⇥
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Practicalities 
• Except for simple problems, achieving good MCMC convergence (i.e., sampling 

from the target) and mixing (i.e., all chains are seeing the whole of parameter space) 
can be tricky


• There are several diagnostics criteria around but none is fail-safe. Successful 
MCMC remains a bit of a black art! 


• Things to watch out for:


• Burn in time


• Mixing 


• Samples auto-correlation 
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MCMC diagnostics 

Burn in Mixing Power spectrum

10−3 10−2 10−1 100

10−4

10−2

100

k
m1/2 (GeV)

P(
k)

(see astro-ph/0405462 for details)
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Non-Gaussian example

Bayesian posterior 
(“flat priors”)

Bayesian posterior 
(“log priors”)

Profile likelihood

Constrained Minimal Supersymmetric Standard Model (4 parameters)  
Strege, RT et al (2013)



Supernovae Type Ia
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Type Ia supernovae 

• Supernovae: core-collapse thermonuclear 
explosions of stars, emitting a large (~ 1051 erg, cf 
Lgalaxy ~ 1044 erg/s ) amount of energy (photons + 
neutrinos).


• Supernovae type Ia (SNIa): characterized by the 
lack of H in their spectrum, outcome of a CO 
white dwarf (WD) in a close binary system 
accreting mass above the Chandrasekhar limit 
(1.4 solar masses).


• The nature of the donor star is still disputed: 
Single Degenerate (WD + Main sequence or Red 
giant or a He star companion) vs Double 
Degenerate (WD + WD merger) scenarios (or both)
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Progenitors of Type 1a Supernovae?

Images:NASA/CXC/M Weiss.

Accretion Merger

bimodal population?
Imperial College

London arXiv:1102.3237

r.trotta@imperial.ac.uk

Single 
degenerate

Double 
degenerate

Progenitors of Type 1a Supernovae?

Images:NASA/CXC/M Weiss.
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bimodal population?
Imperial College

London arXiv:1102.3237
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Perlmutter et al (1999)



For references, see Chapter 8 in Schneider, Extragalactic 
Astronomy and Cosmology: An Introduction, Springer (2006). 



Riess, Press, Kirshner  
(1996)
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SNIa lightcurves 

J. Guy et al, SNLS Collaboration: SALT2 11
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Fig. 6 Estimated standard deviation of model photometric errors
as a function of phase, for several rest-frame wavelength ranges
roughly corresponding from top to bottom to U, B, V , R and
I−bands. Those model errors were evaluated from the scatter of
residuals to the single light-curve fit.
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Fig. 7 Difference between observed peakmagnitude in each band
of each SN from table 2 and the model prediction as a function
of the rest-frame effective wavelength of the filter used (gray tri-
angles : SNLS SNe, gray squares : nearby SNe). The large black
symbols represent the estimated dispersion in each wavelength
bin (triangles for SNLS, and squares for nearby SNe). The large
circles show the average difference in each wavelength bin for all
SNe and the solid curve is a polynomial fit to the dispersion used
as an estimate of the K-correction scatter. Since uncertainties on
B and V magnitudes at maximum enter in the normalization and
color evaluation of the model, K-correction uncertainties are set
to zero for B and V− band wavelengths.
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the 1 σ uncertainties of the model (both uncorrelated and K-
correction errors).
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Brightness-width relationship 
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Even SN with low extinction benefit from observations in
the H-band by reducing the uncertainty in the dust es-
timate. Table 4 lists summary statistics of the marginal
posterior distribution of each host galaxy dust parameter
for each SN, obtained from the MCMC samples.

5.2. Intrinsic Correlation Structure of SN Ia Light
curves in the Optical-NIR

We use the hierarchical model to infer the intrinsic
correlation structure of the absolute SN Ia light curves.
This correlation structure captures the statistical rela-
tionships between peak absolute magnitudes and decline
rates of light curves in multiple filters at different wave-
lengths and phases. We summarize inferences about light
curve shape and luminosity across the optical and near
infrared filters; a more detailed analysis of the intrin-
sic correlation structure of colors, luminosities and light
curve shapes will be presented elsewhere.

5.2.1. Intrinsic Scatter Plots

The hierarchical model fits the individual light curves
with the differential decline rates model and infers the
absolute magnitudes in multiple passbands, corrected for
host galaxy dust extinction. For each individual SN light
curve, we can use the inferred local decline rates dF to
compute the ∆m15(F ) of the light curve in each filter. In
the left panel of Figure 4, we plot the posterior estimate
of the peak absolute magnitude MB versus its canoni-
cal ∆m15(B) decline rate with black points. The error
bars reflect measurement errors and the marginal uncer-
tainties from the distance and inferred dust extinction.
This set of points describes the well-known intrinsic light
curve decline rate versus luminosity relationship (Phillips
1993). We also show the mean linear relation between
MB and ∆m15(B) found by Phillips et al. (1999), who
analyzed a smaller sample of SN Ia. The statistical trend
found by our model is consistent with that analysis. The
red points are simply the peak apparent magnitudes mi-
nus the distance moduli, B0 − µ, which are the extin-
guished peak absolute magnitudes MB + AB. Whereas
the range of extinguished magnitudes spans ∼ 3 magni-
tudes, the intrinsic absolute magnitudes lie along a nar-
row, roughly linear trend with ∆m15(B).
In the right panel, we plot the intrinsic and ex-

tinguished absolute magnitudes of SN Ia in the H-
band. In contrast to the left panel, the differences
between the intrinsic absolute magnitudes and the ex-
tinguished magnitudes are nearly negligible. Notably,
there is no correlation between the intrinsic MH in
the NIR and optical ∆m15(B). This was noted previ-
ously by Krisciunas et al. (2004a) and Wood-Vasey et al.
(2008). The standard deviation of absolute magnitudes
is much smaller in H than in B, demonstrating that
the NIR SN Ia light curves are good standard can-
dles (Krisciunas et al. 2004a,c; Wood-Vasey et al. 2008;
Mandel et al. 2009). Theoretical models of Kasen (2006)
indicate that NIR peak absolute magnitudes have rela-
tively weak sensitivity to the input progenitor 56Ni mass,
with a dispersion of ∼ 0.2 mag in J and K, and ∼ 0.1
mag in H over models ranging from 0.4 to 0.9 solar
masses of 56Ni. The physical explanation may be traced
to the ionization evolution of the iron group elements in
the SN atmosphere.
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B0−µ
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Fig. 4.— (left) Post-maximum optical decline rate ∆m15(B) ver-
sus posterior estimates of the inferred optical absolute magnitudes
MB (black points) and the extinguished magnitudes B0 − µ (red
points). Each black point maps to a red point through optical
dust extinction in the host galaxy. The intrinsic light curve width-
luminosity Phillips relation is reflected in the trend of the black
points, indicating that SN brighter in B have slower decline rates.
The blue line is the linear trend of Phillips et al. (1999). (right)
Inferred absolute magnitudes and extinguished magnitudes in the
near infrared H-band. The extinction correction, depicted by the
difference between red and black points, is much smaller in H than
in B. The absolute magnitudes MH have no correlation with the
∆m15(B). The standard deviation of peak absolute magnitudes is
also much smaller for MH compared to MB .

These scatter plots convey some aspects of the popu-
lation correlation structure of optical and near infrared
light curves that is captured by the hierarchical model.
In the next section, we further discuss the multi-band
luminosity and light curve shape correlation structure in
terms of the estimated correlation matrices.
Figure 5 shows scatter plots of optical-near infrared

colors (B−H,V −H,R−H, J−H) versus absolute mag-
nitude (MB,MV ,MR,MH) at peak. The blue points are
the posterior estimates of the inferred peak intrinsic col-
ors and absolute magnitudes of the SN, along with their
marginal uncertainties. Red points are the peak apparent
colors and extinguished absolute magnitudes, including
host galaxy dust extinction and reddening. These plots
show correlations between the peak optical-near infrared
colors and peak optical luminosity, in the direction of in-
trinsically brighter SN having bluer peak colors. In con-
trast, the intrinsic J −H colors have a relatively narrow
distribution, and the near infrared absolute magnitude
MH is uncorrelated with intrinsic J −H color.

5.2.2. Intrinsic Correlation Matrices

Using the hierarchical model, we compute posterior in-
ferences of the population correlations between the dif-
ferent components of the absolute light curves of SN Ia.
This includes population correlations between peak ab-
solute magnitudes in different filters, ρ(MF ,MF ′), cor-
relations between the peak absolute magnitudes and
light curve shape parameters (differential decline rates)
in different filters, ρ(MF ,dF ′

), and the correlations be-
tween light curve shape parameters in different filters,
ρ(dF ,dF ′

). They also imply correlations between these
quantities and intrinsic colors. This information and its
uncertainty is captured in the posterior inference of the
population covariance matrix Σψ of the absolute light
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Brighter SNIa are slow decliners
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PS1 data

• Most recent data set 
from PAN-STARRS1 
survey


• 146 spectroscopically 
confirmed SNIa 


• Cosmological fit: 112 
PS1 at high-z (blue) + 
201 low-z SNIa (red)
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Standard Chi2 fits of SALT2 output

• Standard analysis minimizes the likelihood (typically, C minimized with α, β fixed, 
then α, β minimized with C fixed), arbitrarily defined as: 

�2
fit = �2

mB
+ ↵2�2

x1
+ �2�2

c

+ correlations

�2
int represents the “intrinsic” (residual) scatter

determined by requiring Chi2/dof ~ 1 

observed values (SALT2 fits)
parameters

�2 logL = �

2
=

X

i

(µ(zi, C)� [m̂B,i �M + ↵x̂1,i � �ĉi])
2

�

2
int + �

2
fit
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Problems of the standard analysis

• Form of the likelihood function is unjustified

• α, β appear in the variance, too - this is a problem of simultaneous estimation of the 

mean and of the variance. Chi2 not the correct distribution.

• Incorrectly normalized - missing                                 term in front. Adding this in 

results in a (known) 6-sigma bias of β. 

• Chi2/dof ~ 1 prescription prevents by construction model checking and hypothesis 

testing

• Marginalization (and use of fast Bayesian MCMC methods) impossible (profile 

likelihood “fudge” necessary)

�1

2

log

�
�2
int + �2

fit

�

Principled Bayesian solution required! 

�2 logL = �

2
=

X

i

(µ(zi, C)� [m̂B,i �M + ↵x̂1,i � �ĉi])
2

�

2
int + �

2
fit
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Bayesian hierarchical model 

For each SNIa, this relation holds exactly between latent (unobserved) variables:

Latent variables

µi(zi, C) = mB,i �Mi + ↵x1,i � �ci

Mi ⇠ N (M0,�
2
int)

ci ⇠ N (c?, Rc)

x1,i ⇠ N (x
?

, R

x

)

Population-level hyperparameters 
to be estimated from the data

Population 
hyper-parameters 

Prior

Parameters of 
interest

Prior
Derived variable

Observed values
[m̂B,i, ĉi, x̂1,i] ⇠ N ([mBi , ci, x1,i], Ĉi)

INTRINSIC      VARIABILITY

NOISE, SELECTION EFFECTS
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Advantages of multi-layer model 
• The Bayesian hierarchical approach allows us to:


• model explicitly the population-level intrinsic variability of SNIa 


• investigate the impact of multiple SNIa populations (e.g., different progenitor 
models)


• determine/include correlations with other observables (galaxy mass, metallicity, 
age, spectral lines, etc) to reduce residual scatter in Hubble diagram


• obtain a principled data likelihood that can be used with Bayesian MCMC/
MultiNest (marginal posteriors, Bayesian evidence for model selection)


• derive a fully marginalized posterior on the residual (after colour and stretch 
correction) intrinsic scatter in the SNIa intrisic magnitude


• investigate possible SNIa evolution (e.g., β(z)) and other systematics 
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At the heart of the method... 

• ... lies the fundamental problem of linear regression in the presence of 
measurement errors on both the dependent and independent variable and intrinsic 
scatter in the relationship (e.g., Gull 1989, Gelman et al 2004, Kelly 2007):  
 
 
 
analogous to 

µi = mB,i �Mi + ↵x1,i � �ci

yi = b+ axi

x

i

⇠ p(x| ) = N
xi(x?

, R

x

) POPULATION 
DISTRIBUTION

yi|xi ⇠ Nyi(b+ axi,�
2) INTRINSIC VARIABILITY

x̂

i

, ŷ

i

|x
i

, y

i

⇠ N
x̂i,ŷi([xi

, y

i

],⌃2) MEASUREMENT ERROR
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observed x

latent  
distrib’on

PD
F• Modeling the latent distribution of the 

independent variable accounts for “Malmquist 
bias”


• An observed x value far from the origin is more 
probable to arise from up-scattering (due to noise) 
of a lower latent x value than down-scattering of a 
higher (less probable) x value 



The key parameter is noise/population variance 
σxσy/Rx

σxσy/Rx small

Bayesian marginal posterior 
identical to profile likelihood
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σxσy/Rx large

Bayesian marginal posterior 
broader but less biased than 
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Tests on simulated SNIa data 

• Simulated N=288 SNIa 
with similar 
characteristics as SDSS
+ESSENCE+SNLS+HST
+Nearby sample 


• Reconstruction of 
cosmological parameters 
over 100 realizations, 
comparing Bayesian 
hierarchical method with 
standard Chi2.  

Simulated SNIa realization 
(colour coded according to “survey”)
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Posterior sampling 
• In the Bayesian hierarchical approach, we have


• 3 cosmological parameters: H0, ΩM, ΩK  (w=1) or H0, ΩM, w (ΩK =0) 

• 2 stretch/colour correction parameters: α, β


• 6 population-level parameters: M0, σ2, x*, Rx, c*, Rc


• 3N (=864) latent variables Mi, x1i, ci

• Analytical marginalization over all latent variables and linear population-level 

parameters is possible in Gaussian case (no selection effects). Sampling of the 
remaining parameters via MultiNest.


• Alternatively, Gibbs sampling can be used to sample over all parameters (conditional 
distributions are Gaussian in the absence of selection effects. Including them 
introduces additional accept/reject step).
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Marginal posterior (simulated data)

w = 1 ΩK = 0

Red/empty: Chi2 (68%, 95% CL)
Blue/filled: Bayesian  (68%, 95% credible regions)

True value
True value

Bayesian posterior is noticeably different from the 
Chi2 CL: which one is “best”?
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Coverage, bias and mean squared error 

• Coverage of Bayesian 1D marginal posterior CR and of 1D Chi2 profile likelihood CI 
computed from 100 realizations


• Bias and mean squared error (MSE) defined as 
 
   is the posterior mean (Bayesian) or the  
   maximum likelihood value (Chi2).
✓̂

Co
ve

ra
ge

Red: Chi2 Blue: Bayesian Results: 
!
Coverage: generally improved 
(but still some undercoverage 
observed)

!
Bias: reduced by a factor ~ 2-3 
for most parameters

!
MSE: reduced by a factor 1.5-3.0 
for all parameters
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Cosmology results 

288 SNIa
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Combined sample w = 1

Red: Chi2
Blue: Bayesian

Marginal posteriors
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Combined constraints

• Combined cosmological constraints on matter and dark energy content:

CMB

CMB
BAO

BAO

SNIa

SNIa

Combined

Combined

w = 1 ΩK = 0
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The BayeSN approach 

• Developed by K. Mandel (Mandel et al, 2009, 2011) and collaborators: fully Bayesian 
approach to LC fitting, including random errors, population structure, intrinsic 
variations/correlations, dust extinction and reddening, incomplete data 

Dust population 
parameters

LC population  
parameters

Prior

Prior

Dust (Av, Rv)

Distance modulus

Observed LC

Absolute LC

Apparent LC

Redshift

SN 1...N



Dust absorption for each SNIa Population level analysis of correlations

Inclusion of NIR LC

Hubble diagram: residual scatter 
reduced by ~2 using optical+NIR LC

+NIR

Mandel et al (2011)Some results from BayeSN



The complete hierarchical model 

Latent variablesPopulation 
parameters

Data	

Cosmological sample

Dust

Light curves 

Absorption  

Light curves 

Environment Correlates 
Light curve summary statistics

Optical spectra

Near-infrared light curves

SN environmental data

Redshift 
zi

Apparent light 
curves 

(nearby)

Apparent light 
curves    

(distant)

Redshift data

Optical spectra

Near-infrared light curve

SN environmental data

Data	

Local calibration sample

Survey 
parameters 

E, C

 dust

 env

 SN

i = 1, . . . ,M

Distance 
modulus 

Redshift 
zi

Survey 
parameters 

E, C

Standardization 
parameters 

Cosmological 
parameter 

C

Light curves

i = 1, . . . ,M

Light curves

Redshift data
i = 1, . . . ,M

Mibt

mibt

mibt

m̂ibt

m̂ibt

µ

 dust,i

ci

⌫t,↵,⌥

Distance 
modulus 
µ

Standardization 
parameters 
⌫t,↵,⌥

Red arrows/boxes indicate elements/data that have never been explored before in such a multi-level setting



Principled Bayesian model selection
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The 3 levels of inference

LEVEL 1  
I have selected a model M 

and prior P(θ|M)

LEVEL 2  
Actually, there are several 

possible models: M0, M1,...

Parameter inference 
What are the favourite 

values of the 
parameters?  

(assumes M is true)

Model comparison 
What is the relative 

plausibility of M0, M1,... 
in light of the data?

odds = P(M0|d)
P(M1|d)

LEVEL 3  
None of the models  
is clearly the best

Model averaging 
What is the inference on 

the parameters 
accounting for model 

uncertainty?

P (�|d) =
�

i P (Mi|d)P (�|d, Mi)P (�|d, M) = P (d|�,M)P (�|M)
P (d|M)
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Examples of model comparison questions

Many scientific questions are 
of the model comparison type

ASTROPHYSICS 
Exoplanets detection 

Is there a line in this spectrum? 
Is there a source in this image?

COSMOLOGY 
Is the Universe flat? 

Does dark energy evolve? 
Are there anomalies in the CMB? 
Which inflationary model is ‘best’? 

Is there evidence for modified gravity? 
Are the initial conditions adiabatic?

ASTROPARTICLE 
Gravitational waves detection 

Do cosmic rays correlate with AGNs?  
Which SUSY model is ‘best’? 

Is there evidence for DM modulation? 
Is there a DM signal in gamma ray/

neutrino data?
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Level 2 inference: model comparison

Bayesian evidence or model likelihood

P (d|M) =
�
� d�P (d|�, M)P (�|M)

The evidence: 

Posterior probability for the model M:

P (M |d) = P (d|M)P (M)
P (d)

When comparing two models:
P (M0|d)
P (M1|d) = P (d|M0)

P (d|M1)
P (M0)
P (M1)

Posterior odds = Bayes factor × prior odds

The Bayes factor:

P (�|d, M) = P (d|�,M)P (�|M)
P (d|M)

B01 � P (d|M0)
P (d|M1)
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An in-built Occam’s razor
• The Bayesian evidence balances quality of fit vs extra model complexity. 

• It rewards highly predictive models, penalizing “wasted” parameter space. 

• The prior here is important: it quantifies the predictive power of the model.

Δθ

δθ

Prior

Likelihood

“Occam’s 
factor”

�̂

P (d|M) =�
d⇥L(⇥)P (⇥|M)

� L(⇥̂)�⇥P (⇥̂)
� �⇥

�⇥ L(⇥̂)

Quality of 
fit
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The evidence as predictive probability

• The evidence can be understood as a function of d to give the predictive probability 
under the model M: 

More complex model M1

Simpler model M0

P(d|M)

data d
Observed value dobs



Nested models

∆θ

δθ

Prior

Likelihood

θ* = 0 �̂
θ

� � ⇥̂�⇥�

�⇥

lnB01 ⇥ ln �⇥
�⇥ �

⇤2

2

wasted parameter 
space!

(favours simpler 
model)!

mismatch of 
prediction with 
observed data 
(favours more 
complex model)

M0: θ = 0 
M1: θ ≠ 0 with prior p(θ) 
Do we need the extra 
“complexity”?
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Model selection for nested models
wider prior (fixed data)

I10 � log10
�⇥
�⇥

In Bayesian model comparison, 
the prior scale never goes 
away. 
!
Also, the alternative hypothesis 
needs to be formulated from the 
outset (Jaynes: “there is no point in 
rejecting a model unless one has a 
better alternative”) 
!
One should look at the scale of the 
prior and hope that the result is 
robust for “reasonable” prior 
choices

Trotta (2008)

larger sample (fixed prior and significance)
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Scale for the strength of evidence
• A (slightly modified) Jeffreys’ scale to assess the strength of evidence (Notice: this is 

empirically calibrated!)

|lnB| relative odds favoured model’s 
probability Interpretation

< 1.0 < 3:1 < 0.750 not worth mentioning 

< 2.5 < 12:1 0.923 weak

< 5.0 < 150:1 0.993 moderate

> 5.0 > 150:1 > 0.993 strong



Roberto Trotta 

Astro example: how many sources?

Feroz and Hobson 
(2007) Signal + Noise
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Feroz and Hobson 
(2007) Signal: 8 sources

Astro example: how many sources?
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Feroz and Hobson 
(2007) Bayesian reconstruction

7 out of 8 objects correctly identified.  
Mistake happens because 2 objects very close.

Astro example: how many sources?



Cluster detection from Sunyaev-Zeldovich 
effect in cosmic microwave background maps 

Background 
+ 3 point radio sources

Background 
+ 3 point radio sources 

+ cluster cluster

~ 
2 

de
g

Feroz et al 2009



Background 
+ 3 point radio sources

Background 
+ 3 point radio sources 

+ cluster

Posterior odds:   
R = P(cluster | data)/P(no cluster | data)

R = 0.35 ± 0.05 R ~ 1033

Cluster parameters also recovered (position, temperature, profile, etc)
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Computing the evidence 

• Usually a computational demanding multi-dimensional integral!

• Several numerical/semi-analytical techniques available:


• Thermodynamic integration or Population Monte Carlo 


• Laplace approximation: approximate the likelihood to second order around 
maximum gives Gaussian integrals (for normal prior). Can be inaccurate.


• Savage-Dickey density ratio: good for nested models, gives the Bayes factor


• Nested sampling: clever & efficient, can be used generally 

P (d|M) =
�
� d�P (d|�, M)P (�|M)Evidence:

Bayes factor: B01 � P (d|M0)
P (d|M1)
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The Savage-Dickey density ratio

• This methods works for nested models and gives the Bayes factor analytically.

• Assumptions: nested models (M1 with parameters θ,Ψ reduces to M0 for e.g. Ψ =0) 

and separable priors (i.e. the prior P(θ,Ψ|M1) is uncorrelated with  P(θ|M0))

• Result: 

• Advantages:


• analytical


• often accurate 


• clarifies the role of prior


• does not rely on Gaussianity

B01 = P (�=0|d,M1)
P (�=0|M1)

Prior

Marginal posterior 
under M1 

Ψ = 0
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Nested sampling

x1

L(x)

0

1

2
θ

θ

Figure 1: **** Possibly change fig to the one in Feroz et al**** Schematic illustration of the nested
sampling algorithm for the computation of the Bayesian evidence. Levels of constant likelihood in
the two–dimensional parameter space shown at the top right are mapped onto elements of increasing
likelihood as a function of the enclosed prior volume X , with p(m)dm = dX . The evidence is then
computed by integrating the one–dimensional function L(X) from 0 to 1 (from [?])

.

scans). Therefore we adopt NS as an efficient sampler of the posterior. We have compared

the results with our MCMC algorithm and found that they are identical (up to numerical

noise).

2.4 Statistical measures

From the above sequence of samples, obtaining Monte Carlo estimates of expectations for

any function of the parameters becomes a trivial task. For example, the posterior mean is

given by (where ⟨·⟩ denotes the expectation value with respect to the posterior)

⟨m⟩ ≈
∫

p(m|d)mdm =
1

M

M−1∑

t=0

m(t), (2.8)

where the equality with the mean of the samples follows because the samples m(t) are gen-

erated from the posterior by construction. In general, one can easily obtain the expectation

value of any function of the parameters f(m) as

⟨f(m)⟩ ≈
1

M

M−1∑

t=0

f(m(t)). (2.9)

It is usually interesting to summarize the results of the inference by giving the 1–dimensional

marginal probability for the j–th element of m, mj. Taking without loss of generality j = 1

and a parameter space of dimensionality N , the marginal posterior for parameter m1 is

– 6 –

(animation courtesy of David Parkinson)

X(⇥) =
�
L(�)>⇥ P (�)d�

An algorithm originally aimed primarily at the Bayesian evidence computation (Skilling, 
2006):

P (d) =

Z
d✓L(✓)P (✓) =

Z 1

0
L(X)dX
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MultiNest 

Gaussian mixture model: 
!
True evidence:  log(E) = -5.27 
Multinest: 
Reconstruction: log(E) = -5.33 ± 0.11 
Likelihood evaluations ~ 104 
Thermodynamic integration: 
Reconstruction: log(E) = -5.24 ± 0.12 
Likelihood evaluations ~ 106 
!

Co
ur

te
sy

 M
ike

 H
ob

so
n

D N efficiency likes per 
dimension

2 7000 70% 83
5 18000 51% 7
10 53000 34% 3
20 255000 15% 1.8
30 753000 8% 1.6

Feroz and Hobson (2007)
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• Is a high energy phase of accelerated expansion in the early Universe 
 
 

• Solves the Hot Big Bang horizon and flatness problem

• Can be implemented with a single scalar field  

The inflationary paradigm

ä > 0

ds2 = �dt2 + a

2 (t) d~x2 ä > 0

ds2 = �dt2 + a

2 (t) d~x2

S = �
Z

d4x
p
�g


1

2
g

µ⌫
@µ�@⌫�+ V (�)

�

)

8
><

>:

⇢ = 1
2

⇣
�̇
⌘2

+ V (�)

p = 1
2

⇣
�̇
⌘2

� V (�)

ä/a = � 1

6M2
P

(⇢+ 3p) =) V (�) � �̇2



The horizon problem

T = 2.72 K



The horizon problem

Patches separated by more than 1 deg should not have 
the same temperature! 

full moon to scale

(not to scale)
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in#lation radiation matter

,

Solution to the “horizon problem”

log

✓
a

ain

◆
⌘ N

“number of e-folds”

d

dt

H�1

a
< 0physical horizon lengthH�1 =

✓
ȧ

a

◆�1

During inflation:

�k =
2⇡

k
a physical scale
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Slow-roll approximation

ä

a
= Ḣ +H2 > 0 � Ḣ

H2
= ✏1 < 1
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Dynamics V (�) =
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2
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Field evolution

Hubble length



Roberto Trotta 

in#lation radiation matter

,

to
da

y

k a
st

ro
 H

-c
ro

ss
ing

Reheating

“Reheating” describes the transition from the end of inflation to the usual radiation 
dominated phase. Inflaton decays into matter, radiation, etc

�N⇤ (⇢̄reh, w̄reh)

⇢nuc < ⇢̄reh < ⇢end

log

✓
a

ain

◆
⌘ N

Constrains ΔN*

V = M4
�
1� �3/µ3

�

µ = 0.001MPl , w̄reh = �0.3

17.2 < �N⇤ < 46.0

�N⇤ = 60 ?

�N⇤ 2 [20, 90]

Planck coll. prior:

Eg:
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From inflation to CMB fluctuations

• At the end of inflation, the quantum fluctuations in the inflaton field are transferred via 
reheating to the matter/radiation content of the Universe


• Single-field inflation = adiabatic fluctuations (ie, curvature perturbations)

• The power spectrum (= Fourier transform of the 2-point correlation function) can be 

computed as a function of the slow roll parameters: 

!
!
!
!

• ... and is one of the key observables in the Cosmic Microwave Background (CMB) maps.

• Eg. two key quantities (“summary statistics”) are 

nS =
d lnP

d ln k

����
k⇤

Spectral)index
nPlanck
S ⇠ 0.96

r =
Ph (k⇤)

Pv (k⇤)
= 16✏1⇤ + · · ·

Tensor modes (gravity waves)

r < 0.1 (from Planck) 



Cosmic Microwave Background

Data from the Planck satellite, 2013
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n r    (95%CL) α fnl I/R    (95%CL)
COBE  2 1.21±0.57

COBE  4 1.20±0.3

WMAP  1 1.20±0.11 <0.81 -‐0.077±0.05 40±49 <32%

WMAP  3 0.984±0.029 <0.65 -‐0.055±0.03 30±42

WMAP  5 0.960±0.013 <0.43 -‐0.037±0.028 51±30 <16%

WMAP  7 0.968±0.012 <0.36 -‐0.034±0.026 32±21 <13%

WMAP  9 0.9608±0.008 <0.13 -‐0.019±0.025 37.2±19.9 <15%

Planck  2013 0.9603±0.007 <0.11 -‐0.013±0.009 2.7±5.8 <3.6%

Phenomenological constraints

Tilt Tensors Running Non-Gauss. Isocurvature

σWMAP1
σPlanck 15.7 7.4 5.5 8.4 8.9
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Example: Large Field Inflation
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Inflation of “Inflationary” papers



[1303.3787]

≈	 70  models
≈	 700  slow  roll  

formulas
≈	 320  pages

ASPIC =  
Accurate Slow-roll  

Predictions for Inflationary Cosmology
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Numerical shortcut

Theoretical prediction

Ringeval [1312.2347]

θs: Standard LCDM parameters + nuisance (18)
θreh: Reheating parameter (1)

θinf: Inflationary potential parameters of interest (1-3)

Marginal likelihood

Strategy: numerical marginalization over θs and definition of a “Planck 
effective likelihood” via fast interpolators 
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Effective likelihood 
• The likelihood only depends on inflationary physics via the phenomenological parameters 

P* (amplitude) and slow-roll parameters εn


• Map the likelihood onto the phenomenological parameters, then numerically marginalize 
out the standard cosmological parameters 

!
!
!
!
!
!

• For each inflationary model, map the potential parameters onto the functionals P* (and εn . 
Now the remaining parameter space is at most 4 dimensional. 


• Dramatic speed-up: < 1 μs/likelihood evaluation, ~ 1 CPU hour for the full marginal 
likelihood. 
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Comparison 

• Comparison with the 
traditional method shows 
excellent agreement in the 
marginal posterior distributions 
for the slow-roll parameters 


• Speed-up is of several orders 
of magnitude


• Full marginal likelihood can 
now be obtained with 
O(100,000) likelihood 
evaluations in a 4D parameter 
space 
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Priors for inflationary parameters

• The choice of priors for the inflaton potential parameters is crucial for the outcome of the 
Bayesian model comparison


• Prior shape and width controls the strength of the Occam’s razor effect

• Should therefore be motivated by theoretical scenario (i.e. underlying physics)

• 70 potential shapes (and associated parameters): some are split by making different 

choices of priors, giving a total of 193 “models”  

• General rule: for parameters whose order of magnitude is unknown, we use priors uniform 

in the log of the quantity. 

• Priors are proper - boundaries specified by theoretical/physical consideration

• Uniform prior on log of reheating parameter R, ensuring that reheating takes place after 

inflation and before BBN (and that the mean EOS satisfies -1/3 < w < 1).

• Prior on reheating parameter R and normalization are common to all models - their impact 

does not matter for the outcome of model comparison (SDDR for nested models). 



Bayesian model comparison of 193 models  
Higgs inflation as reference model

disfavoured favoured



Bayesian model comparison of 193 models 
Arrows indicate 

absolute upper bounds 

i.e. all prior mass in a 
delta function at the ML 

value for that modelHiggs inflation 
as reference



Strength of evidences

34%

26% 
All of “plateau 
inflation” type
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Models classification

1

: �̇2/2 &

: �̇2/2 %
: �̇2/⇢ %

: �̇2/⇢ &
: �̇2/2 &
: �̇2/⇢ %

�

V (�)

�

V (�)

�

V (�)
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Model classes vs constraints

1
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Cosmological model comparison

lnB < 0: ΛCDM remains the “best” model from a Bayesian perspective! 
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Cosmological model selection

• Is the spectrum of primordial fluctuations 
scale-invariant (n = 1)?


• Model comparison:  
n = 1 vs n ≠ 1 (with inflation-motivated 
prior)


• Results:  
n ≠ 1 favoured with odds of 17:1  
(Trotta 2007) 
n ≠ 1 favoured with odds of 15:1  
(Kunz, Trotta & Parkinson 2007) 
n ≠ 1 favoured with odds of 7:1  
(Parkinson 2007 et al 2006)
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Example of reasonable sensitivity analysis
• The favoured model (non-scale invariant CMB spectrum) is robust for physically 

reasonable changes (motivated by inflation) in the prior width

Trotta (2007)

Inflationary range
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Small field vs large field inflation
 The probability of small field models rises from an initial 50% to  

P(small field | all data) =  0.77 ± 0.03
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Pitfalls of Bayesian model selection

• In cosmology/High Energy Physics, there are many situations with nested models 
with extra unknown parameters for the fundamental theory.


• Little or nothing is known about the metric to be imposed on such a parameter 
space


• “The concept of total ignorance about θ does not have any precise meaning” (Bob 
Cousins)


• Often, deviations are looked for using arbitrarily parameterized alternative models 
(not tied to any specific physics), e.g. Gaussian Processes.


• Occam’s razor factor may be arbitrary. HOWEVER: if the range of your prior is 
arbitrary (by many orders of magnitude) then arguably the physics behind it is not 
strongly predictive...


• In some cases, the upper bound formalism might be useful (Jim Berger and 
collaborators)
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“Prior-free” evidence bounds

• What if we do not know how to set the prior? For nested models, we can still choose a 
prior that will maximise the support for the more complex model: 

maximum evidence for Model 1 

wider prior (fixed data)

larger sample (fixed prior and significance)
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Maximum evidence for a detection

• The absolute upper bound: put all prior mass for the alternative onto the observed 
maximum likelihood value. Then 
 

• More reasonable class of priors: symmetric and unimodal around Ψ=0, then  
(α = significance level)

If the upper bound is small, no other choice of prior 
will make the extra parameter significant.

B < exp(��2/2)

B < �1
exp(1)� ln �

 Sellke, Bayarri & Berger, The American Statistician, 55, 1 (2001)
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How to interpret the  
“number of sigma’s”

p sigma
Absolute 
bound on 

lnB (B)

“Reasonable” 
bound on lnB 

(B)

0.05 2
2.0 
(7:1) 
weak

0.9 
(3:1) 

undecided

0.003 3
4.5 

(90:1) 
moderate

3.0 
(21:1) 

moderate

0.0003 3.6
6.48 

(650:1) 
strong

5.0  
(150:1) 
strong
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A conversion table

Rule of thumb:  
a n-sigma result should be interpreted as  

a n-1 sigma result
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Level 3 inference: model averaging

• Aim: model-independent constraints that 
account for model uncertainty


• Model posterior: flat models are preferred 
by Bayesian model selection → probability 
gets concentrated onto those models 


• Consequence: constraints on the curvature, 
number of Hubble spheres and size of the 
Universe can be stronger after Baysian 
model averaging!


• Number of Hubble spheres NU > 251 (99%) 
~8 times stronger 
Radius of curvature > 42 Gpc (99%) 
1.5 times stronger

P (�|d) =
�

i P (Mi|d)P (�|d, Mi)

Flat  
Universe

Va
rd

an
ya

n,
 R

T 
& 

Si
lk 

’1
1

Concentration of 
probability 
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