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Visualizing Bayesian Inference
Simplest case: Binary classification

• 2 hypotheses: {H,C}
• 2 possible data values: {−,+}

Concrete example: You test positive (+) for a medical condition.
Do you have the condition (C ) or not (H, “healthy”)?

• Prior: Prevalence of the condition in your population is 1%

• Likelihood:

• Test is 90% accurate if you have the condition:
P(+|C , I ) = 0.9 (“sensitivity”)

• Test is 95% accurate if you are healthy:
P(−|H, I ) = 0.95 (“specificity”)

Numbers roughly correspond to breast cancer in asymptomatic women

aged 40–50, and mammography screening

[Gigerenzer, Calculated Risks (2002)]
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Probability “Tree”

H or C
P=1

H
P=0.99

C
P=0.01

H–
P=0.9405

H+
P=0.0495

C–
P=0.001

C+
P=0.009

–
P=0.9415

+
P=0.0585

x0.99 x0.01

x0.95 x0.05 x0.1 x0.9

A or B
P=1

Proposition

probability=

x0.01 =
AND

(product)

=
OR

(sum)
P (Hi|I)

P (Hi, D|I) =

P (Hi|I)P (D|Hi, I)

P (D|I) =
∑

i

P (Hi, D|I)

P (C|+, I) =
0.009

0.0585
≈ 0.15

P (H1 ∨H2|I)

∗Not really a tree; really a graph or part of a lattice
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Count “Tree”
Integers are easier than reals!
Create a large ensemble of cases so ratios of counts approximate the probabilities.

H or C
N=1000

H
N=990

C
N=10

H–
N=940

H+
N=50

C–
N=1

C+
N=9

–
N=941

+
N=59

x0.99 x0.01

x0.95 x0.05 x0.1 x0.9

P (C|+, I) =
9

59
≈ 0.15

Of the 59 cases with positive test results, only 9 have the condition. The prevalence is

so low that when there is a positive result, it’s more likely to have been a mistake than

accurate.
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Another Variation: Negative Binomial

Suppose D = N, the number of trials it took to obtain a
predefined number of successes, n = 8. What is p(α|N,M)?

Likelihood

p(N|α,M) is probability for n− 1 successes in N − 1 trials,
times probability that the final trial is a success:

p(N|α,M) =
(N − 1)!

(n − 1)!(N − n)!
αn−1(1− α)N−nα

=
(N − 1)!

(n − 1)!(N − n)!
αn(1− α)N−n

The negative binomial distribution for N given α, n.
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Posterior

p(α|D,M) = C ′
n,N

αn(1− α)N−n

p(D|M)

p(D|M) = C ′
n,N

∫

dα αn(1− α)N−n

→ p(α|D,M) =
(N + 1)!

n!(N − n)!
αn(1− α)N−n

Same result as other cases.
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Final Variation: “Meteorological Stopping”

Suppose D = (N, n), the number of samples and number of
successes in an observing run whose total number was determined
by the weather at the telescope. What is p(α|D,M ′)?

(M ′ adds info about weather to M.)

Likelihood

p(D|α,M ′) is the binomial distribution times the probability
that the weather allowed N samples, W (N):

p(D|α,M ′) = W (N)
N!

n!(N − n)!
αn(1− α)N−n

Let Cn,N = W (N)
(

N
n

)

. We get the same result as before!
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Likelihood Principle

To define L(Hi ) = p(Dobs|Hi , I ), we must contemplate what other
data we might have obtained. But the “real” sample space may be
determined by many complicated, seemingly irrelevant factors; it
may not be well-specified at all. Should this concern us?

Likelihood principle: The result of inferences depends only on how
p(Dobs|Hi , I ) varies w.r.t. hypotheses. We can ignore aspects of the
observing/sampling procedure that do not affect this dependence.

This happens because no sums of probabilities for hypothetical
data appear in Bayesian results; Bayesian calculations condition on

Dobs.

This is a sensible property that frequentist methods do not share.
Frequentist probabilities are “long run” rates of performance, and
depend on details of the sample space that are irrelevant in a
Bayesian calculation.
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Goodness-of-fit Violates the Likelihood Principle

Theory (H0)

The number of “A” stars in a cluster should be 0.1 of the
total.

Observations

5 A stars found out of 96 total stars observed.

Theorist’s analysis

Calculate χ2 using n̄A = 9.6 and n̄X = 86.4.

Significance level is p(> χ2|H0) = 0.12 (or 0.07 using more
rigorous binomial tail area). Theory is accepted (well, not
rejected) wrt conventional 5% critical level.
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Observer’s analysis

Actual observing plan was to keep observing until 5 A stars
seen!

“Random” quantity is Ntot, not nA; it should follow the
negative binomial dist’n. Expect Ntot = 50± 21.

p(> χ2|H0) = 0.03. Theory is rejected.

Telescope technician’s analysis

A storm was coming in, so the observations would have ended
whether 5 A stars had been seen or not. The proper ensemble
should take into account p(storm) . . .

Bayesian analysis

The Bayes factor is the same for binomial or negative binomial
likelihoods, and slightly favors H0. Include p(storm) if you
want—it will drop out!
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Probability & frequency

Frequencies are relevant when modeling repeated trials, or
repeated sampling from a population or ensemble.

Frequencies are observables

• When available, can be used to infer probabilities for next trial

• When unavailable, can be predicted

Bayesian/Frequentist relationships

• Relationships between probability and frequency

• Long-run performance of Bayesian procedures
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Probability & frequency in IID settings
Frequency from probability

Bernoulli’s law of large numbers: In repeated i.i.d. trials, given
P(success| . . .) = α, predict

nsuccess

Ntotal

→ α as Ntotal → ∞

If p(x) does not change from sample to sample, it may be
interpreted as a frequency distribution.

Probability from frequency

Bayes’s “An Essay Towards Solving a Problem in the Doctrine
of Chances” → First use of Bayes’s theorem:

Probability for success in next trial of i.i.d. sequence:

E(α) → nsuccess

Ntotal

as Ntotal → ∞

If p(x) does not change from sample to sample, it may be
estimated from a frequency distribution.
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Estimating a Normal Mean: Unknown σ

Problem specification

Model: di = µ+ ǫi , ǫi ∼ N(0, σ2), σ is unknown

Parameter space: (µ, σ); seek p(µ|D,M)

Likelihood

p(D|µ, σ,M) =
1

σN(2π)N/2
exp

(

−Nr2

2σ2

)

exp

(

−N(µ − d)2

2σ2

)

∝ 1

σN
e−Q/2σ2

where Q = N
[

r2 + (µ− d)2
]
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Uninformative Priors

Assume priors for µ and σ are independent

Translation invariance ⇒ p(µ) ∝ C , a constant

Scale invariance ⇒ p(σ) ∝ 1/σ (flat in log σ)

This is also the reference prior, and the minimal sample size
prior—the posterior is improper in σ unless N ≥ 2

Joint Posterior for µ, σ

p(µ, σ|D,M) ∝ 1

σN+1
e−Q(µ)/2σ2
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Marginal Posterior

p(µ|D,M) ∝
∫

dσ
1

σN+1
e−Q/2σ2

Let τ = Q
2σ2 so σ =

√

Q
2τ and |dσ| = τ−3/2

√

Q
2 dτ

⇒ p(µ|D,M) ∝ 2N/2Q−N/2

∫

dτ τ
N
2
−1e−τ

∝ Q−N/2
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Write Q = Nr2
[

1 +
(

µ−d
r

)2
]

and normalize:

p(µ|D,M) =

(

N
2 − 1

)

!
(

N
2 − 3

2

)

!
√
π

1

r

[

1 +
1

N

(

µ− d

r/
√
N

)2
]−N/2

“Student’s t distribution,” with t = (µ−d)

r/
√
N

A “bell curve,” but with power-law tails

Large N:

p(µ|D,M) ∼ e−N(µ−d)2/2r2

This is the rigorous way to “adjust σ so χ2/dof = 1.”

It doesn’t just plug in a best σ; it slightly broadens posterior
to account for σ uncertainty.
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Student t examples:

• p(x) ∝ 1
(

1+ x2

n

)
n+1
2

• Location = 0, scale = 1

• Degrees of freedom = {1, 2, 3, 5, 10,∞}

�4 �2 0 2 4
x

0.0

0.1

0.2

0.3

0.4

0.5

p
(x

)

1

2

3

5

10

normal

21 / 47



Supplemental topics

1 Binary classification and case diagrams

2 Negative binomial, likelihood principle, prob. & freq.

3 Student’s t distribution via marginalization

4 On/off problem: Two more solutions, multibin

5 Parametric bootstrapping vs. posterior sampling

22 / 47



Second Solution of the On/Off Problem

Consider all the data at once; the likelihood is a product of Poisson
distributions for the on- and off-source counts:

L(s, b) ≡ p(Non,Noff |s, b, I )
∝ [(s + b)Ton]

None−(s+b)Ton × (bToff)
Noff e−bToff

Take joint prior to be flat; find the joint posterior and marginalize
over b;

p(s|Non, Ion) =

∫

db p(s, b|I )L(s, b)

∝
∫

db (s + b)NonbNoff e−sTone−b(Ton+Toff )

→ same result as before.
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Third Solution: Data Augmentation
Suppose we knew the number of on-source counts that are from
the background, Nb. Then the on-source likelihood is simple:

p(Non|s,Nb , Iall) = Pois(Non − Nb; sTon) =
(sTon)

Non−Nb

(Non − Nb)!
e−sTon

Data augmentation: Pretend you have the “missing data,” then
marginalize to account for its uncertainty:

p(Non|s, Iall) =

Non
∑

Nb=0

p(Nb|Iall) p(Non|s,Nb, Iall)

=
∑

Nb

Predictive for Nb × Pois(Non − Nb; sTon)

p(Nb|Iall) =

∫

db p(b|Noff , Ioff ) p(Nb|b, Ion)

=

∫

db Gamma(b)× Pois(Nb; bTon)

→ same result as before.
24 / 47



A profound consistency

We solved the on/off problem in multiple ways, always finding the
same final results.

This reflects something fundamental about Bayesian inference.

R. T. Cox proposed two necessary conditions for a quantification of
uncertainty:

• It should duplicate deductive logic when there is no
uncertainty

• Different decompositions of arguments should produce the
same final quantifications (internal consistency)

Great surprise: These conditions are sufficient; they lead to the
probability axioms. E. T. Jaynes and others refined and simplified
Cox’s analysis.
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Multibin On/Off

The more typical on/off scenario:

Data = spectrum or image with counts in many bins

Model M gives signal rate sk(θ) in bin k , parameters θ

To infer θ, we need the likelihood:

L(θ) =
∏

k

p(Nonk ,Noff k |sk(θ),M)

For each k , we have an on/off problem as before, only we just
need the marginal likelihood for sk (not the posterior). The same
Ci coefficients arise.

XSPEC and CIAO/Sherpa provide this as an option

CHASC approach (van Dyk+ 2001) does the same thing via Monte Carlo
data augmentation
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Bootstrapping vs. posterior sampling

“Bootstrapping” is a a framework that aims to improve simple but
approximate frequentist methods:

• Parametric bootstrap: Improve asymptotic behavior of
estimates for a trusted model: reduce bias of estimates,
provide more accurate coverage of confidence regions

• Nonparametric bootstrap: Provide results that are
approximately accurate with weak modeling assumptions

Most common approach uses Monte Carlo to simulate an ensemble
of data sets related to the observed one, and use them to
recalibrate a simple method.

Parametric bootstrap has a step producing an ensemble of
estimates that looks like a set of posterior samples. Can they be
thought of this way?
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Coverage and Confidence Intervals
Setup

A distribution with parameters θ produces data D.
θ∗ = true value of parameters producing many replicate
datasets
Dobs = a single, actually observed dataset

Terminology

“Statistic” ≡ Function of data, f (D) (i.e., θ doesn’t appear)

“Interval” ≡ Interval-valued statistic ∆(D), e.g., for 1-D
parameter,

∆(D) = [l(D), u(D)]

Note “interval” refers both to the statistic (function), and to
a particular interval, e.g., ∆(Dobs).

Examples:

• Interval about the mean: ∆(D) = [x̄ − C , x̄ + C ]

• Order-statistic-based interval: ∆(D) = [x(6), x(11)] 29 / 47



“Coverage” ≡ Fraction of time interval contains θ:

C (θ) =

∫

dD p(D|θ) Jθ ∈ ∆(D)K

Monte Carlo algorithm using N simulated datasets:

C (θ) ≈ 1

N

∑

D∼p(D|θ)
Jθ ∈ ∆(D)K

1. Fix θ at some value; start a counter n = 0
2. Simulate a dataset from p(D|θ)
3. Calculate ∆(D); increment counter if θ ∈ ∆(D)
4. Goto (2) for N total iterations
5. Report C (θ) = n

N

In general the coverage depends on θ.
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Coverage of “1σ” upper and lower limits (i.e., 84% confidence
level) for a Poisson rate, as a function of the (unknown!) true rate.

Gehrels (1986)
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‘Plug-In” Approximation
Problem: We don’t know θ∗ (that’s why we’re doing statistics!).
When we report ∆(Dobs), what coverage should we report?

“Confidence level” CL ≡ maximum coverage over all possible
values of θ, a conservative promise of coverage

For complex models, calculating C (θ) across the whole parameter
space is prohibitive.

“Plug-in” approach

• Devise some estimator (a statistic!) θ̂(D) for the
parameters; e.g., maximum likelihood

• Calculate Ĉ = C (θ̂(Dobs))

• Report ∆(Dobs) with CL ≈ Ĉ

This gives a parametric bootstrap confidence interval; the
term is most common when Monte Carlo simulated datasets
from p(D|θ̂(Dobs)) are used to estimate Ĉ .
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Incorrect Parametric Bootstrapping

A

T

P = (A, T )

✦

P̂(Dobs)

Dots show estimates found by analyzing bootstrapped data sets.

Histograms/contours of best-fit estimates from D ∼ p(D|θ̂(Dobs))
provide poor confidence regions—no better (possibly worse) than
using a least-squares/χ2 covariance matrix.

What’s wrong with the population of θ̂ points for this purpose?
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Incorrect Parametric Bootstrapping

A

T

P = (A, T )

✦

P̂(Dobs)❉

Dots show estimates found by analyzing bootstrapped data sets.

Histograms/contours of best-fit estimates from D ∼ p(D|θ̂(Dobs))
provide poor confidence regions—no better (possibly worse) than
using a least-squares/χ2 covariance matrix.

What’s wrong with the population of θ̂ points for this purpose?

The estimates are skewed down and to the right, indicating the
truth must be up and to the left.
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Likelihood-Based Parametric Bootstrapping

Key idea: Use likelihood ratios to define confidence regions.
I.e., use L = lnL or χ2 differences to define regions.

Estimate parameter values via maximum likelihood (minχ2)
→ Lmax.
Pick a constant ∆L. Then define an interval by:

∆(D) = {θ : L(θ) > Lmax −∆L}
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Coverage calculation:

1. Fix θ0 = θ̂(Dobs) (plug-in approx’n)
2. Simulate a dataset from p(D|θ0) → LD(θ)
3. Find maximum likelihood estimate θ̂(D)
4. Calculate ∆L = LD(θ̂D)− LD(θ0)
5. Goto (2) for N total iterations
6. Histogram the ∆L values to find coverage vs. ∆L

(fraction of sim’ns with smaller ∆L)

Report ∆(Dobs) with ∆L chosen for desired approximate CL.

Note that CL is a property of the function ∆(D), not of the
particular interval, ∆(Dobs).
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80 1 2 3 4 5 6 7

0.5

0

0.1

0.2

0.3

0.4

95%

A

T

A

T

✦

θ̂(Dobs)

Dobs
{Dsim}

∆χ
2

f
(∆

χ
2
)

∆χ
2

✦

Initial θ
θ̂(Dsim)

Optimizer
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∆L Calibration Reported Region

A

T

✦

A

T

✦

The CL is approximate due to:

• Monte Carlo error in calibrating ∆L

• The plug-in approximation
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Skewness/asymmetry in the distribution of bootstrap estimates is
the rule rather than the exception!

Simple example: Estimate the mean and standard deviation of a
normal distribution

Likelihood L(θ) ≡ p(Dobs|θ).
Log-likelihood L(θ) = lnL(θ).

L(µ) =
∏

i

1

σ
√
2π

exp

[

−(xi − µ)2

2σ2

]

∝ 1

σN
exp

[

−χ2(µ, σ)

2

]

L(µ) = −χ2(µ, σ)

2
− Nσ
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Results for µ = 5, σ = 1, N = 5; 200 samples:

Points are skewed down, so the truth is most likely up—as
indicated by the likelihood contours
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Credible Region Via Posterior Sampling
Monte Carlo algorithm for finding credible regions:

1. Create a RNG that can sample θ from p(θ|Dobs)
2. Draw N samples; record θi and qi = π(θi )L(µi )
3. Sort the samples by the qi values
4. An HPD region of probability P is the θ region spanned

by the 100P% of samples with highest qi

Note that no dataset other than Dobs is ever considered.
P is a property of the particular interval reported.

A

T

✦
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Interpretations of Regions
Confidence region

Frequentist probabilities describe variability in the
performance of procedures/rules over an ensemble.

A confidence region ∆(D) with specified CL contains the true
parameter value 100CL% of the time. This quantifies the
confidence you might have that the value is in the particular
interval ∆(Dobs).

Credible region

Bayesian probabilities are quantifications of the strength of

arguments—p(A|B) measures how justified one is in reasoning
from B to A, i.e., how strongly B supports A vs. its
alternatives.

The probability within a credible region quantifies how
strongly the particular dataset we’ve observed justifies
concluding the true parameter value is in the region.

41 / 47



Performance of credible regions

How often may we expect an HPD region to include the true value
if we analyze many datasets? I.e., what’s the performance of an
interval rule ∆(D) defined by calculating the HPD region each
time?

Suppose we generate datasets by picking a parameter value from
π(θ) and simulating data from p(D|θ).

The fraction of time θ will be in the HPD region is:

Q =

∫

dθ π(θ)

∫

dD p(D|θ) Jθ ∈ ∆(D)K

Note π(θ)p(D|θ) = p(θ,D) = p(D)p(θ|D), so

Q =

∫

dD

∫

dθ p(θ|D) p(D) Jθ ∈ ∆(D)K
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Q =

∫

dD

∫

dθ p(θ|D) p(D) Jθ ∈ ∆(D)K

=

∫

dD p(D)

∫

dθ p(θ|D) Jθ ∈ ∆(D)K

=

∫

dD p(D)

∫

∆(D)
dθ p(θ|D)

=

∫

dD p(D)P

= P

The HPD region includes the true parameters 100P% of the time.

This is exactly true for any problem, even for small datasets.

Keep in mind it involves drawing θ from the prior; credible regions
are “calibrated with respect to the prior.”
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Average Coverage

Recall the original integral:

Q =

∫

dθ π(θ)

∫

dD p(D|θ) Jθ ∈ ∆(D)K

=

∫

dθ π(θ)C (θ)

where C (θ) is the coverage of the HPD region when the data are
generated using θ.

This indicates Bayesian regions have accurate average coverage.

The prior can be interpreted as quantifying how much we care
about coverage in different parts of the parameter space.
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Frequentist Performance of Bayesian Procedures

Many results known for parametric Bayes performance:

• Estimates are consistent if the prior doesn’t exclude the true
value.

• Credible regions found with flat priors are typically confidence
regions to O(n−1/2) (Bernstein-von Mises Theorem);
“reference” priors can improve their performance to O(n−1).

• Marginal distributions have better frequentist performance
than conventional methods like profile likelihood. (Bartlett
correction, ancillaries are competitive but hard.)

• Bayesian model comparison is asymptotically consistent (not
true of significance/NP tests, AIC).

• Misspecification: Bayes converges to the model with sampling
dist’n closest to truth via Kullback-Leibler
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• Results are just appearing for nonparametric & semiparametric
models; you must be more careful with priors here

• Wald’s complete class theorem: Optimal frequentist methods
are Bayes rules (equivalent to Bayes for some prior)

• . . .

Parametric Bayesian methods are typically good frequentist methods.

Some references:

• “The Interplay of Bayesian and Frequentist Analysis” (Bayarri &
Berger 2004) Statistical Science, 19, 58–80

• “Calibrated Bayes: A Bayes/Frequentist Roadmap” (Little 2006;
2005 ASA President’s Invited Address) The American Statistician,
60, 213–223
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Rescuing the bootstrap parameter estimates

Although the best-fit parameters from bootstrapped data don’t
correspond to posterior samples, they are in the neighborhood of
the posterior → use them to create an importance sampling
distribution:

• Weighted Likelihood Bootstrap: Nonparametric bootstrap +
KDE for modest-dimensional models (Newton & Raftery
1994)

• Efron (2011, 2012): Posterior sampling via parametric
bootstrap and importance sampling adjustments
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