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Notation

p(θ|D,M) =
p(θ|M)p(D|θ,M)

p(D|M)

=
π(θ)L(θ)

Z
=

q(θ)

Z

• M = model specification

• D specifies observed data

• θ = model parameters

• π(θ) = prior pdf for θ

• L(θ) = likelihood for θ (likelihood function)

• q(θ) = π(θ)L(θ) = “quasiposterior”

• Z = p(D|M) = (marginal) likelihood for the model
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Marginal likelihood:

Z =

∫

dθ π(θ)L(θ) =
∫

dθ q(θ)

Use “Skilling conditional” for common conditioning info:

p(θ|D) =
p(θ)p(D|θ)

p(D)
|| M

Suppress such conditions when clear from context
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Parameter space integrals

For model with m parameters, we need to evaluate integrals like:

∫

dmθ g(θ)π(θ)L(θ) =

∫

dmθ g(θ) q(θ)
π(θ)L(θ)

• g(θ) = 1 → p(D|M) (norm. const., model likelihood)

• g(θ) = θ → posterior mean for θ

• g(θ) = ‘box’ → probability θ ∈ credible region

• g(θ) = 1, integrate over subspace → marginal posterior

• g(θ) = δ[ψ − ψ(θ)] → propagate uncertainty to ψ(θ)
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The Bayesian computation challenge
Asymptotic approximations

• Most probability is usually in regions near the mode
• Taylor expansion of log p → leading order is quadratic
• Integrand may be well-approximated by a multivariate

(correlated) normal: the Laplace approximation

Requires ingredients familiar from frequentist calculations

Bayesian calculation is not significantly harder than
frequentist calculation in this limit.

Inference with independent data

Analytical: For exponential family models & conjugate priors,
integrals are often tractable and simpler than frequentist
counterparts (e.g., normal credible regions, Student’s t)

Numerical: For “large” m (> 4 is often enough!) the
integrals are often very challenging because of structure (e.g.,
correlations) in parameter space. Calculations are pursued
without making any modeling approximations.
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Inference with conditionally independent parameters

In multilevel (hierarchical) models—e.g., for “measurement
error” and latent variable problems—a layer of variables may
be independent given higher level variables → numerically
tractable marginals

DND1 D2

θ

x1 x2 xN

L(θ, {xi}) ≡ p({Di}|θ, {xi})
=

∏

i

p(Di |xi )f (xi |θ) =
∏

i

ℓi(xi )f (xi |θ)

so Lm(θ) =
∏

i

∫

dxi ℓi(xi )f (xi |θ)
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Bayesian Computation Menu
Large sample size, N: Laplace approximation

• Approximate posterior as multivariate normal → det(covar) factors
• Uses ingredients available in χ2/ML fitting software (MLE, Hessian)
• Often accurate to O(1/N) (better than O(1/

√
N))

Modest-dimensional models (m<∼10 to 20)

• Adaptive cubature
• Monte Carlo integration (importance & stratified sampling, adaptive

importance sampling, quasirandom MC)

High-dimensional models (m>∼5)

• Posterior sampling — create RNG that samples posterior
• Markov Chain Monte Carlo (MCMC) is the most general framework
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Laplace Approximations

Suppose posterior has a single dominant (interior) mode at θ̂. For
large N,

π(θ)L(θ) ≈ π(θ̂)L(θ̂) exp
[

−1

2
(θ − θ̂)Î (θ − θ̂)

]

where Î = −∂
2 ln[π(θ)L(θ)]

∂2θ

∣

∣

∣

∣

∣

θ̂

= Negative Hessian of ln[π(θ)L(θ)]
= “Observed Fisher info. matrix” (for flat prior)

≈ Inverse of covariance matrix

E.g., for 1-d Gaussian posterior, Î = 1/σ2θ
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Marginal likelihoods
∫

dθ π(θ)L(θ) ≈ π(θ̂)L(θ̂) (2π)m/2
∣

∣Î
∣

∣

−1/2

Marginal posterior densities
Profile likelihood Lp(φ) ≡ maxη L(φ, η) = L(φ, η̂(φ))

→ p(φ|D,M) ∝∼ π(φ, η̂(φ))Lp(φ)
∣

∣I η(φ)
∣

∣

−1/2

with I η(φ) = ∂η∂η ln(πL)|η̂

Posterior expectations
∫

dθ f (θ)π(θ)L(θ) ∝∼ f (θ̃)π(θ̃)L(θ̃) (2π)m/2
∣

∣Ĩ
∣

∣

−1/2

where θ̃ maximizes f πL

Tierney & Kadane, “Accurate Approximations for Posterior Moments and Marginal

Densities,” JASA (1986)
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Features

Uses output of common algorithms for frequentist methods
(optimization, Hessian∗)

Uses ratios → approximation is often O(1/N) or better

Includes volume factors that are missing from common
frequentist methods (better inferences!)

∗Some optimizers provide approximate Hessians, e.g., Levenberg-Marquardt for
modeling data with additive Gaussian noise. For more general cases, see Kass (1987)
“Computing observed information by finite differences” (beware typos): central 2nd
differencing + Richardson extrapolation.
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Drawbacks

Posterior must be smooth and unimodal (or well-separated
modes)

Mode must be away from boundaries (can be relaxed)

Result is parameterization-dependent—try to reparameterize
to make things look as Gaussian as possible (e.g., θ → log θ
to straighten banana-shaped contours)

Asymptotic approximation with no simple diagnostics (like
many frequentist methods)

Empirically, it often does not work well for m>∼10
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Relationship to BIC

Laplace approximation for marginal likelihood:

Z ≡
∫

dθ π(θ)L(θ) ≈ π(θ̂)L(θ̂) (2π)m/2
∣

∣Î
∣

∣

−1/2

∼ π(θ̂)L(θ̂) (2π)m/2
m
∏

k=1

σθk

We expect asymptotically σθk ∝ 1/
√
N

Bayesian Information Criterion (BIC; aka Schwarz criterion):

−1

2
BIC = lnL(θ̂)− m

2
lnN

This is a very crude approximation to lnZ ; it captures the
asymptotic N dependence, but omits factors O(1). Can
justify in some i.i.d. settings using “unit info prior.”
BIC ∼ Bayesian counterpart to adjusting χ2 for d.o.f., but partly accounts for
parameter space volume (→ consistent model choice, unlike fixed-α hyp. tests)

Can be useful for identifying cases where an an accurate but hard Z calculation
is useful (esp. for nested models, where some missing factors cancel)
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Modest-D: Quadrature & Cubature
Quadrature rules for 1-D integrals (with weight function h(θ)):

∫

dθ f (θ) =

∫

dθ h(θ)
f (θ)

h(θ)

≈
∑

i

wi f (θi) + O(n−2) or O(n−4)

Smoothness → fast convergence in 1-D

Curse of dimensionality: Cartesian product rules converge slowly,
O(n−2/m) or O(n−4/m) in m-D

Wikipedia
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Monomial Cubature Rules
Seek rules exact for multinomials (× weight) up to fixed monomial
degree with desired lattice symmetry; e.g.:

f (x , y , z) = MVN(x , y , z)
∑

ijk

aijkx
iy jzk for i + j + k ≤ 7

Number of points required grows much more slowly with m than
for Cartesian rules (but still quickly)

A 7th order rule in 2-d
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Adaptive Cubature

• Subregion adaptive cubature: Use a pair of monomial rules
(for error estim’n); recursively subdivide regions w/ large error
(ADAPT, CUHRE, BAYESPACK, CUBA). Concentrates points
where most of the probability lies.

• Adaptive grid adjustment: Naylor-Smith method
Iteratively update abscissas and weights to make the
(unimodal) posterior approach the weight function.

These provide diagnostics (error estimates or measures of
reparameterization quality).

# nodes used by ADAPT’s 7th order rule
2d + 2d2 + 2d + 1

Dimen 2 3 4 5 6 7 8 9 10
# nodes 17 33 57 93 149 241 401 693 1245
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Analysis of Galaxy Polarizations

TJL, Flanagan, Wasserman (1997)
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Monte Carlo Integration

∫

g × p is just the expectation of g ; suggests approximating with a
sample average:

∫

dθ g(θ)p(θ) ≈ 1

n

∑

θi∼p(θ)

g(θi ) + O(n−1/2)

[

∼ O(n−1) with
quasi-MC

]

This is like a cubature rule, with equal weights and random nodes

Ignores smoothness → poor performance in 1-D, 2-D

Avoids curse: O(n−1/2) regardless of dimension
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Why/when it works

• Independent sampling & law of large numbers →
asymptotic convergence in probability

• Error term is from CLT; requires finite variance

Practical problems

• p(θ) must be a density we can draw IID samples
from—perhaps the prior, but. . .

• O(n−1/2) multiplier (std. dev’n of g) may be large

→ IID∗ Monte Carlo can be hard if dimension >∼ 5–10

∗IID = independently, identically distributed
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Posterior sampling

∫

dθ g(θ)p(θ|D) ≈ 1

n

∑

θi∼p(θ|D)

g(θi ) + O(n−1/2)

When p(θ) is a posterior distribution, drawing samples from it is
called posterior sampling:

• One set of samples can be used for many different calculations
(so long as they don’t depend on low-probability events)

• This is the most promising and general approach for Bayesian
computation in high dimensions—though with a twist
(MCMC!)

Challenge: How to build a RNG that samples from a posterior?
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Accept-Reject Algorithm
Goal: Given q(θ) ≡ π(θ)L(θ), build a RNG that draws samples
from the probability density function (pdf)

f (θ) =
q(θ)

Z
with Z =

∫

dθ q(θ)

The probability for a region under the pdf is the area (volume)
under the curve (surface).

→ Sample points uniformly in volume under q; their θ values will
be draws from f (θ).
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How can we generate points uniformly under the pdf?

Suppose q(θ) has compact support: it is nonzero over a finite
contiguous region of θ-space of length/area/volume V .

Generate candidate points uniformly in a rectangle enclosing q(θ).

Keep the points that end up under q.
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Basic accept-reject algorithm

1. Find an upper bound Q for q(θ)
2. Draw a candidate parameter value θ′ from the uniform

distribution in V
3. Draw a uniform random number, u
4. If the ordinate uQ < q(θ′), record θ′ as a sample
5. Goto 2, repeating as necessary to get the desired number

of samples.

Efficiency = ratio of areas (volumes), Z/(QV ).

Two issues

• Increasing efficiency

• Handling distributions with infinite support
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Envelope Functions
Suppose there is a pdf h(θ) that we know how to sample from and
that roughly resembles q(θ):

• Multiply h by a constant C so Ch(θ) ≥ q(θ)

• Points with coordinates θ′ ∼ h and ordinate uCh(θ′) will be
distributed uniformly under Ch(θ)

• Replace the hyperrectangle in the basic algorithm with the
region under Ch(θ)
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Accept-Reject Algorithm

1 Choose a tractable density h(θ) and a constant C so Ch
bounds q

2 Draw a candidate parameter value θ′ ∼ h

3 Draw a uniform random number, u

4 If q(θ′) < Ch(θ′), record θ′ as a sample

5 Goto 2, repeating as necessary to get the desired number of
samples.

Efficiency = ratio of volumes, Z/C .

In problems of realistic complexity, the efficiency is intolerably low
for parameter spaces of more than several dimensions.

Take-away idea: Propose candidates that may be accepted or
rejected
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Markov Chain Monte Carlo

Accept/Reject aims to produce independent samples—each new θ
is chosen irrespective of previous draws.

To enable exploration of complex pdfs, let’s introduce dependence:
Choose new θ points in a way that

• Tends to move toward regions with higher probability than
current

• Tends to avoid lower probability regions

The simplest possibility is a Markov chain:

p(next location|current and previous locations)

= p(next location|current location)

A Markov chain “has no memory.”
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Markov chain

π(θ)L(θ) contours

θ1

θ2

Initial θ

Covered later!
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Importance sampling

∫

dθ g(θ)q(θ) =

∫

dθ g(θ)
q(θ)

P(θ)
P(θ) ≈ 1

N

∑

θi∼P(θ)

g(θi )
q(θi )

P(θi)

Choose P to make variance small. (Not easy!)

θ

q(θ) P (θ)

g(θ)

Can be useful for both model comparison (marginal likelihood
calculation), and parameter estimation.
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Building a Good Importance Sampler
Estimate an annealing target density, πn, using a mixture of
multivariate Student-t distributions, Pn:

qn(θ) = [q0(θ)]
1−λn × [q(θ)]λn , λn = 0 . . . 1

Pn(θ) =
∑

j

MVT(θ;µnj ,S
n
j , ν)

Adapt the mixture to the target using ideas from sequential Monte
Carlo → Adaptive annealed importance sampling (AAIS)

Initialization

q
(θ

)

θ θ

Target

Annealed target

Initial IS mixture

Initialization

q
1
(θ

)
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Sample, weight, refine
q
0
(θ

)

θ

Sample & calculate weights

θ

Refine IS:  EM + Birth/Death

Overall algorithm

{θi, wi}

AnnealTarget

Design Sample

q1

Adapt P1

q0

P0

AAIS Step

Anneal

Sample

q2
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2-D Example:

Many well-separated correlated normals
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λ1 = 0.01 λ3 = 0.11 λ8 = 1

scales

locations

samples from q1

d.o.f.=5; weights vary
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Observed Data:
HD 73526 (2 planets)

Data and RV Curve for 2-Planet Fit
Periods:  188 d, 377 d (weakly resonant)

1-D and 2-D Marginals for Orbital Parameters
(longer-period planet)

Bayes factors:
1 vs 0 planet:  6.5x106

2 vs 1 planet(s):  8.2x104

Sampling efficiency of final mixture ESS/N ≈ 65%

See Liu (2014): “Adaptive Annealed Importance Sampling”
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