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Notation

p(0|M)p(D]0, M)

p(8ID. M) »(DIM)
_ r0L0) _ a)
Z Z

M = model specification
D specifies observed data
6 = model parameters

7(0) = prior pdf for 0

(
L(0) = likelihood for @ (likelihood function)
q(0) = w(0)L(0) = “"quasiposterior”

Z = p(D|M) = (marginal) likelihood for the model
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Marginal likelihood:

7= / do (0)L(0) = / d6 q(6)

Use “Skilling conditional” for common conditioning info:

_ p(9)p(DI0)

Suppress such conditions when clear from context



Parameter space integrals

For model with m parameters, we need to evaluate integrals like:

/ d™6 g(6) n(6) L(9) — / a0 g(0)dlo) O EE)

8) =1 — p(D|M) (norm. const., model likelihood)
6

®g

6 — posterior mean for 6

°
0q

#) =1, integrate over subspace — marginal posterior

°
0

(®)
(©)
® g(#) = 'box’ — probability # € credible region
(®)
(©)

® g(0) =4[ —(6)] — propagate uncertainty to ¥ (6)
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The Bayesian computation challenge
Asymptotic approximations

e Most probability is usually in regions near the mode

e Taylor expansion of log p — leading order is quadratic

e Integrand may be well-approximated by a multivariate
(correlated) normal: the Laplace approximation

Requires ingredients familiar from frequentist calculations

Bayesian calculation is not significantly harder than
frequentist calculation in this limit.

Inference with independent data

Analytical: For exponential family models & conjugate priors,
integrals are often tractable and simpler than frequentist
counterparts (e.g., normal credible regions, Student’s t)

Numerical: For “large” m (> 4 is often enough!) the
integrals are often very challenging because of structure (e.g.,
correlations) in parameter space. Calculations are pursued
without making any modeling approximations.



Inference with conditionally independent parameters

In multilevel (hierarchical) models—e.g., for “measurement
error” and latent variable problems—a layer of variables may
be independent given higher level variables — numerically
tractable marginals

L£0,{x}) = p({Di}l0,{xi})
= H p(Di|x:)f (x;|0) = HK x;)f(x;]0)

so Ln H/dx, i(xi)f (xi]0)



Bayesian Computation Menu
Large sample size, N: Laplace approximation

e Approximate posterior as multivariate normal — det(covar) factors
e Uses ingredients available in x?/ML fitting software (MLE, Hessian)
e Often accurate to O(1/N) (better than O(1/v/N))

Modest-dimensional models (m<10 to 20)

e Adaptive cubature
e Monte Carlo integration (importance & stratified sampling, adaptive
importance sampling, quasirandom MC)
High-dimensional models (mz5)

e Posterior sampling — create RNG that samples posterior
e Markov Chain Monte Carlo (MCMC) is the most general framework
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Laplace Approximations

Suppose posterior has a single dominant (interior) mode at 6. For
large N,

T(0)£(0) ~ w(0)£(D) exp [—%(9 —0)i(o— é)}

& In[xn(0)L(0)]
020 .
0
= Negative Hessian of In[m(0)L(0)]
= "Observed Fisher info. matrix" (for flat prior)

where | =

~ Inverse of covariance matrix

E.g., for 1-d Gaussian posterior, 1 = 1/073
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Marginal likelihoods
/de T(0)L(0) ~ n(0)L(6) (2r)/2[1| 2

Marginal posterior densities
Profile likelihood Ly(¢) = max, L(¢,n) = L(¢, 7(¢))

= p(eID, M) & w(6,7(8))Lp(0)| ()| 2
with 1,(¢) = 8,8, In(xL)]5
Posterior expectations

/de FO)m(0)C() & F(B)m(B)L(B) (2m)™>|T) V2

where 6 maximizes fwl

Tierney & Kadane, “Accurate Approximations for Posterior Moments and Marginal

Densities,” JASA (1986)
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Features
Uses output of common algorithms for frequentist methods
(optimization, Hessian*)
Uses ratios — approximation is often O(1/N) or better

Includes volume factors that are missing from common
frequentist methods (better inferences!)

*Some optimizers provide approximate Hessians, e.g., Levenberg-Marquardt for
modeling data with additive Gaussian noise. For more general cases, see Kass (1987)
“Computing observed information by finite differences” (beware typos): central 2nd
differencing + Richardson extrapolation.

13
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Drawbacks

Posterior must be smooth and unimodal (or well-separated
modes)

Mode must be away from boundaries (can be relaxed)

Result is parameterization-dependent—try to reparameterize
to make things look as Gaussian as possible (e.g., § — log6
to straighten banana-shaped contours)

Asymptotic approximation with no simple diagnostics (like
many frequentist methods)

Empirically, it often does not work well for mz10
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Relationship to BIC

Laplace approximation for marginal likelihood:

7 = / do w(6)L(8) ~ m(@)C(d) (2mym2|1|

~ w(0)£(0) (2m)"2 ] oo,
k=1

We expect asymptotically op, o 1/\/N

Bayesian Information Criterion (BIC; aka Schwarz criterion):
1 ~ m
—BIC=InL(0) — =InN
> n L(0) > n

This is a very crude approximation to In Z; it captures the
asymptotic N dependence, but omits factors O(1). Can
justify in some i.i.d. settings using “unit info prior.”

BIC ~ Bayesian counterpart to adjusting x2 for d.o.f., but partly accounts for
parameter space volume (— consistent model choice, unlike fixed-a hyp. tests)

Can be useful for identifying cases where an an accurate but hard Z calculation
is useful (esp. for nested models, where some missing factors cancel)
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Modest-D: Quadrature & Cubature
Quadrature rules for 1-D integrals (with weight function h(6)):

/ do F(0) = / do h(0) %
~ Z w; F(6;) + O(n_z) or O(n™%)

Smoothness — fast convergence in 1-D

Curse of dimensionality: Cartesian product rules converge slowly,
O(n=2/™) or O(n=*/™) in m-D

Wikipedia
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Monomial Cubature Rules

Seek rules exact for multinomials (x weight) up to fixed monomial
degree with desired lattice symmetry; e.g.:

f(X7_y7Z) = MVN(X,y,Z)ZaUkXiijk

Number of points required grows much more slowly with m than
for Cartesian rules (but still quickly)

A 7th order rule in 2-d

1

fori+j+k<T7
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Adaptive Cubature

® Subregion adaptive cubature: Use a pair of monomial rules
(for error estim'n); recursively subdivide regions w/ large error
(ADAPT, CUHRE, BAYESPACK, CUBA). Concentrates points
where most of the probability lies.

® Adaptive grid adjustment: Naylor-Smith method
Iteratively update abscissas and weights to make the
(unimodal) posterior approach the weight function.

These provide diagnostics (error estimates or measures of
reparameterization quality).

# nodes used by ADAPT’s 7th order rule
29 +2d? +2d +1

Dimen 2 3 4 5 6 7 8 9 10
# nodes | 17 33 57 93 149 241 401 693 1245
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Analysis of Galaxy Polarizations

10°

10

10°

o

TJL, Flanagan, Wasserman (1997)

20/



Computation overview, low-dimensional models

O Monte Carlo integration

21/36



Monte Carlo Integration

[ g x pis just the expectation of g; suggests approximating with a
sample average:

1 _ 1/ ~ O(n~1) with
[ o e@p0)~ 3 o)+ oy | T o E
0i~p(0)
This is like a cubature rule, with equal weights and random nodes

Ignores smoothness — poor performance in 1-D, 2-D

Avoids curse: O(n~1/?) regardless of dimension
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Why/when it works

® |ndependent sampling & law of large numbers —
asymptotic convergence in probability

® Error term is from CLT; requires finite variance
Practical problems

® p(6) must be a density we can draw |ID samples
from—perhaps the prior, but. ..

® O(n~/2) multiplier (std. dev'n of g) may be large

— ID* Monte Carlo can be hard if dimension 2 5-10

*IID = independently, identically distributed
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Posterior sampling

/de (0)p(6]D) ~ % S g(6)+0(n )

0i~p(6|D)

When p(6) is a posterior distribution, drawing samples from it is
called posterior sampling:

® One set of samples can be used for many different calculations
(so long as they don't depend on low-probability events)

® This is the most promising and general approach for Bayesian
computation in high dimensions—though with a twist
(MCMCY)

Challenge: How to build a RNG that samples from a posterior?
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Accept-Reject Algorithm

Goal: Given g(0) = m(0)L(6), build a RNG that draws samples
from the probability density function (pdf)

f(e):@ with 7 = / d0 (0)

The probability for a region under the pdf is the area (volume)
under the curve (surface).

— Sample points uniformly in volume under g; their 6 values will
be draws from f(6).

The fraction of samples with 6
(“x" in the fig) in a bin of size 60

is the fractional area of the bin.
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How can we generate points uniformly under the pdf?

Suppose g(6) has compact support: it is nonzero over a finite
contiguous region of @-space of length/area/volume V.

Generate candidate points uniformly in a rectangle enclosing q().

Keep the points that end up under q.

0.8

26
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Basic accept-reject algorithm

1. Find an upper bound Q for g(9)

2. Draw a candidate parameter value ¢’ from the uniform
distribution in V

3. Draw a uniform random number, u

4. If the ordinate u@ < q(6"), record €’ as a sample

5. Goto 2, repeating as necessary to get the desired number
of samples.

Efficiency = ratio of areas (volumes), Z/(QV).

Two issues
® Increasing efficiency

® Handling distributions with infinite support
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Envelope Functions

Suppose there is a pdf h(#) that we know how to sample from and
that roughly resembles g(6):

® Multiply h by a constant C so Ch(6) > q(0)

® Points with coordinates 8’ ~ h and ordinate uCh(6’) will be
distributed uniformly under Ch(9)

® Replace the hyperrectangle in the basic algorithm with the
region under Ch(0)
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Accept-Reject Algorithm

@ Choose a tractable density h(6) and a constant C so Ch
bounds g

® Draw a candidate parameter value 6/ ~ h

® Draw a uniform random number, u

O If g(¢") < Ch(¢), record 6’ as a sample

® Goto 2, repeating as necessary to get the desired number of
samples.

Efficiency = ratio of volumes, Z/C.

In problems of realistic complexity, the efficiency is intolerably low
for parameter spaces of more than several dimensions.

Take-away idea: Propose candidates that may be accepted or
rejected
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Markov Chain Monte Carlo

Accept/Reject aims to produce independent samples—each new 6
is chosen irrespective of previous draws.

To enable exploration of complex pdfs, let's introduce dependence:

Choose new 6 points in a way that

® Tends to move toward regions with higher probability than
current

® Tends to avoid lower probability regions
The simplest possibility is a Markov chain:

p(next location|current and previous locations)

= p(next location|current location)

A Markov chain “has no memory.”
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m(0)L(0) contours

W

Initial 6

Markov chain

01

Covered later!
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Importance sampling

[sae= [ 0050200~ L T s0)80)

(0) 0;i~P(0)

Choose P to make variance small. (Not easy!)

9(9)

\

~—

A

/A0
ZER AN

Can be useful for both model comparison (marginal likelihood
calculation), and parameter estimation.
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Building a Good Importance Sampler

Estimate an annealing target density, m,, using a mixture of
multivariate Student-t distributions, P,:

() = [q(O)]' " x [q(O)",  An=0...1

Pa(0) = > MVT(6;u],S],v)
J

Adapt the mixture to the target using ideas from sequential Monte
Carlo — Adaptive annealed importance sampling (AAIS)

Initialization
Target Initialization
Annealed target
Initial IS mixture
S
>
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Sample, weight, refine

Sample & calculate weights

q0(0)

Refine IS: EM + Birth/Death

/\/\

Overall algorithm

Target a
Design

Anneal )—>

amp\e
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2-D Example:
Many well-separated correlated

normals
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RV

Data and RV Curve for 2-Planet Fit
Periods: 188 d, 377 d (weakly resonant)

Observed Data:
HD 73526 (2 planets)

Bayes factors:
1 vs 0 planet: 6.5x108

50 T , ) X 2vs 1 planet(s): 8.2x10¢ 0
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Sampling efficiency of final mixture ESS/N ~ 65%

See Liu (2014): “Adaptive Annealed Importance Sampling”
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