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1970 baseball averages
Efron & Morris looked at batting averages of baseball players who
had N = 45 at-bats in May 1970 — ‘large’ N & includes Roberto
Clemente (outlier!)

Red = n/N maximum likelihood estimates of true averages
Blue = Remainder of season, Nrmdr ≈ 9N

'True'

Early season

Shrinkage

RMSE = 0.277

RMSE = 0.148

0.2 0.3 0.4

0.265

Cyan = James-Stein estimator: nonlinear, correlated, biased
But better!
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Theorem (independent Gaussian setting): In dimension >∼3, shrinkage
estimators always beat independent MLEs in terms of expected RMS error

“The single most striking result of post-World War II statistical theory”
— Brad Efron
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Accounting For Measurement Error
Introduce latent/hidden/incidental parameters

Suppose f (x |θ) is a distribution for an observable, x .

From N precisely measured samples, {xi}, we can infer θ from

L(θ) ≡ p({xi}|θ) =
∏

i

f (xi |θ)

p(θ|{xi}) ∝ p(θ)L(θ) = p(θ, {xi})

(A binomial point process)
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Graphical representation

• Nodes/vertices = uncertain quantities (gray → known)

• Edges specify conditional dependence

• Absence of an edge denotes conditional independence

θ

x1 x2 xN

Graph specifies the form of the joint distribution:

p(θ, {xi}) = p(θ) p({xi}|θ) = p(θ)
∏

i

f (xi |θ)

Posterior from BT: p(θ|{xi}) = p(θ, {xi})/p({xi})
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But what if the x data are noisy, Di = {xi + ǫi}?

{xi} are now uncertain (latent) parameters
We should somehow incorporate ℓi(xi ) = p(Di |xi ):

p(θ, {xi}, {Di}) = p(θ) p({xi}|θ) p({Di}|{xi})

= p(θ)
∏

i

f (xi |θ) ℓi (xi )

Marginalize over {xi} to summarize inferences for θ.
Marginalize over θ to summarize inferences for {xi}.

Key point: Maximizing over xi and integrating over xi can give
very different results!
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To estimate x1:

p(x1|{x2, . . .}) =

∫

dθ p(θ) f (x1|θ) ℓ1(x1)×

N
∏

i=2

∫

dxi f (xi |θ) ℓi (xi)

= ℓ1(x1)

∫

dθ p(θ) f (x1|θ)Lm,1̆(θ)

≈ ℓ1(x1)f (x1|θ̂)

with θ̂ determined by the remaining data (EB)

f (x1|θ̂) behaves like a prior that shifts the x1 estimate away from
the peak of ℓ1(xi )

This generalizes the corrections derived by Eddington, Malmquist
and Lutz-Kelker (sans selection effects)

(Landy & Szalay (1992) proposed adaptive Malmquist corrections that
can be viewed as an approximation to this.)
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Graphical representation

DND1 D2

θ

x1 x2 xN

p(θ, {xi}, {Di}) = p(θ) p({xi}|θ) p({Di}|{xi})

= p(θ)
∏

i

f (xi |θ) p(Di |xi ) = p(θ)
∏

i

f (xi |θ) ℓi(xi )

(sometimes called a “two-level MLM” or “two-level hierarchical model”)
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Multilevel models

1 Conditional and marginal dependence/independence

2 Populations and multilevel modeling

3 MLMs for cosmic populations
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Binomial counts

...

... n2 heads in N flips

n1 heads in N flips

Suppose we know n1 and want to predict n2
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Predicting binomial counts — known α

Success probability α → p(n|α) = N!
n!(N−n)!α

n(1− α)N−n ||N

Consider two successive runs of N = 20 trials, known α = 0.5

p(n2|n1, α) = p(n2|α) ||N

n1 and n2 are conditionally independent
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Model structure as a graph

• Circular nodes/vertices = a priori uncertain quantities
(gray = becomes known as data)

• Edges specify conditional dependence

• Absence of an edge indicates conditional independence

α

n1 n2 nN

α

ni

⇐⇒

nN

N − 1

p({ni}|α) =
∏

i

p(ni |α)

Knowing α lets you predict each ni , independently
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Predicting binomial counts — uncertain α

Consider the same setting, but with α uncertain

Outcomes are physically independent, but n1 tells us about α →
outcomes are marginally dependent:

p(n2|n1,N) =

∫

dα p(α, n2|n1,N) =

∫

dα p(α|n1,N) p(n2|α,N)

Flat prior on α
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Prior: α = 0.5± 0.1
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Graphical model — “Probability for everything”

α

n1 n2

Flow

of

Information

p(α, n1, n2) = π(α)
∏

i

p(ni |α) ≡ π(α)
∏

i

ℓi(α)
member likelihood

From joint to conditionals:

p(α|n1, n2) =
p(α, n1, n2)

p(n1, n2)
=

π(α)
∏

i ℓi (α)
∫

dα π(α)
∏

i ℓi(α)

p(n2|n1) =

∫

dα p(α, n1, n2)

p(n1)

Observing n1 lets you learn about α
Knowledge of α affects predictions for n2 → dependence on n1
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Multilevel models

1 Conditional and marginal dependence/independence

2 Populations and multilevel modeling

3 MLMs for cosmic populations
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A population of coins/flippers

Each flipper+coin flips different number of times
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n1

θ

α1 α2 αN

n2 nN

Population
parameters

Success
probabilities

Data

p(θ, {αi}, {ni}) = π(θ)
∏

i

p(αi|θ) p(ni|αi)

= π(θ)
∏

i

p(αi|θ) ℓi(αi)

Terminology: θ are hyperparameters, π(θ) is the hyperprior
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A simple multilevel model: beta-binomial

Goal: Learn a population-level “prior” by pooling data

Qualitative

n1

θ

α1 α2 αN

n2 nN

Population
parameters

Success
probabilities

Data

p(θ, {αi}, {ni}) = π(θ)
∏

i

p(αi|θ) p(ni|αi)

= π(θ)
∏

i

p(αi|θ) ℓi(αi)

Quantitative

θ = (a, b) or (µ, σ)

π(θ) = Flat(µ, σ)

p(αi |θ) = Beta(αi |θ)

p(ni |αi) =

(

Ni

ni

)

αni
i (1 − αi)

Ni−ni

19 / 44



Generating the population & data

Beta

distribution

(mean, conc'n)

Binomial

distributions
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Likelihood function for one member’s α
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Learning the population distribution
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Lower level estimates

Two approaches

• Hierarchical Bayes (HB): Calculate marginals

p(αj |{ni}) ∝

∫

dθ π(θ)
∏

i 6=j

p(αi |θ) p(ni |αi )

• Empirical Bayes (EB): Plug in an optimum θ̂ and estimate {αi}
View as approximation to HB, or a frequentist procedure
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Lower level estimates

Bayesian outlook

• Marginal posteriors are narrower than likelihoods

• Point estimates tend to be closer to true values than MLEs
(averaged across the population)

• Joint distribution for {αi} is dependent

24 / 44



Frequentist outlook

• Point estimates are biased

• Reduced variance → estimates are closer to truth on average
(lower MSE in repeated sampling)

• Bias for one member estimate depends on data for all other
members

Lingo

• Estimates shrink toward prior/population mean

• Estimates “muster and borrow strength” across population
(Tukey’s phrase); increases accuracy and precision of estimates

25 / 44



Population and member estimates
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Competing data analysis goals

“Shrunken” member estimates provide improved & reliable
estimate for population member properties

But they are under-dispersed in comparison to the true values →
not optimal for estimating population properties∗

No point estimates of member properties are good for all tasks!

We should view data catalogs as providing
descriptions of member likelihood functions,

not “estimates with errors”

∗Louis (1984); Eddington noted this in 1940!
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Multilevel models

1 Conditional and marginal dependence/independence

2 Populations and multilevel modeling

3 MLMs for cosmic populations
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Observing and modeling cosmic populations
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Science goals
• Density estimation: Infer the distribution of source

characteristics, p(χ)

• Regression/Cond’l density estimation: Infer relationships
between different characteristics

• Map regression: Infer parameters defining the mapping from
characteristics to observables

Notably, seeking improved point estimates of source characteristics is
seldom a goal in astronomy.
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Number counts, luminosity functions
GRB peak fluxes

Loredo & Wasserman 1993, 1995, 1998:
GRB luminosity/spatial dist’n via
hierarchical Bayes

TNO magnitudes

Gladman+1998, 2001, 2008:
TNO size distribution via
hierarchical Bayes
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CB244 molecular cloud

Herschel data from Stutz+ 2010

SED properties vs. position

Kelly+2012: Dust parameter
correlations via hierarchical Bayes

β = power law modification index
Expect β → 0 for large grains
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Measurement error models for cosmic populations
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Schematic graphical model
Population
parametersθ

χ1 χ2

O1 O2

D2

χN

ON

DND1

Source
characteristics

Source
observables

Data

= "Random variable" node (has pdf)

Becomes known (data)

= Conditional dependence

A directed acyclic graph (DAG)

Graph specifies the form of the joint distribution:

p(θ, {χi}, {Oi}, {Di}) = p(θ)
∏

i

p(χi |θ) p(Oi |χi) p(Di |Oi )

Posterior from Bayes’s theorem:

p(θ, {χi}, {Oi}|{Di}) = p(θ, {χi}, {Oi}, {Di}) / p({Di})
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Plates

Population
parametersθ θ

Di
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χi
χ1 χ2

O1 O2

D2

χN

ON

DND1

Source
characteristics

Source
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Data

N

Plate
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“Two-level” effective models

Number counts
O = flux

θ

Di

Oi

N

Calculate flux dist’n using
“fundamental eqn” of stat astro

(Analytically/numerically
marginalize over χ = (L, r))

Dust SEDs
χ = spectrum params

χi

θ

Di

N

Observables = fluxes in bandpasses
Fluxes are deterministic in χi
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From flips to fluxes

Simplified number counts model

• αi → source flux, Fi

• Upper level π(α) → logN–log S dist’n

• ni → counts in CCD pixels

⇒ “Eddington bias” in disguise,
with both member and population inference

and uncertainty quantification
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Another conjugate MLM: Gamma-Poisson

Goal: Learn a flux dist’n from photon counts

Qualitative

Population
parameters

Source
properties

Observed

data

θ

F1 F2 FN

n1 n2 nN

Quantitative

θ = (α, s) or (µ, σ)

π(θ) = Flat(µ, σ)

p(Fi |θ) = Gamma(Fi |θ)

p(ni |Fi ) = Pois(ni |ǫiFi )
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Gamma-Poisson population and member estimates

0 50 100 150 200 250

F

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

0.016

0.018

p
(F
)

KLDML = 0.060 b
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RMSE = 4.30

RMSE = 3.72

Simulations: N = 60 sources from gamma with 〈F 〉 = 100 and σF = 30;
exposures spanning dynamic range of ×16
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Benefits and requirements of cosmic MLMs

Benefits

• Selection effects quantified by non-detection data

• vs. V /Vmax and “debiasing” approaches

• Source uncertainties propagated via marginalization

• Adaptive generalization of Eddington/Malmquist “corrections”
• No single adjustment addresses source & pop’n estimation

Requirements

• Data summaries for non-detection intervals
(exposure, efficiency)

• Likelihood functions (not posterior dist’ns) for detected source
characteristics
(Perhaps a role for interim priors)
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Some Bayesian MLMs in astronomy
Surveys (number counts/“logN–log S”/Malmquist):
• GRB peak flux dist’n (Loredo & Wasserman 1998+)

• TNO/KBO magnitude distribution (Gladman+ 1998;
Petit+ 2008)

• Malmquist-type biases in cosmology; MLM tutorial
(Loredo & Hendry 2009 in BMIC book)

• “Extreme deconvolution” for proper motion surveys
(Bovy, Hogg, & Roweis 2011)

• Exoplanet populations (2014 Kepler workshop)

Directional & spatio-temporal coincidences:
• GRB repetition (Luo+ 1996; Graziani+ 1996)

• GRB host ID (Band 1998; Graziani+ 1999)

• VO cross-matching (Budavári & Szalay 2008)
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Linear regression with measurement error:

• QSO hardness vs. luminosity (Kelly 2007)

Time series:

• SN 1987A neutrinos, uncertain energy vs. time (Loredo
& Lamb 2002)

• Multivariate “Bayesian Blocks” (Dobigeon, Tourneret &
Scargle 2007)

• SN Ia multicolor light curve modeling (Mandel+ 2009+)
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How far we’ve come
SN 1987A neutrinos, 1990

Marked Poisson point process
Background,

thinning/truncation,
measurement error

θ

D

t, ǫ

N

t, ǫ

D

N

Model checking via
examining conditional
predictive dist’ns

SN Ia light curves
Mandel 2009, 2011

Nonlinear regression,
Gaussian process regression,

measurement error

Model checking via cross validation
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SN IIP light curves (Sanders+ 2014)
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Recap of Key Ideas

• Conditional & marginal dependence/independence

• Latent parameters for measurement error

• Graphical models, multilevel models, hyperparameters

• Beta-binomial & gamma-Poisson conjugate MLMs

• Shrinkage estimators (member point estimates)
• Empirical Bayes
• Hierarchical Bayes

• Member vs. population inference—competing goals
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