Introduction to Bayesian multilevel models (hierarchical Bayes/graphical models)

Tom Loredo Dept. of Astronomy, Cornell University http://www.astro.cornell.edu/staff/loredo/

IAC Winter School, 3-4 Nov 2014

1970 baseball averages

Efron & Morris looked at batting averages of baseball players who had N = 45 at-bats in May 1970 — 'large' N & includes Roberto Clemente (outlier!)

Red = n/N maximum likelihood estimates of true averages Blue = Remainder of season, $N_{\rm rmdr} \approx 9N$

Cyan = James-Stein estimator: nonlinear, correlated, biased But *better*!

Theorem (independent Gaussian setting): In dimension \gtrsim 3, shrinkage estimators always beat independent MLEs in terms of expected RMS error

"The single most striking result of post-World War II statistical theory" — Brad Efron

Accounting For Measurement Error

Introduce latent/hidden/incidental parameters

Suppose $f(x|\theta)$ is a distribution for an observable, x.

From *N* precisely measured samples, $\{x_i\}$, we can infer θ from

$$\mathcal{L}(\theta) \equiv p(\{x_i\}|\theta) = \prod_i f(x_i|\theta)$$
$$p(\theta|\{x_i\}) \propto p(\theta)\mathcal{L}(\theta) = p(\theta, \{x_i\})$$
(A binomial point process)

Graphical representation

- Nodes/vertices = uncertain quantities (gray → known)
- Edges specify conditional dependence
- Absence of an edge denotes *conditional independence*

Graph specifies the form of the *joint distribution*:

$$p(\theta, \{x_i\}) = p(\theta) p(\{x_i\}|\theta) = p(\theta) \prod_i f(x_i|\theta)$$

Posterior from BT: $p(\theta|\{x_i\}) = p(\theta, \{x_i\})/p(\{x_i\})$

But what if the x data are *noisy*, $D_i = \{x_i + \epsilon_i\}$?

 $\{x_i\}$ are now uncertain (latent) parameters We should somehow incorporate $\ell_i(x_i) = p(D_i|x_i)$:

$$p(\theta, \{x_i\}, \{D_i\}) = p(\theta) p(\{x_i\}|\theta) p(\{D_i\}|\{x_i\})$$
$$= p(\theta) \prod_i f(x_i|\theta) \ell_i(x_i)$$

Marginalize over $\{x_i\}$ to summarize inferences for θ . *Marginalize* over θ to summarize inferences for $\{x_i\}$.

Key point: Maximizing over x_i and integrating over x_i can give very different results!

To estimate x_1 :

$$p(x_1|\{x_2,\ldots\}) = \int d\theta \ p(\theta) f(x_1|\theta) \ell_1(x_1) \times \prod_{i=2}^N \int dx_i \ f(x_i|\theta) \ell_i(x_i)$$
$$= \ell_1(x_1) \int d\theta \ p(\theta) f(x_1|\theta) \mathcal{L}_{m,\check{1}}(\theta)$$
$$\approx \ell_1(x_1) f(x_1|\hat{\theta})$$

with $\hat{\theta}$ determined by the remaining data (EB)

 $f(x_1|\hat{\theta})$ behaves like a prior that shifts the x_1 estimate away from the peak of $\ell_1(x_i)$

This generalizes the corrections derived by Eddington, Malmquist and Lutz-Kelker (sans selection effects)

(Landy & Szalay (1992) proposed adaptive Malmquist corrections that can be viewed as an approximation to this.)

Graphical representation

$$p(\theta, \{x_i\}, \{D_i\}) = p(\theta) p(\{x_i\}|\theta) p(\{D_i\}|\{x_i\})$$

= $p(\theta) \prod_i f(x_i|\theta) p(D_i|x_i) = p(\theta) \prod_i f(x_i|\theta) \ell_i(x_i)$

(sometimes called a "two-level MLM" or "two-level hierarchical model")

Multilevel models

1 Conditional and marginal dependence/independence

2 Populations and multilevel modeling

3 MLMs for cosmic populations

Multilevel models

1 Conditional and marginal dependence/independence

2 Populations and multilevel modeling

3 MLMs for cosmic populations

Binomial counts

 $\bullet \bullet \bullet n_1$ heads in N flips

 \bullet \bullet n_2 heads in N flips

Suppose we know n_1 and want to predict n_2

Predicting binomial counts — known α

Success probability
$$\alpha \to p(n|\alpha) = \frac{N!}{n!(N-n)!} \alpha^n (1-\alpha)^{N-n} \qquad || N$$

Consider two successive runs of N = 20 trials, known $\alpha = 0.5$

$$p(n_2|n_1, \alpha) = p(n_2|\alpha) \qquad || N$$

 n_1 and n_2 are conditionally independent

Model structure as a graph

- Circular nodes/vertices = a priori uncertain quantities (gray = becomes known as data)
- Edges specify conditional dependence
- Absence of an edge indicates conditional *in*dependence

$$p(\{n_i\}|\alpha) = \prod_i p(n_i|\alpha)$$

Knowing α lets you predict each n_i , independently

Predicting binomial counts — uncertain α

Consider the same setting, but with α uncertain

Outcomes are *physically* independent, but n_1 tells us about $\alpha \rightarrow$ outcomes are *marginally dependent*:

$$p(n_2|n_1, N) = \int d\alpha \ p(\alpha, n_2|n_1, N) = \int d\alpha \ p(\alpha|n_1, N) \ p(n_2|\alpha, N)$$

Graphical model — "Probability for everything"

 $p(\alpha, n_1, n_2) = \pi(\alpha) \prod_i p(n_i | \alpha) \equiv \pi(\alpha) \prod_i \ell_i(\alpha)$

member likelihood

From joint to conditionals:

$$p(\alpha|n_1, n_2) = \frac{p(\alpha, n_1, n_2)}{p(n_1, n_2)} = \frac{\pi(\alpha) \prod_i \ell_i(\alpha)}{\int d\alpha \pi(\alpha) \prod_i \ell_i(\alpha)}$$
$$p(n_2|n_1) = \frac{\int d\alpha p(\alpha, n_1, n_2)}{p(n_1)}$$

Observing n_1 lets you learn about α Knowledge of α affects predictions for $n_2 \rightarrow$ dependence on n_1

Multilevel models

1 Conditional and marginal dependence/independence

2 Populations and multilevel modeling

3 MLMs for cosmic populations

A population of coins/flippers

Each flipper+coin flips different number of times

Terminology: θ are hyperparameters, $\pi(\theta)$ is the hyperprior

A simple multilevel model: beta-binomial

Goal: Learn a population-level "prior" by pooling data

Qualitative

. . .

Quantitative

Data

Population

parameters

Success

probabilities

 α_N

 n_N

$$p(n_i|\alpha_i) = \binom{N_i}{n_i} \alpha_i^{n_i} (1-\alpha_i)^{N_i-n_i}$$

$$\begin{split} p(\theta, \{\alpha_i\}, \{n_i\}) &= \pi(\theta) \prod_i p(\alpha_i | \theta) \; p(n_i | \alpha_i) \\ &= \pi(\theta) \prod_i p(\alpha_i | \theta) \; \ell_i(\alpha_i) \end{split}$$

θ

 α_2

 n_2

 α_1

 n_1

Generating the population & data

Likelihood function for one member's $\boldsymbol{\alpha}$

Learning the population distribution

Lower level estimates n = 20n = 16n = 11n = 79n = 1N = 80N = 40N = 10N = 20N = 1600.0 0.2 0.4 0.6 0.0 0.2 0.4 0.6 α_2 0.0 0.2 0.4 0.6 0.0 0.2 0.4 0.6 0.0 0.2 0.4 0.6 0.8 1.0 α_{1} a α_4 a. True ML RMSE = 0.096EB RMSE = 0.057

Two approaches

 $\mathcal{L}(\alpha_i), p(\alpha_i | D)$

• Hierarchical Bayes (HB): Calculate marginals

$$p(\alpha_j|\{n_i\}) \propto \int d\theta \, \pi(\theta) \prod_{i \neq j} p(\alpha_i|\theta) \, p(n_i|\alpha_i)$$

Empirical Bayes (EB): Plug in an optimum θ̂ and estimate {α_i}
 View as approximation to HB, or a frequentist procedure

Lower level estimates

Bayesian outlook

- Marginal posteriors are *narrower* than likelihoods
- Point estimates tend to be closer to true values than MLEs (averaged across the population)
- Joint distribution for $\{\alpha_i\}$ is *dependent*

Frequentist outlook

- Point estimates are biased
- Reduced variance → estimates are closer to truth on average (lower MSE in repeated sampling)
- Bias for one member estimate depends on data for all other members

Lingo

- Estimates *shrink* toward prior/population mean
- Estimates "muster and *borrow strength*" across population (Tukey's phrase); increases accuracy and precision of estimates

Population and member estimates

Competing data analysis goals

"Shrunken" member estimates provide improved & reliable estimate for population member properties

But they are *under-dispersed* in comparison to the true values \rightarrow not optimal for estimating *population* properties^{*}

No point estimates of member properties are good for all tasks!

We should view data catalogs as providing descriptions of member likelihood functions, not "estimates with errors"

*Louis (1984); Eddington noted this in 1940!

Multilevel models

1 Conditional and marginal dependence/independence

2 Populations and multilevel modeling

3 MLMs for cosmic populations

Observing and modeling cosmic populations

Science goals

- Density estimation: Infer the distribution of source characteristics, $p(\chi)$
- *Regression/Cond'l density estimation*: Infer relationships between different characteristics
- *Map regression*: Infer parameters defining the mapping from characteristics to observables

Notably, seeking improved point estimates of source characteristics is seldom a goal in astronomy.

Number counts, luminosity functions

TNO magnitudes

Loredo & Wasserman 1993, 1995, 1998: GRB luminosity/spatial dist'n via hierarchical Bayes

Gladman⁺1998, 2001, 2008: TNO size distribution via hierarchical Bayes

Herschel data from Stutz⁺ 2010

Temperature [K] Kelly⁺2012: Dust parameter correlations via hierarchical Bayes $\beta =$ power law modification index Expect $\beta \rightarrow 0$ for large grains

15

 χ^2 -based Bayesian

10

n

SED properties vs. position

3.0 2.5 ∞ 2.0 1.5 1.0

20

16 18

25

Measurement error models for cosmic populations

Schematic graphical model

Graph specifies the form of the *joint distribution*:

$$p(\theta, \{\chi_i\}, \{\mathcal{O}_i\}, \{D_i\}) = p(\theta) \prod_i p(\chi_i|\theta) p(\mathcal{O}_i|\chi_i) p(D_i|\mathcal{O}_i)$$

Posterior from Bayes's theorem:

$$p(\theta, \{\chi_i\}, \{\mathcal{O}_i\} | \{D_i\}) = p(\theta, \{\chi_i\}, \{\mathcal{O}_i\}, \{D_i\}) / p(\{D_i\})$$

Plates

"Two-level" effective models

Calculate flux dist'n using "fundamental eqn" of stat astro (Analytically/numerically marginalize over $\chi = (L, r)$)

Observables = fluxes in bandpasses Fluxes are *deterministic* in χ_i

From flips to fluxes

Simplified number counts model

- $\alpha_i \rightarrow$ source flux, F_i
- Upper level $\pi(\alpha)
 ightarrow \log N$ -log S dist'n
- $n_i \rightarrow \text{counts in CCD pixels}$

 $\Rightarrow \text{``Eddington bias'' in disguise,} \\ \text{with both member } and \text{ population inference} \\ \text{ and uncertainty quantification} \\ \end{cases}$

Another conjugate MLM: Gamma-Poisson

Goal: Learn a flux dist'n from photon counts

data

Qualitative

Quantitative

 $\theta = (\alpha, s)$ or (μ, σ) $\pi(\theta) = \operatorname{Flat}(\mu, \sigma)$

- $p(F_i|\theta) = \text{Gamma}(F_i|\theta)$
- $p(n_i|F_i) = \text{Pois}(n_i|\epsilon_iF_i)$

Gamma-Poisson population and member estimates

Simulations: N = 60 sources from gamma with $\langle F \rangle = 100$ and $\sigma_F = 30$; exposures spanning dynamic range of $\times 16$

Benefits and requirements of cosmic MLMs

Benefits

- Selection effects quantified by *non-detection data*
 - \bullet vs. $V/V_{\rm max}$ and "debiasing" approaches
- Source uncertainties propagated via marginalization
 - Adaptive generalization of Eddington/Malmquist "corrections"
 - No single adjustment addresses source & pop'n estimation

Requirements

- Data summaries for non-detection intervals (exposure, efficiency)
- Likelihood functions (not posterior dist'ns) for detected source characteristics (Perhaps a role for *interim priors*)

Some Bayesian MLMs in astronomy

Surveys (number counts/"log *N*-log *S*"/Malmquist):

- GRB peak flux dist'n (Loredo & Wasserman 1998⁺)
- TNO/KBO magnitude distribution (Gladman⁺ 1998; Petit⁺ 2008)
- Malmquist-type biases in cosmology; MLM tutorial (Loredo & Hendry 2009 in *BMIC* book)
- "Extreme deconvolution" for proper motion surveys (Bovy, Hogg, & Roweis 2011)
- Exoplanet populations (2014 Kepler workshop)

Directional & spatio-temporal coincidences:

- GRB repetition (Luo⁺ 1996; Graziani⁺ 1996)
- GRB host ID (Band 1998; Graziani⁺ 1999)
- VO cross-matching (Budavári & Szalay 2008)

Linear regression with measurement error:

• QSO hardness vs. luminosity (Kelly 2007)

Time series:

- SN 1987A neutrinos, uncertain energy vs. time (Loredo & Lamb 2002)
- Multivariate "Bayesian Blocks" (Dobigeon, Tourneret & Scargle 2007)
- SN Ia multicolor light curve modeling (Mandel⁺ 2009⁺)

How far we've come

SN 1987A neutrinos, 1990

Marked Poisson point process Background, thinning/truncation, measurement error

Model checking via examining conditional predictive dist'ns SN la light curves Mandel 2009, 2011

Nonlinear regression, Gaussian process regression, measurement error

Model checking via cross validation

SN IIP light curves (Sanders⁺ 2014)

Recap of Key Ideas

- Conditional & marginal dependence/independence
- Latent parameters for measurement error
- Graphical models, multilevel models, hyperparameters
- Beta-binomial & gamma-Poisson conjugate MLMs
- Shrinkage estimators (member point estimates)
 - Empirical Bayes
 - Hierarchical Bayes
- Member vs. population inference—competing goals