Introduction to Bayesian multilevel models (hierarchical Bayes/graphical models)

Tom Loredo
Dept. of Astronomy, Cornell University http://www.astro.cornell.edu/staff/loredo/

IAC Winter School, 3-4 Nov 2014

1970 baseball averages

Efron \& Morris looked at batting averages of baseball players who had $N=45$ at-bats in May 1970 - 'large' $N \&$ includes Roberto Clemente (outlier!)

Red $=n / N$ maximum likelihood estimates of true averages Blue $=$ Remainder of season, $N_{\text {rmdr }} \approx 9 N$

Cyan $=$ James-Stein estimator: nonlinear, correlated, biased But better!

Theorem (independent Gaussian setting): In dimension $\gtrsim 3$, shrinkage estimators always beat independent MLEs in terms of expected RMS error
"The single most striking result of post-World War II statistical theory"

- Brad Efron

Accounting For Measurement Error

Introduce latent/hidden/incidental parameters
Suppose $f(x \mid \theta)$ is a distribution for an observable, x.

From N precisely measured samples, $\left\{x_{i}\right\}$, we can infer θ from

$$
\begin{gathered}
\mathcal{L}(\theta) \equiv p\left(\left\{x_{i}\right\} \mid \theta\right)=\prod_{i} f\left(x_{i} \mid \theta\right) \\
p\left(\theta \mid\left\{x_{i}\right\}\right) \propto p(\theta) \mathcal{L}(\theta)=p\left(\theta,\left\{x_{i}\right\}\right)
\end{gathered}
$$

(A binomial point process)

Graphical representation

- Nodes/vertices $=$ uncertain quantities (gray \rightarrow known)
- Edges specify conditional dependence
- Absence of an edge denotes conditional independence

Graph specifies the form of the joint distribution:

$$
p\left(\theta,\left\{x_{i}\right\}\right)=p(\theta) p\left(\left\{x_{i}\right\} \mid \theta\right)=p(\theta) \prod_{i} f\left(x_{i} \mid \theta\right)
$$

Posterior from BT: $p\left(\theta \mid\left\{x_{i}\right\}\right)=p\left(\theta,\left\{x_{i}\right\}\right) / p\left(\left\{x_{i}\right\}\right)$

But what if the x data are noisy, $D_{i}=\left\{x_{i}+\epsilon_{i}\right\}$?

$\left\{x_{i}\right\}$ are now uncertain (latent) parameters
We should somehow incorporate $\ell_{i}\left(x_{i}\right)=p\left(D_{i} \mid x_{i}\right)$:

$$
\begin{aligned}
p\left(\theta,\left\{x_{i}\right\},\left\{D_{i}\right\}\right) & =p(\theta) p\left(\left\{x_{i}\right\} \mid \theta\right) p\left(\left\{D_{i}\right\} \mid\left\{x_{i}\right\}\right) \\
& =p(\theta) \prod_{i} f\left(x_{i} \mid \theta\right) \ell_{i}\left(x_{i}\right)
\end{aligned}
$$

Marginalize over $\left\{x_{i}\right\}$ to summarize inferences for θ. Marginalize over θ to summarize inferences for $\left\{x_{i}\right\}$.

Key point: Maximizing over x_{i} and integrating over x_{i} can give very different results!

To estimate x_{1} :

$$
\begin{aligned}
p\left(x_{1} \mid\left\{x_{2}, \ldots\right\}\right) & =\int d \theta p(\theta) f\left(x_{1} \mid \theta\right) \ell_{1}\left(x_{1}\right) \times \prod_{i=2}^{N} \int d x_{i} f\left(x_{i} \mid \theta\right) \ell_{i}\left(x_{i}\right) \\
& =\ell_{1}\left(x_{1}\right) \int d \theta p(\theta) f\left(x_{1} \mid \theta\right) \mathcal{L}_{m, \check{1}}(\theta) \\
& \approx \ell_{1}\left(x_{1}\right) f\left(x_{1} \mid \hat{\theta}\right)
\end{aligned}
$$

with $\hat{\theta}$ determined by the remaining data (EB)
$f\left(x_{1} \mid \hat{\theta}\right)$ behaves like a prior that shifts the x_{1} estimate away from the peak of $\ell_{1}\left(x_{i}\right)$

This generalizes the corrections derived by Eddington, Malmquist and Lutz-Kelker (sans selection effects)
(Landy \& Szalay (1992) proposed adaptive Malmquist corrections that can be viewed as an approximation to this.)

Graphical representation

$$
\begin{aligned}
p\left(\theta,\left\{x_{i}\right\},\left\{D_{i}\right\}\right) & =p(\theta) p\left(\left\{x_{i}\right\} \mid \theta\right) p\left(\left\{D_{i}\right\} \mid\left\{x_{i}\right\}\right) \\
& =p(\theta) \prod_{i} f\left(x_{i} \mid \theta\right) p\left(D_{i} \mid x_{i}\right)=p(\theta) \prod_{i} f\left(x_{i} \mid \theta\right) \ell_{i}\left(x_{i}\right)
\end{aligned}
$$

(sometimes called a "two-level MLM" or "two-level hierarchical model")

Multilevel models

(1) Conditional and marginal dependence/independence
(2) Populations and multilevel modeling
(3) MLMs for cosmic populations

Multilevel models

(1) Conditional and marginal dependence/independence
(2) Populations and multilevel modeling
(3) MLMs for cosmic populations

Binomial counts

-•- $\quad n_{1}$ heads in N flips

- - - $\quad n_{2}$ heads in N flips

Suppose we know n_{1} and want to predict n_{2}

Predicting binomial counts - known α

Success probability $\alpha \rightarrow p(n \mid \alpha)=\frac{N!}{n!(N-n)!} \alpha^{n}(1-\alpha)^{N-n}$
Consider two successive runs of $N=20$ trials, known $\alpha=0.5$

$$
p\left(n_{2} \mid n_{1}, \alpha\right)=p\left(n_{2} \mid \alpha\right) \quad \| N
$$

n_{1} and n_{2} are conditionally independent

Model structure as a graph

- Circular nodes/vertices $=$ a priori uncertain quantities (gray $=$ becomes known as data)
- Edges specify conditional dependence
- Absence of an edge indicates conditional independence

$$
p\left(\left\{n_{i}\right\} \mid \alpha\right)=\prod_{i} p\left(n_{i} \mid \alpha\right)
$$

Knowing α lets you predict each n_{i}, independently

Predicting binomial counts - uncertain α

Consider the same setting, but with α uncertain
Outcomes are physically independent, but n_{1} tells us about $\alpha \rightarrow$ outcomes are marginally dependent:

$$
p\left(n_{2} \mid n_{1}, N\right)=\int d \alpha p\left(\alpha, n_{2} \mid n_{1}, N\right)=\int d \alpha p\left(\alpha \mid n_{1}, N\right) p\left(n_{2} \mid \alpha, N\right)
$$

Flat prior on α

Prior: $\alpha=0.5 \pm 0.1$

Graphical model - "Probability for everything"

$p\left(\alpha, n_{1}, n_{2}\right)=\pi(\alpha) \prod_{i} p\left(n_{i} \mid \alpha\right) \equiv \pi(\alpha) \prod_{i} \ell_{i}(\alpha)$
member likelihood

From joint to conditionals:

$$
\begin{gathered}
p\left(\alpha \mid n_{1}, n_{2}\right)=\frac{p\left(\alpha, n_{1}, n_{2}\right)}{p\left(n_{1}, n_{2}\right)}=\frac{\pi(\alpha) \prod_{i} \ell_{i}(\alpha)}{\int d \alpha \pi(\alpha) \prod_{i} \ell_{i}(\alpha)} \\
p\left(n_{2} \mid n_{1}\right)=\frac{\int d \alpha p\left(\alpha, n_{1}, n_{2}\right)}{p\left(n_{1}\right)}
\end{gathered}
$$

Observing n_{1} lets you learn about α Knowledge of α affects predictions for $n_{2} \rightarrow$ dependence on n_{1}

Multilevel models

(1) Conditional and marginal dependence/independence
(2) Populations and multilevel modeling
(3) MLMs for cosmic populations

A population of coins/flippers

Each flipper+coin flips different number of times

Terminology: θ are hyperparameters, $\pi(\theta)$ is the hyperprior

A simple multilevel model: beta-binomial

Goal: Learn a population-level "prior" by pooling data

Qualitative

$$
\begin{aligned}
p\left(\theta,\left\{\alpha_{i}\right\},\left\{n_{i}\right\}\right) & =\pi(\theta) \prod_{i} p\left(\alpha_{i} \mid \theta\right) p\left(n_{i} \mid \alpha_{i}\right) \\
& =\pi(\theta) \prod_{i} p\left(\alpha_{i} \mid \theta\right) \ell_{i}\left(\alpha_{i}\right)
\end{aligned}
$$

Quantitative

$$
\theta=(a, b) \text { or }(\mu, \sigma)
$$

Population parameters

$$
\pi(\theta)=\operatorname{Flat}(\mu, \sigma)
$$

Success probabilities

Data

$$
p\left(n_{i} \mid \alpha_{i}\right)=\binom{N_{i}}{n_{i}} \alpha_{i}^{n_{i}}\left(1-\alpha_{i}\right)^{N_{i}-n_{i}}
$$

Generating the population \& data

Likelihood function for one member's α

Learning the population distribution

Lower level estimates

Two approaches

- Hierarchical Bayes (HB): Calculate marginals

$$
p\left(\alpha_{j} \mid\left\{n_{i}\right\}\right) \propto \int d \theta \pi(\theta) \prod_{i \neq j} p\left(\alpha_{i} \mid \theta\right) p\left(n_{i} \mid \alpha_{i}\right)
$$

- Empirical Bayes (EB): Plug in an optimum $\hat{\theta}$ and estimate $\left\{\alpha_{i}\right\}$ View as approximation to HB, or a frequentist procedure

Lower level estimates

Bayesian outlook

- Marginal posteriors are narrower than likelihoods
- Point estimates tend to be closer to true values than MLEs (averaged across the population)
- Joint distribution for $\left\{\alpha_{i}\right\}$ is dependent

Frequentist outlook

- Point estimates are biased
- Reduced variance \rightarrow estimates are closer to truth on average (lower MSE in repeated sampling)
- Bias for one member estimate depends on data for all other members

Lingo

- Estimates shrink toward prior/population mean
- Estimates "muster and borrow strength" across population (Tukey's phrase); increases accuracy and precision of estimates

Population and member estimates

Competing data analysis goals

"Shrunken" member estimates provide improved \& reliable estimate for population member properties

But they are under-dispersed in comparison to the true values \rightarrow not optimal for estimating population properties*

No point estimates of member properties are good for all tasks!

We should view data catalogs as providing descriptions of member likelihood functions, not "estimates with errors"
*Louis (1984); Eddington noted this in 1940!

Multilevel models

(1) Conditional and marginal dependence/independence
(2) Populations and multilevel modeling
(3) MLMs for cosmic populations

Observing and modeling cosmic populations

Science goals

- Density estimation: Infer the distribution of source characteristics, $p(\chi)$
- Regression/Cond'I density estimation: Infer relationships between different characteristics
- Map regression: Infer parameters defining the mapping from characteristics to observables

Notably, seeking improved point estimates of source characteristics is seldom a goal in astronomy.

Number counts, luminosity functions

GRB peak fluxes

Loredo \& Wasserman 1993, 1995, 1998 :
GRB luminosity/spatial dist' n via hierarchical Bayes

TNO magnitudes

Gladman ${ }^{+}$1998, 2001, 2008:
TNO size distribution via hierarchical Bayes

CB244 molecular cloud

Herschel data from Stutz ${ }^{+} 2010$

SED properties vs. position

Kelly ${ }^{+}$2012: Dust parameter correlations via hierarchical Bayes $\beta=$ power law modification index Expect $\beta \rightarrow 0$ for large grains

Measurement error models for cosmic populations

Schematic graphical model

Population

 parametersA directed acyclic graph (DAG)

Graph specifies the form of the joint distribution:

$$
p\left(\theta,\left\{\chi_{i}\right\},\left\{\mathcal{O}_{i}\right\},\left\{D_{i}\right\}\right)=p(\theta) \prod_{i} p\left(\chi_{i} \mid \theta\right) p\left(\mathcal{O}_{i} \mid \chi_{i}\right) p\left(D_{i} \mid \mathcal{O}_{i}\right)
$$

Posterior from Bayes's theorem:

$$
p\left(\theta,\left\{\chi_{i}\right\},\left\{\mathcal{O}_{i}\right\} \mid\left\{D_{i}\right\}\right)=p\left(\theta,\left\{\chi_{i}\right\},\left\{\mathcal{O}_{i}\right\},\left\{D_{i}\right\}\right) / p\left(\left\{D_{i}\right\}\right)
$$

Plates

"Two-level" effective models

Number counts
$\mathcal{O}=$ flux

Calculate flux dist'n using "fundamental eqn" of stat astro (Analytically/numerically marginalize over $\chi=(L, r))$

Dust SEDs
$\chi=$ spectrum params

Observables $=$ fluxes in bandpasses Fluxes are deterministic in χ_{i}

From flips to fluxes

Simplified number counts model

- $\alpha_{i} \rightarrow$ source flux, F_{i}
- Upper level $\pi(\alpha) \rightarrow \log N-\log S$ dist'n
- $n_{i} \rightarrow$ counts in CCD pixels
\Rightarrow "Eddington bias" in disguise, with both member and population inference and uncertainty quantification

Another conjugate MLM: Gamma-Poisson

Goal: Learn a flux dist'n from photon counts

Qualitative

$$
\theta=(\alpha, s) \text { or }(\mu, \sigma)
$$

Population parameters

Source
properties

Observed
data

Gamma-Poisson population and member estimates

Simulations: $N=60$ sources from gamma with $\langle F\rangle=100$ and $\sigma_{F}=30$; exposures spanning dynamic range of $\times 16$

Benefits and requirements of cosmic MLMs

Benefits

- Selection effects quantified by non-detection data
- vs. $V / V_{\max }$ and "debiasing" approaches
- Source uncertainties propagated via marginalization
- Adaptive generalization of Eddington/Malmquist "corrections"
- No single adjustment addresses source \& pop'n estimation

Requirements

- Data summaries for non-detection intervals (exposure, efficiency)
- Likelihood functions (not posterior dist'ns) for detected source characteristics
(Perhaps a role for interim priors)

Some Bayesian MLMs in astronomy

Surveys (number counts/" $\log N-\log S " /$ Malmquist):

- GRB peak flux dist'n (Loredo \& Wasserman 1998^{+})
- TNO/KBO magnitude distribution (Gladman+ 1998; Petit ${ }^{+}$2008)
- Malmquist-type biases in cosmology; MLM tutorial (Loredo \& Hendry 2009 in BMIC book)
- "Extreme deconvolution" for proper motion surveys (Bovy, Hogg, \& Roweis 2011)
- Exoplanet populations (2014 Kepler workshop)

Directional \& spatio-temporal coincidences:

- GRB repetition (Luo ${ }^{+}$1996; Graziani ${ }^{+}$1996)
- GRB host ID (Band 1998; Graziani+ 1999)
- VO cross-matching (Budavári \& Szalay 2008)

Linear regression with measurement error:

- QSO hardness vs. luminosity (Kelly 2007)

Time series:

- SN 1987A neutrinos, uncertain energy vs. time (Loredo \& Lamb 2002)
- Multivariate "Bayesian Blocks" (Dobigeon, Tourneret \& Scargle 2007)
- SN la multicolor light curve modeling (Mandel ${ }^{+} 2009^{+}$)

How far we've come

SN 1987A neutrinos, 1990

Marked Poisson point process Background, thinning/truncation, measurement error

Model checking via examining conditional predictive dist'ns

SN la light curves

Mandel 2009, 2011
Nonlinear regression, Gaussian process regression, measurement error

Model checking via cross validation

SN IIP light curves (Sanders ${ }^{+}$2014)

Recap of Key Ideas

- Conditional \& marginal dependence/independence
- Latent parameters for measurement error
- Graphical models, multilevel models, hyperparameters
- Beta-binomial \& gamma-Poisson conjugate MLMs
- Shrinkage estimators (member point estimates)
- Empirical Bayes
- Hierarchical Bayes
- Member vs. population inference-competing goals

