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Key examples: 3 sampling distributions

1 Binomial distribution (probability & frequency)

2 Normal distribution (additive noise)

3 Poisson distribution (rates & counts)
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Supplement

• Binary classification with binary data

• Negative binomial distribution, stopping rules

• Likelihood principle

• Relationships between probability & frequency
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Key examples: 3 sampling distributions

1 Binomial distribution (probability & frequency)

2 Normal distribution (additive noise)

3 Poisson distribution (rates & counts)
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Binary Outcomes:

Parameter Estimation

M = Existence of two outcomes, S and F ; for each case or trial,
the probability for S is α; for F it is (1− α)

Hi = Statements about α, the probability for success on the next
trial → seek p(α|D,M)

D = Sequence of results from N observed trials:

FFSSSSFSSSFS (n = 8 successes in N = 12 trials)

Likelihood (Bernoulli process):

p(D|α,M) = p(failure|α,M) × p(failure|α,M) × · · ·
= αn(1− α)N−n

= L(α)
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Prior

Starting with no information about α beyond its definition,
use as an “uninformative” prior p(α|M) = 1

Justifications:

• Intuition: Don’t prefer any α interval to any other of
same size

• Prior predictive ignorance: Bayes’s suggested “ignorance”
here can mean that before doing the N trials, we have no
preference for how many will be successes:

P(n successes|M) =
1

N + 1
→ p(α|M) = 1

Consider the uniform prior a convention—an assumption
added to M to make the problem well posed
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Prior Predictive

p(D|M) =

∫
dα αn(1− α)N−n

= B(n+ 1,N − n + 1) =
n!(N − n)!

(N + 1)!

A Beta integral, B(a, b) ≡
∫
dx xa−1(1− x)b−1 = Γ(a)Γ(b)

Γ(a+b)
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Posterior

p(α|D,M) =
(N + 1)!

n!(N − n)!
αn(1− α)N−n

A Beta distribution. Summaries:

• Best-fit: mode α̂ = n
N
= 2/3; 〈α〉 = n+1

N+2 ≈ 0.64

• Uncertainty: σα =
√

(n+1)(N−n+1)
(N+2)2(N+3)

≈ 0.12

Find credible regions numerically, or with incomplete beta
function

Note that the posterior depends on the data only through n,
not the N binary numbers describing the sequence

n is a (minimal) sufficient statistic
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Beta distribution (in general)

A two-parameter family of distributions for a quantity α in the
unit interval [0, 1]:

p(α|a, b) = 1

B(a, b)
αa−1(1− α)b−1

Summaries:

• Mode: α̂ = a−1
(a−1)+(b−1)

• Mean: µ ≡ E(α) ≡ 〈α〉 = a
a+b

• Variance: σ2 ≡ Var(α) = ab

(a+b)2(a+b+1)

• Cumulative distribution via incomplete beta function
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Binary Outcomes: Model Comparison
Equal Probabilities?

M1: α = 1/2
M2: α ∈ [0, 1] with flat prior

Maximum Likelihoods

M1 : p(D|M1) =
1

2N
= 2.44× 10−4

M2 : L(α̂) =

(
2

3

)n (1

3

)N−n

= 4.82 × 10−4

p(D|M1)

p(D|α̂,M2)
= 0.51

Maximum likelihoods favor M2 (on the basis of best-fit α)
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Bayes Factor (ratio of model likelihoods)

p(D|M1) =
1

2N
; and p(D|M2) =

n!(N − n)!

(N + 1)!

→ B12 ≡
p(D|M1)

p(D|M2)
=

(N + 1)!

n!(N − n)!2N

= 1.57

Bayes factor (odds) favors M1 (equiprobable)

Note that for n = 6, B12 = 2.93; for this small amount of
data, we can never be very sure results are equiprobable

If n = 0, B12 ≈ 1/315; if n = 2, B12 ≈ 1/4.8; for extreme
data, 12 flips can be enough to lead us to strongly suspect
outcomes have different probabilities

(Frequentist significance tests can reject null for any sample size)
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Binary Outcomes: Binomial Distribution

Suppose D = n (number of heads in N trials), rather than the
actual sequence. What is p(α|n,M)?

Likelihood

Let S = a sequence of flips with n heads.

p(n|α,M) =
∑

S

p(S |α,M) p(n|S, α,M)
αn (1− α)N−n

J # successes = nK

= αn(1− α)N−nCn,N

Cn,N = # of sequences of length N with n heads.

→ p(n|α,M) =
N!

n!(N − n)!
αn(1− α)N−n

The binomial distribution for n given α, N.
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Posterior

p(α|n,M) =

N!
n!(N−n)!α

n(1− α)N−n

p(n|M)

p(n|M) =
N!

n!(N − n)!

∫
dα αn(1− α)N−n

=
1

N + 1

→ p(α|n,M) =
(N + 1)!

n!(N − n)!
αn(1− α)N−n

Same result as when data specified the actual sequence
(An example of the likelihood principle—see supplement)
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The beta-binomial conjugate model

Generalize from the flat prior to a Beta(α|a, b) prior for α

p(α|n,M ′) ∝ Beta(α|a, b)× Binom(n|α,N)

∝ αa−1(1− α)b−1 × αn(1− α)N−n

∝ αn+a−1(1− α)N−n+b−1

⇒ the posterior is Beta(α|n + a,N − n + b)

When the prior and likelihood are such that the posterior is in the
same family as the prior, the prior and likelihood are a conjugate
pair

A Beta prior is a conjugate prior for both the binomial and
Bernoulli process sampling distributions

Conjugacy → it’s easy to chain inferences from multiple
experiments
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Key examples: 3 sampling distributions

1 Binomial distribution (probability & frequency)

2 Normal distribution (additive noise)

3 Poisson distribution (rates & counts)
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Inference With Normals/Gaussians

Gaussian PDF

p(x |µ, σ) = 1

σ
√
2π

e−
(x−µ)2

2σ2 over [−∞,∞]

Common abbreviated notation: x ∼ N(µ, σ2)

Parameters

µ = 〈x〉 ≡
∫

dx x p(x |µ, σ)

σ2 = 〈(x − µ)2〉 ≡
∫

dx (x − µ)2 p(x |µ, σ)
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Gauss’s Observation: Sufficiency

Suppose our data consist of N measurements with additive noise:

di = µ+ ǫi , i = 1 to N

Suppose the noise contributions are independent, and
ǫi ∼ N (0, σ2)

p(D|µ, σ,M) =
∏

i

p(di |µ, σ,M)

=
∏

i

p(ǫi = di − µ|µ, σ,M)

=
∏

i

1

σ
√
2π

exp

[
−(di − µ)2

2σ2

]

=
1

σN(2π)N/2
e−Q(µ)/2σ2
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Find dependence of Q on µ by completing the square:

Q =
∑

i

(di − µ)2 [Note: Q/σ2 = χ2(µ)]

=
∑

i

d2
i +

∑

i

µ2 − 2
∑

i

diµ

=

(
∑

i

d2
i

)
+ Nµ2 − 2Nµd where d ≡ 1

N

∑

i

di

= N(µ − d)2 +

(
∑

i

d2
i

)
− Nd

2

= N(µ − d)2 + Nr2 where r2 ≡ 1

N

∑

i

(di − d)2
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Likelihood depends on {di} only through d and r :

L(µ, σ) = 1

σN(2π)N/2
exp

(
−Nr2

2σ2

)
exp

(
−N(µ − d)2

2σ2

)

The sample mean and variance are sufficient statistics

This is a miraculous compression of information—the normal dist’n
is highly abnormal in this respect!
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Estimating a Normal Mean

Problem specification

Model: di = µ+ ǫi , ǫi ∼ N(0, σ2), σ is known → I = (σ,M).

Parameter space: µ; seek p(µ|D, σ,M)

Likelihood

p(D|µ, σ,M) =
1

σN(2π)N/2
exp

(
−Nr2

2σ2

)
exp

(
−N(µ − d)2

2σ2

)

∝ exp

(
−N(µ − d)2

2σ2

)

21 / 49



“Uninformative” prior

• Translation invariance: ⇒ p(µ) ∝ C , a constant

• Reference prior: Asymptotic information theory criterion
⇒ p(µ) ∝ C

This prior is improper unless bounded; formally we should
bound it and take ∞ limit

(Minimal sample size arguments suggest impropriety is a
desirable feature of uninformative priors)

Prior predictive/normalization

p(D|σ,M) =

∫
dµ C exp

(
−N(µ − d)2

2σ2

)

= C (σ/
√
N)

√
2π

. . . minus a tiny bit from tails, using a proper prior
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Posterior

p(µ|D, σ,M) =
1

(σ/
√
N)

√
2π

exp

(
−N(µ − d)2

2σ2

)

Posterior is N(d ,w2), with standard deviation w = σ/
√
N

68.3% HPD credible region for µ is d ± σ/
√
N

Note that C drops out → limit of infinite prior range is well
behaved
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Informative Conjugate Prior

Use a normal prior, µ ∼ N(µ0,w
2
0 )

Conjugate because the posterior turns out also to be normal

Posterior

Normal N(µ̃, w̃2), but mean, std. deviation “shrink” towards
prior

Define B = w2

w2+w2
0
, so B < 1 and B = 0 when w0 is large;

then

µ̃ = d + B · (µ0 − d)

w̃ = w ·
√
1− B

Principle of stable estimation/precise measurement — The
prior affects estimates only when data are not informative
relative to prior (J. Savage)

24 / 49



Conjugate normal examples:

• Data have d = 3, σ/
√
N = 1

• Priors at µ0 = 10, with w = {5, 2}
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Note we always have w̃ < w (in the normal-normal setup)
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Estimating a Normal Mean: Unknown σ

Supplement: Handling σ uncertainty by marginalizing over σ →
Student’s t distribution (heavier tails than normal)
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Gaussian Background Subtraction

Measure background rate b = b̂ ± σb with source off

Measure total rate r = r̂ ± σr with source on

Infer signal source strength s, where r = s + b

With flat priors,

p(s, b|D,M) ∝ exp

[
−(b − b̂)2

2σ2
b

]
× exp

[
−(s + b − r̂)2

2σ2r

]
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Marginalize b to summarize the results for s (complete the square
to isolate b dependence; then do a simple Gaussian integral over
b):

p(s|D,M) ∝ exp

[
−(s − ŝ)2

2σ2s

]
ŝ = r̂ − b̂
σ2s = σ2r + σ2

b

⇒ Background subtraction is a special case of background
marginalization; i.e., marginalization “told us” to subtract a
background estimate—but it won’t always do that!

Recall the standard derivation of background uncertainty via
“propagation of errors” based on Taylor expansion (statistician’s
Delta-method)

Marginalization provides a generalization of error propagation/the
Delta method—without approximation!
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Bayesian Curve Fitting & Least Squares
Setup

Data D = {di} are measurements of an underlying function
f (x ; θ) at N sample points {xi}. Let fi(θ) ≡ f (xi ; θ):

di = fi(θ) + ǫi , ǫi ∼ N(0, σ2i )

We seek to learn θ, or to compare different functional forms
(model choice, M)

Likelihood

p(D|θ,M) =

N∏

i=1

1

σi
√
2π

exp

[
−1

2

(
di − fi(θ)

σi

)2
]

∝ exp

[
−1

2

∑

i

(
di − fi(θ)

σi

)2
]

= exp

[
−χ

2(θ)

2

]
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Bayesian Curve Fitting & Least Squares

Posterior

For prior density π(θ),

p(θ|D,M) ∝ π(θ) exp

[
−χ

2(θ)

2

]

If you have a least-squares or χ2 code:

• Think of χ2(θ) as −2 logL(θ)

• Bayesian inference amounts to exploration and numerical
integration of π(θ)e−χ2(θ)/2
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Important Case: Separable Nonlinear Models

A (linearly) separable model has parameters θ = (A, ψ):

• Linear amplitudes A = {Aα}

• Nonlinear parameters ψ

f (x ; θ) is a linear superposition of M nonlinear components
gα(x ;ψ):

di =

M∑

α=1

Aαgα(xi ;ψ) + ǫi

or ~d =
∑

α

Aα~gα(ψ) + ~ǫ.

Why this is important: You can marginalize over A analytically
→ Bretthorst algorithm (“Bayesian Spectrum Analysis & Param. Est’n” 1988)

Algorithm is closely related to linear least squares, diagonalization,
SVD; for sinusoidal gα, generalizes periodograms
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Key examples: 3 sampling distributions

1 Binomial distribution (probability & frequency)

2 Normal distribution (additive noise)

3 Poisson distribution (rates & counts)
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Poisson Dist’n: Infer a Rate from Counts

Problem:

Observe n counts in T ; infer rate, r

Likelihood

Poisson distribution:

L(r) ≡ p(n|r ,M)

=
(rT )n

n!
e−rT

See Jaynes, “Probability theory as logic” (MaxEnt 1990) for
an instructive derivation
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Prior

Two simple “uninformative” standard choices:

• r known to be nonzero: it is a scale parameter; scale
invariance →

p(r |M) =
1

ln(ru/rl)

1

r

This corresponds to a flat prior on λ = log r

• r may vanish; require prior predictive p(n|M) ∼ Const:

p(r |M) =
1

ru

The reference prior is p(r |M) ∝ 1/r1/2
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Prior predictive

p(n|M) =
1

ru

1

n!

∫ ru

0
dr(rT )ne−rT

=
1

ruT

1

n!

∫ ruT

0
d(rT )(rT )ne−rT

≈ 1

ruT
for ru ≫ n

T

Posterior

A gamma distribution:

p(r |n,M) =
T (rT )n

n!
e−rT
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Gamma Distributions

A 2-parameter family of distributions over nonnegative x , with
shape parameter α and scale parameter λ (or inverse scale ǫ):

pΓ(x |α, λ) ≡ 1

λΓ(α)

(x
λ

)α−1
e−x/λ

≡ ǫ

Γ(α)
(xǫ)α−1e−xǫ

Moments:

E(x) = αλ =
α

ǫ
Var(x) = λ2α =

α

ǫ2

Our posterior corresponds to α = n+ 1, λ = 1/T .

• Mode r̂ = n
T
; mean 〈r〉 = n+1

T
(shift down 1 with 1/r prior)

• Std. dev’n σr =
√

n+1
T

; credible regions found by integrating (can
use incomplete gamma function)
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Conjugate prior

Note that a gamma distribution prior is the conjugate prior for
the Poisson sampling distribution:

p(r |n,M ′) ∝ Gamma(r |α, ǫ)× Pois(n|rT )

∝ rα−1e−rǫ × rne−rT

∝ rα+n−1 exp[−r(T + ǫ)]

Useful conventions

• Use a flat prior for a rate that may be zero

• Use a log-flat prior (∝ 1/r) for a nonzero scale parameter

• Use proper (normalized, bounded) priors

• Plot posterior with abscissa that makes prior flat (use log r
abscissa for scale parameter case)
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The On/Off Problem

Basic problem

• Look off-source; unknown background rate b
Count Noff photons in interval Toff

• Look on-source; rate is r = s + b with unknown signal s
Count Non photons in interval Ton

• Infer s

Conventional solution

b̂ = Noff/Toff ; σb =
√
Noff/Toff

r̂ = Non/Ton; σr =
√
Non/Ton

ŝ = r̂ − b̂; σs =
√
σ2r + σ2

b

But ŝ can be negative!
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Examples

Spectra of X-Ray Sources

Bassani et al. 1989 Di Salvo et al. 2001
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Spectrum of Ultrahigh-Energy Cosmic Rays

Nagano & Watson 2000

HiRes Team 2007
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N is Never Large

Sample sizes are never large. If N is too small to get a
sufficiently-precise estimate, you need to get more data (or make
more assumptions). But once N is ‘large enough,’ you can start
subdividing the data to learn more (for example, in a public
opinion poll, once you have a good estimate for the entire country,
you can estimate among men and women, northerners and
southerners, different age groups, etc etc). N is never enough
because if it were ‘enough’ you’d already be on to the next
problem for which you need more data.

— Andrew Gelman (blog entry, 31 July 2005)
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N is Never Large

Sample sizes are never large. If N is too small to get a
sufficiently-precise estimate, you need to get more data (or make
more assumptions). But once N is ‘large enough,’ you can start
subdividing the data to learn more (for example, in a public
opinion poll, once you have a good estimate for the entire country,
you can estimate among men and women, northerners and
southerners, different age groups, etc etc). N is never enough
because if it were ‘enough’ you’d already be on to the next
problem for which you need more data.

Similarly, you never have quite enough money. But that’s another
story.

— Andrew Gelman (blog entry, 31 July 2005)
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Bayesian Solution to On/Off Problem

First consider off-source data; use it to estimate b:

p(b|Noff , Ioff ) =
Toff(bToff)

Noff e−bToff

Noff !

Use this as a prior for b to analyze on-source data

For on-source analysis Iall = (Ion,Noff , Ioff):

p(s, b|Non) ∝ p(s)p(b)[(s + b)Ton]
None−(s+b)Ton || Iall

p(s|Iall) is flat, but p(b|Iall) = p(b|Noff , Ioff), so

p(s, b|Non, Iall) ∝ (s + b)NonbNoff e−sTone−b(Ton+Toff )
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Now marginalize over b;

p(s|Non, Iall) =

∫
db p(s, b | Non, Iall)

∝
∫

db (s + b)NonbNoff e−sTone−b(Ton+Toff )

Expand (s + b)Non and do the resulting Γ integrals:

p(s|Non, Iall) =

Non∑

i=0

Ci

Ton(sTon)
ie−sTon

i !

Ci ∝
(
1 +

Toff

Ton

)i
(Non + Noff − i)!

(Non − i)!

Posterior is a weighted sum of Gamma distributions, each assigning a
different number of on-source counts to the source (evaluate via recursive
algorithm or confluent hypergeometric function)
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Example On/Off Posteriors—Short Integrations

Ton = 1
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Example On/Off Posteriors—Long Background Integrations

Ton = 1
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Supplement: Two more solutions of on/off problem (including
data augmentation); multibin case
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Recap of Key Ideas From Examples

• Sufficient statistic: Model-dependent summary of data

• Default priors: proper, improper, symmetry, prediction,
reference, minimum sample size

• Conjugate prior/likelihood pairs:
• Beta-binomial
• Normal-normal
• Gamma-Poisson

• Marginalization: Generalizes background subtraction (don’t
just subract!), propagation of errors, data augmentation

• Likelihood principle

• Notable results: Bernoulli/binomial Bayes factor, Student’s t,
Poisson on/off, Bretthorst algorithm
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Recommended exercises

• Do the flat-prior normal & Poisson calculations with proper priors
(use the error function or the normal CDF, Φ(x) for the normal
case, incomplete gamma function for Poisson case)

• Do the algebra for the normal-normal case, deriving the equations
for µ̃, w̃

• Show that a prior ∝ 1/r is a flat prior for λ = log r

• Work through the marginalization of σ giving the Student’s t
distribution (see Supp)

• Work through the algebra/calculus for background marginalization:
• Normal case: Complete the square in b & do Gaussian

integral; complete the square in s in final result

• Poisson case: Derive the Ci formula; also data augmentation
version (Supp)

• Learn about the Bretthorst algorithm (GLB’s book, TL’s
Bayesian harmonic analysis)
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