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Scientific method

Science is more than a body of knowledge; it is a way of thinking.
The method of science, as stodgy and grumpy as it may seem,

is far more important than the findings of science.
—Carl Sagan

Scientists argue!

Argument ≡ Collection of statements comprising an act of
reasoning from premises to a conclusion

A key goal of science: Explain or predict quantitative
measurements (data!)

Data analysis: Constructing and appraising arguments that reason
from data to interesting scientific conclusions (explanations,
predictions)
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The role of data

Data do not speak for themselves!

“No body of data tells us all we need to know
about its own analysis.”

— John Tukey, EDA

We don’t just tabulate data, we analyze data

We gather data so they may speak for or against existing
hypotheses, and guide the formation of new hypotheses

A key role of data in science is to be among the premises in
scientific arguments
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Data analysis
Building & Appraising Arguments Using Data

Statistical Data 

Analysis
Inference, decision, 

design...

Efficiently and accurately

represent informationGenerate hypotheses;

qualitative assessment

Quantify uncertainty

in inferences

Modes of Data Analysis

Exploratory Data 

Analysis

Data Reduction

Statistical inference is but one of several interacting modes of
analyzing data.
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Bayesian statistical inference

• Bayesian inference uses probability theory to quantify the
strength of data-based arguments (i.e., a more abstract view
than restricting PT to describe variability in repeated
“random” experiments)

• A different approach to all statistical inference problems (i.e.,
not just another method in the list: BLUE, linear regression,
least squares/χ2 minimization, maximum likelihood, ANOVA,
survival analysis . . . )

• Focuses on deriving consequences of modeling assumptions
rather than devising and calibrating procedures
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Frequentist vs. Bayesian statements

“The data Dobs support conclusion C . . . ”

Frequentist assessment
“C was selected with a procedure that’s right 95% of the time
over a set {Dhyp} that includes Dobs.”

Probabilities are properties of procedures, not of particular
results

Bayesian assessment
“The strength of the chain of reasoning from the model and
Dobs to C is 0.95, on a scale where 1= certainty.”

Probabilities are associated with specific, observed data.
Long-run performance must be separately evaluated (and is
typically good by frequentist criteria)
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Fundamentals

1 Confidence intervals vs. credible intervals

2 Foundations: Logic & probability theory

3 Probability theory for data analysis: Three theorems

4 Inference with parametric models
Parameter Estimation
Model Uncertainty
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A Simple (?) confidence region

Problem
Estimate the location (mean) of a Gaussian distribution from
a set of samples D = {xi}, i = 1 to N

Report a point estimate, and a region summarizing the
uncertainty

Model

p(xi |µ, σ) =
1

σ
√
2π

exp

[

−(xi − µ)2

2σ2

]

Equivalently, xi ∼ N (µ, σ2)

Here assume σ is known; we are uncertain about µ
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Classes of variables

• µ is the unknown we seek to estimate—the parameter. The
parameter space is the space of possible values of µ—here the
real line (perhaps bounded). Hypothesis space is a more
general term.

• A particular set of N data values D = {xi} is a sample. The
sample space is the N-dimensional space of possible samples.

Standard inferences
Let x̄ = 1

N

∑N
i=1 xi .

• “Standard error” (rms error) is σ/
√
N

• “1σ” interval: x̄ ± σ/
√
N with conf. level CL = 68.3%

• “2σ” interval: x̄ ± 2σ/
√
N with CL = 95.4%
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Some simulated data

Take µ = 5 and σ = 4 and N = 16, so σ/
√
N = 1

What is the CL associated with this interval?

−5 0 5 10 15

5.49 +- 2.0
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Some simulated data

Take µ = 5 and σ = 4 and N = 16, so σ/
√
N = 1

What is the CL associated with this interval?

−5 0 5 10 15

5.49 +- 2.0

The (frequentist) confidence level for this interval is 79.0%
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Two intervals

−5 0 5 10 15

5.49 +- 2.0, CL=79.0%

5.49 +- 2.0, CL=95.4%

• Green interval: x̄ ± 2σ/
√
N

• Blue interval: Let x(k) ≡ k ’th order statistic
Report [x(6), x(11)] (i.e., leave out 5 outermost each side)

Moral
The confidence level is a property of the procedure, not of
the particular interval reported for a given dataset

12 / 64



Performance of intervals

Intervals for 15 datasets

−10 −5 0 5 10 15 20
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Confidence interval for a normal mean
Suppose we have a sample of N = 5 values xi , with

xi ∼ N(µ, 1)

We want to estimate µ, including some quantification of
uncertainty in the estimate: an interval with a probability attached

Frequentist approaches: method of moments, BLUE,
least-squares/χ2, maximum likelihood

Focus on likelihood (equivalent to χ2 here); this is closest to Bayes:

L(µ) = p({xi}|µ)

=
∏

i

1

σ
√
2π

e−(xi−µ)2/2σ2
; σ = 1

∝ e−χ2(µ)/2

Estimate µ from maximum likelihood (minimum χ2)
Define an interval and its coverage frequency from the L(µ) curve
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Construct an interval procedure for known µ

Likelihoods for 3 simulated data sets, µ = 0
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Likelihoods for 100 simulated data sets, µ = 0
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Explore dependence on µ

Likelihoods for 100 simulated data sets, µ = 3
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Luckily the ∆ logL distribution is the same!
(∆ logL is a pivotal quantity)

If it weren’t, define confidence level = maximum coverage over all µ (confidence level
= conservative guarantee of coverage)

Parametric bootstrap: Skip this step; just report the coverage based on µ = µ̂({xi})
for the observed data. Theory shows the error in the coverage falls faster than

√
N.
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Apply to observed sample

-3 -2 -1 0 1 2 3
1x

-3

-2

-1

0

1

2

3

2
x

Sample Space

-3 -2 -1 0 1 2 3
µ

-10

-8

-6

-4

-2

0

2
/2

χ
−

=)
L(

g
ol

Parameter Space

-3 -2 -1 0 1 2 3
µ

-3.0

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

)
L(

g
ol

∆

Report the green region, with coverage as calculated for ensemble of hypothetical data
(red region, previous slide)
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Likelihood to probability via Bayes’s theorem
Recall the likelihood, L(µ) ≡ p(Dobs|µ), is a probability for the
observed data, but not for the parameter µ

Convert likelihood to a probability distribution over µ via Bayes’s
theorem:

p(A,B) = p(A)p(B |A)
= p(B)p(A|B)

→ p(A|B) = p(A)
p(B |A)
p(B)

, Bayes’s th.

⇒ p(µ|Dobs) ∝ π(µ)L(µ)
p(µ|Dobs) is called the posterior probability distribution

Requires a prior probability density, π(µ), often taken to be
constant over the allowed region if there is no significant
information available (or sometimes constant wrt some
reparameterization motivated by a symmetry in the problem)
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Gaussian problem posterior distribution

For the Gaussian example, a bit of algebra (“complete the square”)
gives:

L(µ) ∝
∏

i

exp

[

−(xi − µ)2

2σ2

]

∝ exp

[

− (µ− x̄)2

2(σ/
√
N)2

]

The likelihood is Gaussian in µ

Flat prior → posterior density for µ is N (x̄ , σ2/N)
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Bayesian credible region

Normalize the likelihood for the observed sample; report the region that includes
68.3% of the normalized likelihood
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Posterior summaries

• Posterior mean is 〈µ〉 ≡
∫

dµµ p(µ|Dobs) = x̄

• Posterior mode is µ̂ = x̄

• Posterior std dev’n is σ/
√
N

• x̄ ± σ/
√
N is a 68.3% credible region:

∫ x̄+σ/
√
N

x̄−σ/
√
N

dµ p(µ|Dobs) ≈ 0.683

• x̄ ± 2σ/
√
N is a 95.4% credible region

The credible regions above are highest posterior density credible
regions (HPD regions); these are the smallest regions with a
specified probability content

These reproduce familiar frequentist results, but this is a
coincidence due to special properties of Gaussians
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Confidence region calculation

Likelihoods for 100 simulated data sets, µ = 0
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When They’ll Differ
Both approaches report µ ∈ [x̄ − σ/

√
N, x̄ + σ/

√
N], and assign

68.3% to this interval (with different meanings)

This matching is a coincidence!

When might results differ? (F = frequentist, B = Bayes)

• If F procedure doesn’t use likelihood directly
• If F procedure properties depend on params (nonlinear models,

need to find pivotal quantities)
• If likelihood shape varies strongly between datasets (conditional

inference, ancillary statistics, recognizable subsets)
• If there are extra uninteresting parameters (nuisance parameters,

corrected profile likelihood, conditional inference)
• If B uses important prior information

Also, for a different task—comparison of parametric models—the
approaches are qualitatively different (significance tests & info
criteria vs. Bayes factors)
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Supplement — Multivariate confidence and credible regions:
parametric bootstrapping vs. posterior sampling
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Bayesian and Frequentist inference

Brad Efron, ASA President (2005)
The 250-year debate between Bayesians and frequentists is
unusual among philosophical arguments in actually having
important practical consequences. . . . The physicists I talked
with were really bothered by our 250 year old
Bayesian-frequentist argument. Basically there’s only one way
of doing physics but there seems to be at least two ways to do
statistics, and they don’t always give the same answers. . . .

Broadly speaking, Bayesian statistics dominated 19th Century
statistical practice while the 20th Century was more
frequentist. What’s going to happen in the 21st Century?. . . I
strongly suspect that statistics is in for a burst of new theory
and methodology, and that this burst will feature a
combination of Bayesian and frequentist reasoning. . . .
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Roderick Little, ASA President’s Address (2005)
Pragmatists might argue that good statisticians can get
sensible answers under Bayes or frequentist paradigms; indeed
maybe two philosophies are better than one, since they provide
more tools for the statistician’s toolkit. . . . I am discomforted
by this “inferential schizophrenia.” Since the Bayesian (B)
and frequentist (F) philosophies can differ even on simple
problems, at some point decisions seem needed as to which is
right. I believe our credibility as statisticians is undermined
when we cannot agree on the fundamentals of our subject. . . .

An assessment of strengths and weaknesses of the frequentist
and Bayes systems of inference suggests that calibrated
Bayes. . . captures the strengths of both approaches and
provides a roadmap for future advances.

[Calibrated Bayes = Bayesian inference within a specified
space of models + frequentist approaches for model checking;
Andrew Gelman uses “Bayesian data analysis” similarly]

(see arXiv:1208.3035 [by TL] for discussion/references)
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Fundamentals

1 Confidence intervals vs. credible intervals

2 Foundations: Logic & probability theory

3 Probability theory for data analysis: Three theorems

4 Inference with parametric models
Parameter Estimation
Model Uncertainty
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Logic—some essentials
“Logic can be defined as the analysis and appraisal of arguments”

—Gensler, Intro to Logic

Build arguments with propositions and logical
operators/connectives:

• Propositions: Statements that may be true or false

P : Universe can be modeled with ΛCDM

A : Ωtot ∈ [0.9, 1.1]

B : ΩΛ is not 0

B : “not B ,” i.e., ΩΛ = 0

• Connectives:

A ∧ B : A andB are both true

A ∨ B : A orB is true, or both are
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Arguments

Argument: Assertion that an hypothesized conclusion, H, follows
from premises, P = {A,B ,C , . . .} (take “,” = “and”)

Notation:

H|P : Premises P imply H

H may be deduced from P
H follows from P
H is true given that P is true

Arguments are (compound) propositions

Central role of arguments → special terminology for true/false:

• A true argument is valid

• A false argument is invalid or fallacious

30 / 64



Valid vs. sound arguments

Content vs. form

• An argument is factually correct iff all of its premises are true
(it has “good content”)

• An argument is valid iff its conclusion follows from its
premises (it has “good form”)

• An argument is sound iff it is both factually correct and valid
(it has good form and content)

Deductive logic (and probability theory) addresses validity

We want to make sound arguments. There is no formal approach
for addressing factual correctness → there is always a subjective
element to an argument.
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Factual correctness

Passing the buck
Although logic can teach us something about validity and
invalidity, it can teach us very little about factual correctness.
The question of the truth or falsity of individual statements is
primarily the subject matter of the sciences.

— Hardegree, Symbolic Logic

An open issue
To test the truth or falsehood of premises is the task of
science. . . . But as a matter of fact we are interested in, and
must often depend upon, the correctness of arguments whose
premises are not known to be true.

— Copi, Introduction to Logic

32 / 64



Premises

• Facts — Things known to be true, e.g. observed data

• “Obvious” assumptions — Axioms, postulates, e.g., Euclid’s
first 4 postulates (line segment b/t 2 points; congruency of
right angles . . . )

• “Reasonable” or “working” assumptions — E.g., Euclid’s fifth
postulate (parallel lines)

• Desperate presumption!

• Conclusions from other arguments → chains of discovery

Every argument has a set of premises defining a fixed context in
which the argument is assessed

Premises are considered “given”—if only for the sake of the
argument!
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Deductive and inductive inference

Deduction—Syllogism as prototype
Premise 1: A implies H
Premise 2: A is true
Deduction: ∴ H is true
H|P is valid

Induction—Analogy as prototype
Premise 1: A,B ,C ,D,E all share properties x , y , z
Premise 2: F has properties x , y
Induction: F has property z
“F has z”|P is not strictly valid, but may still be rational
(likely, plausible, probable); some such arguments are stronger
than others

Boolean algebra (and/or/not over {0, 1}) quantifies deduction

Bayesian probability theory (and/or/not over [0, 1]) generalizes this
to quantify the strength of inductive arguments
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Representing induction with [0, 1] calculus

P(H|P) ≡ strength of argument H|P

P = 1 → Argument is deductively valid

= 0 → Premises imply H

∈ (0, 1) → Degree of deducibility

Mathematical model for induction

‘AND’ (product rule): P(A ∧ B |P) = P(A|P)P(B |A ∧ P)

= P(B |P)P(A|B ∧ P)

‘OR’ (sum rule): P(A ∨ B |P) = P(A|P) + P(B |P)
−P(A ∧ B |P)

‘NOT’: P(A|P) = 1− P(A|P)
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Firm foundations

Many different formal lines of argument derive
induction-as-probability from various simple and appealing
requirements:

• Consistency with logic + internal consistency (Cox; Jaynes)

• “Coherence”/optimal betting (Ramsey; DeFinetti; Wald; Savage)

• Algorithmic information theory (Rissanen; Wallace & Freeman)

• Optimal information processing (Zellner)

• Avoiding problems with frequentist methods:

• Avoiding recognizable subsets (Cornfield)

• Avoiding stopping rule problems → likelihood principle
(Birnbaum; Berger & Wolpert)
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Pierre Simon Laplace (1819)

Probability theory is nothing but common sense reduced to calculation.

James Clerk Maxwell (1850)

They say that Understanding ought to work by the rules of right reason. These
rules are, or ought to be, contained in Logic, but the actual science of Logic is

conversant at present only with things either certain, impossible, or entirely

doubtful, none of which (fortunately) we have to reason on. Therefore the true

logic of this world is the calculus of Probabilities, which takes account of the
magnitude of the probability which is, or ought to be, in a reasonable man’s
mind.

Harold Jeffreys (1931)

If we like there is no harm in saying that a probability expresses a degree of
reasonable belief. . . . ‘Degree of confirmation’ has been used by Carnap, and
possibly avoids some confusion. But whatever verbal expression we use to try to
convey the primitive idea, this expression cannot amount to a definition.
Essentially the notion can only be described by reference to instances where it is

used. It is intended to express a kind of relation between data and consequence

that habitually arises in science and in everyday life, and the reader should be
able to recognize the relation from examples of the circumstances when it arises.
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Interpreting Bayesian probabilities

Physics uses words drawn from ordinary language—mass, weight,
momentum, force, temperature, heat, etc.—but their technical meaning
is more abstract than their colloquial meaning. We can map between the
colloquial and abstract meanings associated with specific values by using
specific instances as “calibrators.”

A Thermal Analogy

Intuitive notion Quantification Calibration

Hot, cold Temperature, T Cold as ice = 273K
Boiling hot = 373K

uncertainty Probability, P Certainty = 0, 1

p = 1/36:
plausible as “snake’s eyes”

p = 1/1024:
plausible as 10 heads
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Interpreting PDFs

Bayesian

Probability quantifies uncertainty in an inductive inference. p(x)

describes how probability is distributed over the possible values x

might have taken in the single case before us:

P

x

p is distributed

x has a single,
uncertain value

Frequentist

Probabilities are always (limiting) rates/proportions/frequencies

that quantify variability in a sequence of trials. p(x) describes how

the values of x would be distributed among infinitely many trials:

x is distributed

x

P
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Fundamentals

1 Confidence intervals vs. credible intervals

2 Foundations: Logic & probability theory

3 Probability theory for data analysis: Three theorems

4 Inference with parametric models
Parameter Estimation
Model Uncertainty
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The Bayesian Recipe

Assess hypotheses by calculating their probabilities p(Hi | . . .)
conditional on known and/or presumed information (including
observed data) using the rules of probability theory

Probability Theory Axioms:

‘OR’ (sum rule): P(H1 ∨ H2|I ) = P(H1|I ) + P(H2|I )
−P(H1,H2|I )

‘AND’ (product rule): P(H1,Dobs|I ) = P(H1|I )P(Dobs|H1, I )

= P(Dobs|I )P(H1|Dobs, I )

‘NOT’: P(H1|I ) = 1− P(H1|I )
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Three Important Theorems

Bayes’s Theorem (BT)
Consider P(Hi ,Dobs|I ) using the product rule:

P(Hi ,Dobs|I ) = P(Hi |I )P(Dobs|Hi , I )

= P(Dobs|I )P(Hi |Dobs, I )

Solve for the posterior probability:

P(Hi |Dobs, I ) = P(Hi |I )
P(Dobs|Hi , I )

P(Dobs|I )

Theorem holds for any propositions, but for hypotheses &
data the factors have names:

posterior ∝ prior × likelihood

norm. const. P(Dobs|I ) = prior predictive
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Law of Total Probability (LTP)

Consider exclusive, exhaustive {Bi} (I asserts one of them
must be true),

∑

i

P(A,Bi |I ) =
∑

i

P(Bi |A, I )P(A|I ) = P(A|I )

=
∑

i

P(Bi |I )P(A|Bi , I )

If we do not see how to get P(A|I ) directly, we can find a set
{Bi} and use it as a “basis”—extend the conversation:

P(A|I ) =
∑

i

P(Bi |I )P(A|Bi , I )

If our problem already has Bi in it, we can use LTP to get
P(A|I ) from the joint probabilities—marginalization:

P(A|I ) =
∑

i

P(A,Bi |I )
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Example: Take A = Dobs, Bi = Hi ; then

P(Dobs|I ) =
∑

i

P(Dobs,Hi |I )

=
∑

i

P(Hi |I )P(Dobs|Hi , I )

prior predictive for Dobs = Average likelihood for Hi

(a.k.a. marginal likelihood)

Normalization
For exclusive, exhaustive Hi ,

∑

i

P(Hi | · · · ) = 1
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Well-Posed Problems
The rules express desired probabilities in terms of other
probabilities

To get a numerical value out, at some point we have to put
numerical values in

Direct probabilities are probabilities with numerical values
determined directly by premises (via modeling assumptions,
symmetry arguments, previous calculations, desperate
presumption . . . )

An inference problem is well posed only if all the needed
probabilities are assignable based on the context. We may need to
add new assumptions as we see what needs to be assigned. We
may not be entirely comfortable with what we need to assume!
(Remember Euclid’s fifth postulate!)

Should explore how results depend on uncomfortable assumptions
(“robustness”)
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Inference With Parametric Models

Models Mi (i = 1 to N), each with parameters θi , each imply a
sampling dist’n (conditional predictive dist’n for possible data):

p(D|θi ,Mi )

The θi dependence when we fix attention on the observed data is
the likelihood function:

Li(θi) ≡ p(Dobs|θi ,Mi )

We may be uncertain about i (model uncertainty) or θi (parameter
uncertainty)

Henceforth we will only consider the actually observed data, so we drop
the cumbersome subscript: D = Dobs
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Classes of Problems

Single-model inference
Premise = choice of single model (specific i)
Parameter estimation: What can we say about θi or f (θi)?
Prediction: What can we say about future data D ′?

Multi-model inference
Premise = {Mi}
Model comparison/choice: What can we say about i?
Model averaging:
– Systematic error: θi = {φ, ηi}; φ is common to all

What can we say about φ w/o committing to one model?

– Prediction: What can we say about future D ′, accounting
for model uncertainty?

Model checking
Premise = M1 ∨ “all” alternatives
Is M1 adequate? (predictive tests, calibration, robustness)
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Parameter Estimation

Problem statement
I = Model M with parameters θ (+ any add’l info)

Hi = statements about θ; e.g. “θ ∈ [2.5, 3.5],” or “θ > 0”

Probability for any such statement can be found using a
probability density function (PDF) for θ:

P(θ ∈ [θ, θ + dθ]| · · · ) = f (θ)dθ

= p(θ| · · · )dθ

Posterior probability density

p(θ|D,M) =
p(θ|M) L(θ)

∫

dθ p(θ|M) L(θ)
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Summaries of posterior

• “Best fit” values:
• Mode, θ̂, maximizes p(θ|D,M)
• Posterior mean, 〈θ〉 =

∫

dθ θ p(θ|D,M)

• Uncertainties:
• Credible region ∆ of probability C :

C = P(θ ∈ ∆|D,M) =
∫

∆
dθ p(θ|D,M)

Highest Posterior Density (HPD) region has p(θ|D,M) higher
inside than outside

• Posterior standard deviation, variance, covariances

• Marginal distributions
• Interesting parameters φ, nuisance parameters η
• Marginal dist’n for φ: p(φ|D,M) =

∫

dη p(φ, η|D,M)
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Nuisance Parameters and Marginalization

To model most data, we need to introduce parameters besides
those of ultimate interest: nuisance parameters

Example
We have data from measuring a rate r = s + b that is a sum
of an interesting signal s and a background b

We have additional data just about b

What do the data tell us about s?
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Marginal posterior distribution

To summarize implications for s, accounting for b uncertainty,
marginalize:

p(s|D,M) =

∫

db p(s, b|D,M)

∝ p(s|M)

∫

db p(b|s,M)L(s, b)

= p(s|M)Lm(s)

with Lm(s) the marginal likelihood function for s:

Lm(s) ≡
∫

db p(b|s)L(s, b)
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Marginalization vs. Profiling

For insight: Suppose the prior is broad compared to the likelihood
→ for a fixed s, we can accurately estimate b with max likelihood
b̂s , with small uncertainty δbs

Lm(s) ≡
∫

db p(b|s)L(s, b)

≈ p(b̂s |s) L(s, b̂s) δbs
best b given s

b uncertainty given s

Profile likelihood Lp(s) ≡ L(s, b̂s) gets weighted by a parameter
space volume factor

E.g., Gaussians: ŝ = r̂ − b̂, σ2
s = σ2

r + σ2
b

Background subtraction is a special case of background marginalization
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Bivariate normals: Lm ∝ Lp
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δbs is const. vs. s

⇒ Lm ∝ Lp
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Flared/skewed/bannana-shaped: Lm and Lp differ

Lp(s) Lm(s)

s

b

b̂s

s

b

b̂s

Lp(s) Lm(s)

General result: For a linear (in params) model sampled with
Gaussian noise, and flat priors, Lm ∝ Lp

Otherwise, they will likely differ

In measurement error problems (future lecture!) the difference can
be dramatic
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Many Roles for Marginalization
Eliminate nuisance parameters

p(φ|D,M) =

∫

dη p(φ, η|D,M)

Propagate uncertainty

Model has parameters θ; what can we infer about F = f (θ)?

p(F |D,M) =

∫

dθ p(F , θ|D,M) =

∫

dθ p(θ|D,M) p(F |θ,M)

=

∫

dθ p(θ|D,M) δ[F − f (θ)] [single-valued case]

Prediction

Given a model with parameters θ and present data D, predict future

data D ′ (e.g., for experimental design):

p(D ′|D,M) =

∫

dθ p(D ′, θ|D,M) =

∫

dθ p(θ|D,M) p(D ′|θ,M)

Model comparison. . .
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Model Comparison

Problem statement
I = (M1 ∨M2 ∨ . . .) — Specify a set of models
Hi = Mi — Hypothesis chooses a model

Posterior probability for a model

p(Mi |D, I ) = p(Mi |I )
p(D|Mi , I )

p(D|I )
∝ p(Mi |I )L(Mi )

L(Mi) = p(D|Mi) =
∫

dθi p(θi |Mi)p(D|θi ,Mi ).

Likelihood for model = Average likelihood for its parameters

L(Mi) = 〈L(θi )〉

Varied terminology: Prior predictive = Average likelihood = Global
likelihood = Marginal likelihood = (Weight of ) Evidence for model
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Odds and Bayes factors

A ratio of probabilities for two propositions using the same
premises is called the odds favoring one over the other:

Oij ≡ p(Mi |D, I )

p(Mj |D, I )

=
p(Mi |I )
p(Mj |I )

× p(D|Mi , I )

p(D|Mj , I )

The data-dependent part is called the Bayes factor:

Bij ≡
p(D|Mi , I )

p(D|Mj , I )

It is a likelihood ratio; the BF terminology is usually reserved for
cases when the likelihoods are marginal/average likelihoods
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An Automatic Ockham’s Razor

Predictive probabilities can favor simpler models

p(D|Mi) =

∫

dθi p(θi |M) L(θi)

Dobs
D

P(D|H)

Complicated H

Simple H
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The Ockham Factor

p, L

θ
∆θ

δθ
Prior

Likelihood

p(D|Mi) =

∫

dθi p(θi |M) L(θi) ≈ p(θ̂i |M)L(θ̂i )δθi

≈ L(θ̂i)
δθi
∆θi

= Maximum Likelihood× Ockham Factor

Models with more parameters often make the data more
probable — for the best fit

Ockham factor penalizes models for “wasted” volume of
parameter space

Quantifies intuition that models shouldn’t require fine-tuning
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Model Averaging

Problem statement
I = (M1 ∨M2 ∨ . . .) — Specify a set of models
Models all share a set of “interesting” parameters, φ
Each has different set of nuisance parameters ηi (or different
prior info about them)
Hi = statements about φ

Model averaging
Calculate posterior PDF for φ:

p(φ|D, I ) =
∑

i

p(Mi |D, I ) p(φ|D,Mi )

∝
∑

i

L(Mi )

∫

dηi p(φ, ηi |D,Mi)

The model choice is a (discrete) nuisance parameter here
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Theme: Parameter Space Volume

Bayesian calculations sum/integrate over parameter/hypothesis
space!

(Frequentist calculations average over sample space & typically optimize

over parameter space)

• Credible regions integrate over parameter space

• Marginalization weights the profile likelihood by a volume
factor for the nuisance parameters

• Model likelihoods have Ockham factors resulting from
parameter space volume factors

Many virtues of Bayesian methods can be attributed to this
accounting for the “size” of parameter space. This idea does not
arise naturally in frequentist statistics (but it can be added “by
hand”).

62 / 64



Roles of the prior

Prior has two roles

• Incorporate any relevant prior information

• Convert likelihood from “intensity” to “measure”
→ account for size of parameter space

Physical analogy

Heat Q =

∫

dr [ρ(r)cv (r)]T (r)

Probability P ∝
∫

dθ p(θ)L(θ)
Maximum likelihood focuses on the “hottest” parameters.

Bayes focuses on the parameters with the most “heat”

A high-T region may contain little heat if its cv is low or if its

volume is small

A high-L region may contain little probability if its prior is low or if

its volume is small
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Recap of Key Ideas
Probability as generalized logic

Probability quantifies the relative strength of arguments

To appraise hypotheses, calculate probabilities for arguments
from data and modeling assumptions to each hypothesis

Use all of probability theory for this

Bayes’s theorem

p(Hypothesis | Data) ∝ p(Hypothesis)× p(Data | Hypothesis)

Data change the support for a hypothesis ∝ ability of
hypothesis to predict the data

Law of total probability

p(Hypotheses | Data) =
∑

p(Hypothesis | Data)

The support for a compound/composite hypothesis must
account for all the ways it could be true
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