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Exoplanet Update 
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Pace of Extra-solar Planet Discoveries Nov. 2013 

1054 exoplanets 
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Pace of Extra-solar Planet Discoveries Oct. 2014 

1830 exoplanets in 1145 planetary systems 

the majority within a distance of 100 ly 

469 multiple planet systems  

(one 7 planet system) 

22± 8 % of G & K dwarfs harbour a planet in HZ with radius = 1 to 2 re  

               (Petigura et al. 2013) 

  Average number of planets with r < 1.4 re in HZ of M dwarfs  is = 0.53  

               (Dressing & Charboneau 2013: Kopparapu 2013; Giados 2013) 
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Credit: ALMA  

(ESO/NAOJ/NRAO) 

Revolutionary ALMA Radio Image Reveals Planetary Genesis  

    Nov. 5, 2014 
 

HL Tau, no more 

than a million 

years old, yet 

already its disc 

appears to be full 

of forming 

planets.  
 

d ~ 450 light-years  
 

Image resolution 

   35 milliarcsec 



 Breakdown of exoplanets detections by method 
 

       1830 exoplanets found in 1145 planetary systems 

     

Detection method               No. of planets 
___________________________________________________________________________________ 

 Radial velocity  (RV)                577 

 Transits                                     1151 

 Microlensing                               32 

 Imaging                                       51  

 Timing (includes 5 pulsar planets)      16 

 Astrometry                                   2 

The Extrasolar Planets Encyclopaedia 

 Jean Schneider  

    (CNRS-LUTH, Paris Observatory)  

My own analysis is primarily based on radial velocity data sets. 

Currently best spectrographs are European HARPS (high accuracy 

radial velocity planet searcher)  and HARPS North capable of long term 

sub m/s velocity precision.  New instruments underway include 

European EXPRESSO and Yale EXPRESS capable of 10 cm/s precision.                                                      
AstroSeis 
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The majority of the planets have been discovered 

with either the RV or transit method which give rise 

to time series with embedded periodic signals 

Which motivates the interest in periodograms. 
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Star (Unseen planet) 

Orbit of star produced 

by gravitational pull of 

unseen planet. 

Earth 

Because the star is a billion times 

brighter than a planet, only detect a 

small number of exoplanets directly. 
 

Instead look for the reflex motion of the 

star due to gravitational tug from the 

planet. 
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7 Planet fit to HD10180  C. Lovis, et al., 2011, A&A, 528, 112 
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Bayesian Primer 
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What is Bayesian Probability Theory?  

(BPT) 

 Deductive logic is based on Axiomatic knowledge. 

In science we never know any theory of nature is true because 

our reasoning is based on incomplete information. 

Our conclusions are at best probabilities. 

Any extension of logic to deal with situations of incomplete 

information (realm of inductive logic) requires a theory of 

probability. 

BPT  =  a theory of  extended logic 
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A new perception of probability has arisen in recognition that 

the mathematical rules of probability are not merely rules for 

manipulating random variables.  

 

They are now recognized as  valid principles of logic for 

conducting inference about any hypothesis of  interest.  

This  view of, ``Probability Theory as Logic'',   was  championed 

in the late 20th century by E. T. Jaynes. 
 

      “Probability Theory: The Logic of Science” 

       Cambridge University Press 2003 

 

It is also commonly referred to as Bayesian Probability Theory  

in recognition of the work of  the 18th  century English 

clergyman and Mathematician Thomas Bayes.  
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Logic is concerned with the truth of propositions. 
 

A proposition asserts that something is true. 
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Rules for manipulating probabilities 

We will need to consider compound propositions like  

        A,B which asserts that propositions A and B are true 

A,B|C  asserts that propositions A and B are true 

           given that proposition C is true 

Re-arrange the two RH sides 

of product rule gives  
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Another useful version of the sum rule can be  

derived from the sum and product rules called the  

extended sum rule   

        p(A+B|C) = p(A|C) + p(B|C) - P(A,B|C)   

 

where A+B  ≡ proposition A is true or B is  true  

                        or both are true 

In science we are often reasoning about mutually  

exclusive propositions for which   

        p(A+B|C) = p(A|C) + p(B|C) 

Note: A+B  also commonly written as A v B  
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How to proceed in a Bayesian data analysis? 
 

Identify the terms in Bayes’ theorem and solve 
 Solution often requires repeated use of the product and sum rules 

The likelihood  p(D| Hi, I),  also written as (Hi ),  stands for 

the probability that we would have gotten the data D that we 

did, if  Hi  and I  are true. 

Every item to the right of the  

vertical bar | is assumed to be true 

Posterior probability 

that Hi  is true,  given 

the new data D and 

prior information I 

Prior probability Likelihood 

Normalizing constant 
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   As a theory of extended logic BPT can be used to find optimal 

answers to well posed scientific questions for a given state of 

knowledge, in contrast to a numerical recipe approach.   

Two basic problems 

1.  Model selection (discrete hypothesis space) 

     “Which one of  2 or more models (hypotheses) is most probable          

        given our current state of knowledge?” 

e.g. 

• Hypothesis or model M0 asserts that the star has no planets.  

• Hypothesis M1 asserts that the star has 1 planet. 

• Hypothesis Mi  asserts that the star has i planets. 

2.  Parameter estimation (continuous hypothesis) 

       “Assuming the truth of M1, solve for the probability density    

         distribution for each of the model parameters based on our  

         current state of knowledge.”  

e.g. 

• Hypothesis H  asserts that the orbital period is between P and P+dP. 
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Significance of  this development 

Probabilities are commonly quantified by a real number between 0 and 1. 

0 1 

The end-points, corresponding to absolutely false and absolutely true,  

are simply the extreme limits of this infinity of real numbers. 

false true 

Deductive logic is just a special case of Bayesian probability  

theory in the idealized limit of complete information. 

Bayesian probability theory spans the whole range. 

Realm of science 

and inductive logic 
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Since  M, X  assumed to be true, if it were not for the error 

ei,  di would equal the model prediction fi . 

Let di represent the i th measured data value . We model di by, 

Calculation of a simple Likelihood  p(Di |M,X,I) 

Model prediction for i th data value 

for current choice of parameters  X  

where ei represents the error component in the measurement.  

Now suppose prior information I indicates that ei has a Gaussian 

probability distribution. Then 
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Probability of getting a data value di a distance ei away from the 

predicted value fi is proportional to the height of the Gaussian error 

curve at that location. 

p Di M,X ,I

proportional

to line height

ei

measured di

Gaussian error curve

fi X predicted value
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p(Di |M,X,I) 
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Maximizing the likelihood corresponds to minimizing  2  

Recall:    Bayesian posterior    prior  likelihood  

Thus, only for a uniform prior will a least-squares analysis 

yield the same solution as the Bayesian posterior. 

For independent data the likelihood for the entire data  

set D=(D1,D2,….,DN ) is the product of N Gaussians. 

19 

Calculation of a simple Likelihood  p(Di |M,X,I) 

The familiar  2   
statistic used  

in least-squares 



For extra-solar planet detection the prior range for the unknown  

orbital period P is very large from ~1 day to 1000 yr  

(upper limit set by perturbations from neighboring stars).   
 

Usually, expressing great uncertainty in some quantity corresponds 

more closely to a statement of scale invariance or equal probability per 

decade.  A scale invariant prior has this property. 

Simple example of when not to use a uniform prior  

Suppose we assume a uniform prior probability density for the P  

parameter. This would imply that we believed that it was ~ 104 times  

more probable that the true period was in the upper decade  

(104  to 105 d) of the prior range than in the lowest decade from  

1 to 10 d. 
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1.  Role of probability theory in science 

2.  Probability theory as extended logic 

3.  The how-to of Bayesian inference 

4.  Assigning probabilities 

5.  Frequentist statistical inference 

6.  What is a statistic? 

7.  Frequentist hypothesis testing 

8.  Maximum entropy probabilities 

9.  Bayesian inference (Gaussian errors) 

10. Linear model fitting (Gaussian errors) 

11. Nonlinear model fitting 

12. Markov chain Monte Carlo 

13. Bayesian spectral analysis 

14. Bayesian inference (Poisson sampling) 
 

 

Chapters 

Resources and solutions 

Includes free Mathematica 

based support software 

available from book website 

   Includes 55 worked examples and      

many problem sets.  

2014: two supplementary chapters to be   

          added to book website on: 

 1. Fusion Markov chain Monte Carlo  

 2.  Intro. to hierarchical/multilevel Bayes 
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Bayesian and classical  

periodograms 

of interest for  

exoplanets 
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Introduction 

     Science is concerned with identifying and understanding 

structures or patterns in nature.  

    Any significant advance in our ability to detect periodic phenomena 

will profoundly affect our capability of unlocking nature’s secrets. 

     Periodic patterns have proven especially important. This is 

particular evident in the field of astronomy where the study of 

periodic phenomena yield: 

•Fundamental properties like mass and distance  

•Interior structure of  stars (stellar seismology) 

•Extra solar planets 

•Fundamental tests of physics  

•Exotic states of matter (neutron stars & BH) 
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A Bayesian Revolution in Spectral Analysis 

1)  Fourier Power Spectrum  (Schuster periodogram 1905) 

The use of the Discrete Fourier Transform (DFT) is ubiquitous in spectral 

analysis as a result of the FFT introduced by Cooley and Tukey in 1965. 
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2)  New Insights on the periodogram from Bayesian Probability Theory (BPT) 

In 1987 E. T. Jaynes derived the DFT and periodogram directly from the 

principles of BPT and showed that the periodogram is an optimum statistic  

for the detection of a single stationary sinusoidal signal in the presence of 

independent Gaussian noise of variance σ2.  

He showed that the probability of the frequency of a periodic signal is given 

to a very good approximation by, 
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Thus  C(fn) is indeed fundamental to spectral analysis but not 

because it is itself a satisfactory spectrum estimator. 

The proper algorithm to convert C(fn) to p(fn|D,I)  involves first 

dividing C(fn)  by the noise variance and then exponentiation.  

This naturally suppresses spurious ripples at the base of  the 

periodogram as well as linear smoothing; but does it by 

attenuation rather than smearing, and therefore does not lose  

any resolution. 

The Bayesian nonlinear processing of C(fn)  also yields, when the 

data give evidence for them, arbitrarily sharp spectral peaks. 
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The resulting posterior can be expressed in the form of a Student's t 

distribution. The corresponding result for estimating the frequency of 

single sinusoidal signal (Bretthorst 1988, Bayesian Spectrum Analysis and Parameter 

Estimation, Springer) is given approximately by 

What if σ is unknown 

This equation assumes that the noise variance is a known quantity.  

In some situations, the noise is not well understood, i.e., our state of 

knowledge is less certain. Even if the measurement apparatus noise is 

well understood, the data may contain a greater complexity of 

phenomena than the current signal model incorporates.  

Again, Bayesian inference can readily handle this situation by treating 

the noise variance as a nuisance parameter with a prior distribution 

reflecting our uncertainty in this parameter. We need to integrate over 

this parameter to compute p(fn|D,I).  

where 
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Bayesian Spectrum Analysis with Strong Prior 

 Information of the Signal Model 

    Larry Bretthorst (Jaynes’ last PhD student) extended Jaynes’ work 

to more complex signal models with additive Gaussian noise and 

revolutionized the analysis of Nuclear Magnetic Resonance (NMR) 

signals.  
 

    Here one is dealing with multiple damped sinusoids.  

           See http://bayes.wustl.edu/ for a copy of Larry 

                          Bretthorst’s papers and book.  

 

    Varian Corporation now offer an expert analysis package with their 

new NMR machines based on Bretthorst’s Bayesian algorithm. 
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The resulting posterior can be expressed in the form of a Student's t 

distribution. The corresponding result for estimating the frequency of 

single sinusoidal signal (Bretthorst 1988, Bayesian Spectrum Analysis and Parameter 

Estimation, Springer) is given approximately by 

What if σ is unknown 

This equation assumes that the noise variance is a known quantity.  

In some situations, the noise is not well understood, i.e., our state of 

knowledge is less certain. Even if the measurement apparatus noise is 

well understood, the data may contain a greater complexity of 

phenomena than the current signal model incorporates.  

Again, Bayesian inference can readily handle this situation by treating 

the noise variance as a nuisance parameter with a prior distribution 

reflecting our uncertainty in this parameter. We need to integrate over 

this parameter to compute p(fn|D,I).  

where 
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Analysis of Nuclear Magnetic Resonance Free Induction Decay Data 

Complex signal 

Ref: G.L. Bretthorst.  

“Bayesian Spectrum Analysis  

and Parameter Estimation”,  

Springer-Verlag, 1988   

(see http://bayes.wustl.edu) 
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The Bretthorst periodogram: 

    Bretthorst generalized Jaynes' insights to a broader range of single-

frequency and multi-frequency estimation problems and sampling 

conditions.   
 

    In the single-frequency case which we examine here, he established a 

connection between the Bayesian results and an existing frequentist 

statistic known as the Lomb-Scargle periodigram, which is a widely 

used replacement for the Schuster periodogram in the case of non-

uniform sampling.  

Bretthorst’s analysis allows for the following complications: 

1. Either real or quadrature data 

sampling. Quadrature data involves 

measurements of the real and 

imaginary components of a complex 

signal. 
 

   The figure  show an example of 

quadrature signals occurring in NMR. 

Bretthorst, G.L. (2001), American Institute of Physics Conference Proceedings, 568, pp. 241. 

31 



The Bretthorst periodogram 

2. Allows for uniform or non-uniform sampling and for quadrature data 

with non-simultaneous sampling. 

The analysis does not require the real and imaginary data samples to 

be simultaneous and successive samples can be unequally spaced in 

time. 

3. Allows for non-stationary single sinusoid model of the form 

The function          describes an arbitrary modulation of the amplitude, 

e.g., exponential decay as exhibited in NMR signals.            

Z ti

In this analysis          is assumed to be known, but in other analysis he 

allows it to have unknown parameters. 

(real channel) 

(imaginary channel) 

Z ti
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The angle θ is defined in such a way as to make the cosine and sine 

functions orthogonal on the discretely sampled times. In general, θ is 

frequency dependent. 

4. The noise terms              and            are assumed to be IID Gaussian 

with an unknown σ. Thus, is a nuisance parameter, which is assumed 

to have a Jeffreys prior. By marginalizing over σ, any variability in the 

data that is not described by the model is assumed to be noise. 

eR ti eI tj
'

The Bretthorst periodogram 
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     In this problem the main parameter of interest is the frequency f.   

To compute p (f |D,I) we need to marginalize over the two amplitude  

parameters A, B, and σ. 

    The RH side of this equation can be factored using Bayes’ theorem 

and the product rule to yield 

Bretthorst assigns uniform priors for f, A & B and a Jeffreys prior for σ. 

The Bretthorst periodogram 
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The final Bayesian expression for p (f |D,I), after marginalizing over  

amplitudes A, B & σ  is given by 

where 

It turns out that the triple integral can be performed  

analytically using simple changes in the variables.  

The Bretthorst periodogram 
35 



The Bretthorst periodogram 
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Simplifications 

Result 

1. When the data are real and the sinusoid is stationary, the sufficient statistic 

      for single frequency estimation is the Lomb-Scargle periodogram; not the 

Schuster periodogram (power spectrum). However, the Schuster 

periodogram is often an excellent approximation. 

2. When the data are real, but Z(t) is not constant, then       generalizes the 

Lomb-Scargle periodogram in a very straightforward manner to account for 

the decay of the signal. 

3. For uniformly sampled quadrature data when the sinusoid is stationary,     

      reduces to a Schuster periodogram of the data. 
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The radial velocity equation, a nonlinear model 

model prediction 

Strong prior information: signals obey Kepler’s laws 
38 
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(ref. Tinney, G. C. 2003, Astrophsical Journal, 587, p. 423) 

Application to extra-solar planet data 
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Bretthorst’s  Bayesian 

generalization of the  

Lomb-Scargle  

periodogram 
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HD73526 

Conventional Nonlinear  

least-squares analysis  

requires a good 

initial guess at the  

parameter values. 

Need to use some form 

of periodogram to estimate 

the orbital period. 
 

 

Here is a comparison of  

the Lomb-Scargle and  

Bretthorst’s Bayesian 

generalization. 

Bretthorst’s Bayesian periodogram 

Highest peak  

 P = 190 days 

Lomb-Scargle Periodogram 
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Generalized Lomb-Scargle Periodogram 

Lomb-Scargle Periodogram Bretthorst’s Bayesian periodogram 

In 2009 (Zechmeister & 

Kurster, A&A, 496, 577, 2009) 

introduced a generalized 

Lomb-Scargle (GLS) 

periodogram that allows for a 

floating offset and weights. 

 

What is missing now is a 

Bayesian version of the GLS. 
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Bretthorst’s  Bayesian 

generalization of the  

Lomb-Scargle  

periodogram 
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                                  Problem 
 

The Lomb-Scargle periodogram, and Bretthorst’s 

Bayesian generalization, assume a sinusoidal  

signal which is only optimum for circular orbits.  

Why not develop a Bayesian 

Kepler periodogram  

designed for all Kepler orbits?  

In 2005, Eric Ford and I independently  

published Kepler Periodograms based on a  

Markov chain Monte Carlo (MCMC) approach. 

This will be the subject of the next lecture. 
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Markov chain Monte Carlo  

(MCMC) 

42 



Strong prior information: signals obey Kepler’s laws 

The radial velocity equation, a nonlinear model 

43 

model prediction 



The Bayesian posterior density for a nonlinear model with a single 

parameter, α, for 4 simulated data sets of different size ranging from N = 5 to 

N = 80. The N = 5 case has the broadest distribution and exhibits 4 maxima. 

The challenge of nonlinear models, multiple peaks 
True value 

Asymptotic theory says that the maximum likelihood estimator becomes 

more unbiased, more normally distributed and of smaller variance as the 

sample size becomes larger. 
return 
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Bayesian parameter estimation 

Markov chain Monte Carlo (MCMC) algorithms provide a powerful 

means for efficiently computing integrals in many dimensions to within 

a constant factor. This factor is not required for parameter estimation. 

After an initial burn-in period, the MCMC produces an equilibrium 

distribution of samples in parameter space such that the density of 

samples is proportional to the target posterior PDF.  
 

It is very efficient because, unlike straight Mont Carlo integration, it 

doesn’t waste time exploring regions where the joint posterior is very 

small. 

Joint posterior probability 

density function (PDF) for  

the parameters 

Marginal PDF  

for P  

To find the marginal posterior probability density function (PDF) for  

the orbital period P, we need to integrate the joint posterior over all  

the other parameters.  

An 8 planet model  

has 42 parameters 
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p(P|D,M1,I) =  𝒅𝑲 𝒅𝑽 𝒅𝝌 𝒅𝒆 𝒅𝝎 𝒅𝒔 𝒑(𝑷,𝑲, 𝑽, 𝝌, 𝒆,𝝎, 𝒔|𝑫,𝑴𝟏, 𝑰) 



Starting point:  Metropolis-Hastings MCMC algorithm 
 

P(X|D,M,I) = target posterior probability distribution 
                   (X represents the set of model parameters) 

This factor =1 

for a symmetric proposal  

distribution like a Gaussian 

I use a Gaussian proposal distribution. i.e.,  Normal distribution  N(Xt ,σ) 

return conditions 
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In this example the 

posterior probability  

distribution consists of two  

2 dimensional Gaussians 

indicated by the contours 

Acceptance rate = 95% Acceptance rate = 63% 

Acceptance rate = 4% 

Toy MCMC simulations:  the efficiency depends on tuning proposal  

distribution ’s. Can be a very difficult challenge for many parameters.  
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Parallel tempering MCMC 

   The simple Metropolis-Hastings MCMC algorithm can run into 

difficulties if the probability distribution is multi-modal with widely 

separated peaks. It can fail to fully explore all peaks which contain 

significant probability, especially if some of the peaks are very narrow. 

One solution is to run multiple Metropolis-Hastings simulations in  

parallel, employing probability distributions of the kind 

        Typical set of  β values = 0.09,0.15,0.22,0.35,0.48,0.61,0.78,1.0 
 

     β = 1 corresponds to our desired target distribution. The others  

     correspond to progressively flatter probability distributions.  

   At  intervals,  a pair of adjacent simulations are chosen at random and  

a proposal made to swap their parameter states. The swap allows for  

an exchange of information across the ladder of simulations.  

   In the low β simulations, radically different configurations can arise,  

whereas at higher β, a configuration is given the chance to refine itself.  

X D, M, , I p X M, I p D X, M, I 0 1

Final results are based on samples from the β = 1 simulation. 

Samples from the other simulations provide one way to evaluate  

the marginal likelihood for model selection problems. 
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Fusion Markov chain 

Monte Carlo (FMCMC) 

49 



      I have developed a new Markov chain Monte Carlo algorithm called 

Fusion MCMC. It combines Metropolis with: 
 

               a) parallel tempering*,  

                                 b) genetic crossover,  

                                                c) simulated annealing .  
 

    Fusion MCMC 

      In the exoplanet problem, the combination of nonlinear  model, 

sparse sampling, multiple planets and huge prior period range of 0.5 d to 

1000 yr,  yields a highly multi-modal target distribution which is a 

problem for a straight Metropolis algorithm.  

           All of the studies reported  here are implemented in a Bayesian 

framework using Fusion MCMC, a very general nonlinear model fitting 

method applicable to a wide range of problems. 

Each of these features facilitate the detection of a global minimum in 

chi-squared in a multi-modal environment. By combining all three, the 

algorithm greatly increases the probability of realizing this goal.  

  * Also known as Exchange Monte Carlo  (Hukushima & Nemoto 1996) 
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                Controlled Statistical Fusion 

     The control system also automates the tuning of MCMC 

proposal distributions for efficient exploration of the model 

parameter space even when the parameters are highly 

correlated. 

     This statistical fusion approach has been achieved through 

the development of a unique multi-stage control system, hence 

the term controlled statistical fusion.  

     The fusion MCMC algorithm is implemented in Mathematica 

using parallelized code which utilizes all computer cores 

available. 

Details 

Early discussion on Fusion MCMC:  Gregory, P. C., Chapter 7 in 

Astrostatistical Challenges for the New Astronomy, Springer Series in 

Astrostatistics, Hilbe, J.M (ed), 2012, New York:Springer, pp. 121-148 



8 parallel tempering Metropolis chains 
Output at each iteration 

parameters,  logprior +   loglike,  logprior + loglike

parameters,  logprior +   loglike,  logprior + loglike

parameters,  logprior +   loglike,  logprior + loglike

parameters,  logprior +   loglike,  logprior + loglike

parameters,  logprior +   loglike,  logprior + loglike

parameters,  logprior +   loglike,  logprior + loglike

parameters,  logprior +   loglike,  logprior + loglike

parameters,  logprior +   loglike,  logprior + loglike

Typical β values 

1.0

0.72

0.52

0.39

0.29

0.20

0.13

0.09

β 
 

β 
 

β 
 

β 
 

β 
 

β 
 

β 
 

β 

8 parallel chains employed to avoid becoming trapped in a local 

probability maximum.  Each samples a distributions of the form 

    β = 1 corresponds to our desired target probability distribution.  

    The others correspond to progressively flatter distributions.  

Parallel tempering 

swap operations 

Fusion MCMC  

At  intervals,  a pair of adjacent chains are chosen at random and a 

proposal made to swap their parameter states. The swap allows for an 

exchange of information across the ladder of chains.  

Range of  

 = 1 to 0 
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8 parallel tempering Metropolis chains 
Output at each iteration 

parameters,  logprior +   loglike,  logprior + loglike

parameters,  logprior +   loglike,  logprior + loglike

parameters,  logprior +   loglike,  logprior + loglike

parameters,  logprior +   loglike,  logprior + loglike

parameters,  logprior +   loglike,  logprior + loglike

parameters,  logprior +   loglike,  logprior + loglike

parameters,  logprior +   loglike,  logprior + loglike

parameters,  logprior +   loglike,  logprior + loglike

Anneal Gaussian 

proposal ’s 

Refine & update 

Gaussian 

proposal ’s 

2 stage proposal  control system 

 error signal =  

(actual joint acceptance rate – 0.25) 
 

Effectively defines burn-in interval 

β values 
Parallel tempering 

swap operations 

1.0

0.72

0.52

0.39

0.29

0.20

0.13

0.09

β 
 

β 
 

β 
 

β 
 

β 
 

β 
 

β 
 

β 

Portion of Control System that 

automates the selection of an  

efficient set of  values for the  

independent Gaussian proposal 

distributions (‘I’ proposals). 

Fusion MCMC  

Return 
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8 parallel tempering Metropolis chains 
Output at each iteration 

parameters,  logprior +   loglike,  logprior + loglike

parameters,  logprior +   loglike,  logprior + loglike

parameters,  logprior +   loglike,  logprior + loglike

parameters,  logprior +   loglike,  logprior + loglike

parameters,  logprior +   loglike,  logprior + loglike

parameters,  logprior +   loglike,  logprior + loglike

parameters,  logprior +   loglike,  logprior + loglike

parameters,  logprior +   loglike,  logprior + loglike

Monitor for 

parameters 

with peak 

probability 
Anneal Gaussian 

proposal ’s 

2 stage proposal  control system 

 error signal =  

(actual joint acceptance rate – 0.25) 
 

Effectively defines burn-in interval 

Peak parameter set: 
  If (logprior + loglike) > 

  previous best by a 

  threshold then update  

  and reset burn-in 

β values 

Parallel tempering 

swap operations 

1.0

0.72

0.52

0.39

0.29

0.20

0.13

0.09

β 
 

β 
 

β 
 

β 
 

β 
 

β 
 

β 
 

β 

Part of control system that allows  

the MCMC to adaptively restart if  

it detects a significantly more  

probable peak in any chain.  

Refine & update 

Gaussian 

proposal ’s 

Fusion MCMC  
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8 parallel tempering Metropolis chains 
Output at each iteration 

parameters,  logprior +   loglike,  logprior + loglike

parameters,  logprior +   loglike,  logprior + loglike

parameters,  logprior +   loglike,  logprior + loglike

parameters,  logprior +   loglike,  logprior + loglike

parameters,  logprior +   loglike,  logprior + loglike

parameters,  logprior +   loglike,  logprior + loglike

parameters,  logprior +   loglike,  logprior + loglike

parameters,  logprior +   loglike,  logprior + loglike

Monitor for 

parameters 

with peak 

probability 
Anneal Gaussian 

proposal ’s 

2 stage proposal  control system 

 error signal =  

(actual joint acceptance rate – 0.25) 
 

Effectively defines burn-in interval 

            Genetic algorithm 
 

Every 40th iteration perform gene  

crossover operation to breed a 

more probable parameter set. 

Peak parameter set: 
  If (logprior + loglike) > 

  previous best by a 

  threshold then update  

  and reset burn-in 

β values 

Parallel tempering 

swap operations 

MCMC adaptive control system 

1.0

0.72

0.52

0.39

0.29

0.20

0.13

0.09

β 
 

β 
 

β 
 

β 
 

β 
 

β 
 

β 
 

β 

Refine & update 

Gaussian 

proposal ’s 

Fusion MCMC  
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Genetic breeding component 

Reverse substitutions from “Best to date” into “Current iteration best” were 

found to approximately 17 times less effective and not included.  

Best to date 

Current iteration best 

Substitution 1 

Substitution 2 

Substitution 3 

The 3 planet parameter string is divided into 3 genes as shown.   

Parameters V and s are included as part of the last gene.  

The genes from current iteration best are substituted for the  

corresponding gene in the best to date one at a time.  

This form of breeding leads to transitions to higher Log[prior x Likelihood]  

values ~ 1.7 times MCMC steps.  

Substitutions from “Current iteration 2nd best” are also included and found 

to be ~ 70% as effective as “Current iteration best” substitutions.  

Overall, genetic breeding 2.8 times as effective as MCMC iterations.   
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Top figure shows an exoplanet  

example. For low eccentricity orbits  

the parameters  and  are not  

separately well determined. This  

shows up as a strong correlation  

between  and . 

The combination 2+ is  

well determined for all  

eccentricities. Although 2-  

is not well determined for low  

eccentricities, it is at least  

orthogonal to 2+ as shown. 

Highly correlated parameters 

HD 88133 

One option re-parameterization 

Another option 

Algorithm learns about the parameter correlations during the burn-in  

and generates proposals with these statistical correlations. 
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Using only independent Gaussian proposals the  (‘I’ scheme) the ‘s 

need to be very small for any proposal to be accepted and consequently 

convergence is very slow.  

How to deal with highly correlated parameters 

Learn about parameter correlations during burn-in  

The accepted ‘I’ proposals will generally cluster along the correlation 

path so every 2nd  accepted ‘I’ proposal is appended to a correlated 

sample buffer (separate buffer for each tempering level). 
 

Only the 300 most recent additions to the buffer are retained.  

A ‘C’ proposal is generated using the difference between a pair of  

randomly selected samples drawn from the correlated sample buffer  

(for that tempering level), after multiplication by a constant. 
 

Value of constant is computed automatically by another control system 

module which ensures that the ‘C’ proposal acceptance rate is close to 

25%. 
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8 parallel tempering Metropolis chains 
Output at each iteration 

parameters,  logprior +   loglike,  logprior + loglike

parameters,  logprior +   loglike,  logprior + loglike

parameters,  logprior +   loglike,  logprior + loglike

parameters,  logprior +   loglike,  logprior + loglike

parameters,  logprior +   loglike,  logprior + loglike

parameters,  logprior +   loglike,  logprior + loglike

parameters,  logprior +   loglike,  logprior + loglike

parameters,  logprior +   loglike,  logprior + loglike

Monitor for 

parameters 

with peak 

probability 
Anneal Gaussian 

proposal ’s 

Refine & update 

Gaussian 

proposal ’s 

2 stage proposal  control system 

 error signal =  

(actual joint acceptance rate – 0.25) 
 

Effectively defines burn-in interval 

            Genetic algorithm 
 

Ever 10th iteration perform gene  

crossover operation to breed larger 

(logprior + loglike) parameter set. 

Peak parameter set: 
  If (logprior + loglike) > 

  previous best by a 

  threshold then update  

  and reset burn-in 

β values 

Parallel tempering 

swap operations 

MCMC adaptive control system 

1.0

0.72

0.52

0.39

0.29

0.20

0.13

0.09

β 
 

β 
 

β 
 

β 
 

β 
 

β 
 

β 
 

β 

Automatic proposal scheme that  

learns about parameter correlations  

during burn-in (for each  chain) 

new  

parameter 

value 

repeat 

from 

proposal C 

from 

proposal I 

Add every 2nd   

 to a buffer 

latest 

300 values 

difference 

of random 

pairs 

multiply by 

constant <1 

During burn-in control system 

adjusts constant so acceptance 

rate from C proposals = 25 % 

       ‘C’ proposals 

 Proposal distribution  

with built in parameter 

   correlations used 

     50% of the time  

   ‘I’ proposals 

   Independent 

Gaussian proposal 

scheme employed 

50% of the time  

Fusion MCMC  
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Left panels show the MCMC marginal probability distributions for parameters  

 and  ω. Right panels show their MCMC autocorrelation functions.   

          Black trace  = search in  and  ω using only ‘I’ proposals.  

          Red trace     = search using both ‘I’ and ‘C’ proposals.  

          Green trace = ‘I’ search using transformed orthogonal coordinates. 

Testing ‘C’ proposal scheme 
Autocorrelation function 
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    With very little computational overhead, the ‘C’ proposals 

provide the scale and direction for efficient jumps in a 

correlated parameter space with no additional chains. 

Summary of automatic ‘C’ proposal features 

     The final proposal distribution is a random selection of ‘I’ and 

‘C’ proposals. Each is employed 50% of the time.  

 

     The combination ensures that the whole parameter space 

can be reached and that the FMCMC chain is aperiodic.  

 

     The parallel tempering feature operates as before to avoid 

becoming trapped in a local probability maximum. 

Gelman Ruben stat Simulated annealing Return 
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If you input a Kepler model the fusion MCMC becomes 
 

A Kepler periodogram 
 

Optimum for finding Kepler orbits and  

evaluating their probabilities. 
 

Capable of simultaneously fitting multiple planet models. 
 

A multi-planet Kepler periodogram 

Data      Model     Prior 

Target posterior 

Bayes Theorem 

Multiple Planets complications: for a star being perturbed by multiple 

planets, there is no analytic expression for the exact radial velocity 

perturbation. However, in many cases the star’s RV can be modeled well 

enough by the sum of multiple independent Keplerian orbits.  

p(X |D,M,I) 
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Model space considered 

Symbol                   Model                                  # of parameters 
 

   M0      Constant velocity V + extra noise term s                    2 
 

   M1      V + elliptical orbit +extra noise term s                        7 
                 

   M2      V + 2 elliptical orbits+extra noise term s                    12 

  An extra noise term allows for an intrinsic stellar variability  

(“jitter”) that we model as an additional source of uncorrelated  

Gaussian noise with variance s2 and add to the measurement  

uncertainties in quadrature.   s becomes an additional 

parameter to marginalize over.  

   M3      V + 3 elliptical orbits+extra noise term s                   17 
                 

   Mj      V + j elliptical orbits+extra noise term s                    5j+2 

  Note: some forms of stellar jitter (e.g., star spots) can produce  

Keplerian-like radial velocity variations.  

Multiple planets 
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Autocorrelation function  

   of residuals for Gliese 667C 

where xi is the ith residual, j is the lag and x is the mean of the samples in 

the overlap region. Because the data are not uniformly sampled, for each 

lag all sample pairs that differed in time by this lag ± 0.1 d were utilized. 

The solid red curve in the 1signal  

residuals is the average  

autocorrelation generated from 400  

simulated data sets of a 5 signal 

model (28.1, 30.8, 38.8, 53.2, & 91 d 

periods) together with the quoted 

measurement errors. 

1 signal residuals 

        P = 7.2 d 

3 signal residuals 
P = 7.2, 28.1, 184 d 

        6 signal residuals 
P = 7.2, 28.1,30.8, 38.8, 53 91 d 
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Annealing due to extra noise term, s 

Inclusion of an extra noise term of unknown magnitude also gives rise  

to an annealing operation when the Markov chain is started far from the  

best-fit values. 
 

If only known observational errors are included, the posterior probability 

distribution is often very “rough” with many local maxima throughout  

parameter space. 

When s is included, Bayesian Markov chain automatically inflates s to 

include anything in the data that cannot be accounted for by the model 

with the current set of parameters and the known measurement errors.  

This results in a smoothing out 

of the posterior surface and 

allows the Markov chain to 

explore the parameter space 

more quickly. The chain begins 

to decrease the value of s as it 

settles in near the best-fit 

parameters. This behavior is 

similar to simulated annealing, 

but does not require choosing a 

cooling scheme. 
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Annealing due to extra noise term, s 

Inclusion of an extra noise term of unknown magnitude also gives rise  

to an annealing operation when the Markov chain is started far from the  

best-fit values. 
 

If only known observational errors are included, the posterior probability 

distribution is often very “rough” with many local maxima throughout  

parameter space. 

When s is included, Bayesian Markov chain automatically inflates s to 

include anything in the data that cannot be accounted for by the model 

with the current set of parameters and the known measurement errors.  

This results in a smoothing out 

of the posterior surface and 

allows the Markov chain to 

explore the parameter space 

more quickly. The chain begins 

to decrease the value of s as it 

settles in near the best-fit 

parameters. This behavior is 

similar to simulated annealing, 

but does not require choosing a 

cooling scheme. 

Behavior of s parameter  

for some real data 
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Example 1: HD208487 
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HD 208487 

1) 2005, report of a P = 130d companion 

History 

3) 03/2007, report of a 2nd companion,  

            P ~ 27 or 1000 days 

2) 02/2007, report of 2nd companion 

                P = 909± 90d 

C. G. Tinney et al. ApJ, 623, 1171 

P. C. Gregory, MNRAS, 403, 731 

J. T. Wright et al., ApJ, 657, 533 

Will consider which is the real 

signal when I discuss aliases. 
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Kmax corresponds to a max.  

planet-star mass ratio = 0.01 

prior Parameter 
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   The width of a spectral peak in a probability density plot, which 

reflects the accuracy of the frequency estimate, is determined by the 

duration of the data, the signal-to-noise (S/N) ratio and the number of 

data points.  

where      = the data duration in s, and N = the # of data points in    .  

Search in frequency instead of period 

  The thing to notice is that the width of any peak is independent of the 

frequency of the peak. Thus the same frequency proposal distribution 

will be efficient for all frequency peaks. This is not the case for a 

period search where the width of a spectral peak is     P2.  

  More precisely, for a sinusoidal signal model, the standard deviation 

of the spectral peak, f, for a S/N > 1, is given by 

  Not only is the width of the peak independent of f, but the spacing of 

potential peaks is constant in frequency (roughly f ~ 1/    ), which is a 

another motivation for searching in frequency space. 
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A portion of the spectral window function of the radial velocity data for  

HD 208487 demonstrating the uniform spacing of peaks in frequency.  

The 29.5 d peak corresponds to the synodic month. 

Search in frequency instead of period 
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Multiple orbital frequency prior 

What form of frequency prior should we use for a multiple planet model? 

If we constrain the frequencies in an n planet search such that  
 

                                                                                    .  

From the product rule of probability theory and the above frequency 

constraints we can show that the multiple frequency prior is  

For a single frequency (period) model we use a scale invariant  prior 

which can be written in two equivalent forms. 

Bretthorst (2003) derived a similar result involving n! in the numerator  

in connection of uniform frequency priors. 
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Orbital frequency search strategy 

  Two different approaches to searching in the frequency parameters 

were tried. 

(a)  an upper bound on f1 ≤ f2  was utilized to maintain the identity of   

     the two frequencies. 

(b) both f1 and f2 were allowed to roam over the entire frequency range 

     and the parameters re-labeled afterwards. In this second approach 

     nothing constrains f1 to always be below f2 so that degenerate  

     parameter peaks can occur. 

  Approach (a) proved to be unsuccessful in finding the highest peak in 

many trials and in those cases where it did find the peak it required more 

iterations. Restricting f1 ≤ f2 introduces an additional hurdle that appears 

to slow the MCMC period search 
 

return 

   Approach (b) was found to be more successful because in repeated 

blind period searches it regularly converged on the highest posterior  

peak, in spite of the huge period search range.  
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Orbital frequency search strategy 

  Provide the parameters are re-labeled after the MCMC run, such 

that the parameters associated with the lower frequency are 

always identified with planet 1 and vice versa, the two cases are 

equivalent and both require the same frequency prior.   

return 
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Kmax corresponds to a max.  

planet-star mass ratio = 0.01 

prior Parameter 
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Eccentricity priors 

Solid black line is best fit Beta distribution (Kipping 2013) to the 

eccentricity data of 396 high S/N exoplanets. The dashed and dot-dashed 

black lines are Kipping's Beta distribution fits to the subsets with periods 

> 382.3 d (median) and < 382.3 d, respectively. The red line is the 

Gaussian eccentricity prior adopted by Tuomi et al. (2012). The gray line 

is my earlier  prior which attempted a modest correction for noise 

induced eccentricity bias. The blue line is prior employed in this work. 

Blue curve 
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Kmax corresponds to the velocity of a planet with a mass = 0.01        in 

a circular orbit with our shortest period of one day.  

Since Ki depends on two of the other parameters, Pi , ei , according to  

I used an upper bound for Ki  given by 

Ki  = 

which allows the upper limit on Ki to depend on the proposed period  

and eccentricity. In my implementation of Metropolis, I make new  

proposals of all parameters at each iteration. 

Prior for K 
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HD 208487 
 

FMCMC results 

before relabeling 

parameters 
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HD 208487 
 

FMCMC results 

after relabeling 

parameters 
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HD 208487  periodogram plots  (2 planet model) 

                       p(f|M,I) ∝ 1/ f 

77 



HD 208487  marginal distributions  (2 planet model) 
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Dynamical stability 

   Work in the 1970s and 80s showed that the motions of a 

system of a star with two planets (not in a low-order mean 

motion resonance) would be bounded in some situations.   

Two dominant definitions of stability emerged  
(Barnes and Greenberg 2006) 
 

a) Hill stability the ordering of the two planets in 

terms of distance from the central star is conserved.  
 

b) Lagrange stability includes Hill stability plus the planets 

remain bound to the star and the semimajor axis and 

eccentricity remain bounded. 

Result for HD 208487:  both two period solutions are  

                                       Lagrange stable. 
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Aliases 
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Aliases 

How aliasing arises. Uniform sampling at an interval T in the time domain  

corresponds to convolution in the frequency domain. The upper panel shows 

the Fourier Transform (FT) of the sampling. The middle panel shows the FT of 

the signal together with the Nyquist frequency. The lower panel shows the 

resulting convolution. There are 3 aliased signals at f = 0.23, f = 0.77, and  

f = 1.77, only one of which, at f = 0.23, is below the Nyquist frequency. 

Bayesian Logical Data Analysis for the Physical Sciences, Cambridge Press 2005, 2010 
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An illustration of how four different frequencies can all pass 

through the same set of four uniformly sampled data points 

(boxes) but only one passes through all the points when one 

sample is replaced by a non-uniform sample (star). 

Aliases 

Bayesian Logical Data Analysis for the Physical Sciences, Cambridge Press 2005 

There is effectively no Nyquist frequency for unevenly sampled 

data. Since RV sampling is very non-uniform, do we need to 

worry about Aliases? 
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Rebekah I. Dawson and Daniel C. Fabrycky    (ApJ, 722:937, 2010) 

demonstrated how ground based astronomy has inherent periodicities 

in the sampling governed by when we can observe that give rise to 

significant aliases. Above is an example for the HD 208487 data. 

Aliases 

The aliases arise from the convolution of the true spectrum with  

the window function = Fourier transform of the sampling times. 
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Spectral window function of radial velocity measurements of GJ 876 

(Rivera+ 2005). Major features of the spectral window function are 

colored: red (at 0 day−1), green (yearly feature), fuschia (daily features) , 

blue (2 day−1), and brown (3 day−1) .  

Rebekah I. Dawson and Daniel C. Fabrycky    ApJ, 722:937, 2010 
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Top row = periodogram of the GJ 876 data. The second row = periodogram of sinusoid with P=1.94 d 

(frequency 0.516 day−1) sampled at the times of the real data sets as solid lines plus a repeat of the 

periodogram of the data as a gray background, for comparison. Third row = same as second row but for 

P=2.05 d (frequency 0.487 day−1). Dials above the peaks show the phase at each peak. Colors correspond 

to the feature in the window  function that creates the particular alias, with red =candidate frequency, the 

green = yearly aliases, and the fuschia = daily, blue = 2 day−1 , and brown  = 3 day−1.   
 

P=1.94 days matches the heights and phases of the peaks much better, both for the yearly aliases on 

either side of the main peak in Column 2 and the daily aliases in the other columns. Candidate 

frequencies have different types of aliases at different locations, allowing us to break the degeneracy. 

Rebekah I. Dawson and Daniel C. Fabrycky   ApJ, 722:937, 2010 
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Window function 

    HD 208487 

Synodic month = 29.53 d,  

measured from a lunar phase 

until the return of that same  

phase 
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Weighted 

Window function 

    HD 208487 

Synodic month = 29.53 d,  

measured from a lunar phase 

until the return of that same  

phase) 
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HD 208487 

Alas, no clear cut conclusion 

from the periodogram and  

phase circle plots. 

Model selection discussed 

shortly, favors the ~ 900 d 

signal over 28 d signal by a  

factor ~ 10. 
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FMCMC software 

demo 
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Gliese 581 
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Gliese 581  the star with two  

possible habitable zone planets 

1) 2005 to 2009,  

      Planet e is 1.9 Earth mass  

      Planet b is 16  Earth mass  

      Planet c is 5 Earth mass  

      Planet d is 7 Earth mass  (HZ) 
 

  M. Mayor et al., A&A, 507, p. 487, Nov. 2009 

History 

2) 2010,  

      Planet  f is  7 Earth mass 

      Planet g is 3.1 Earth mass  (HZ) 
 

  Steven Vogt et al.,  ApJ, 723, p. 954, 2011, 

  their analysis  assumes all circular orbits. 

Blow-up of 5 planet fit to HARPS 

HARPS data 

5 planet 
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Julian day number  (-2,454,186.6178) 

Julian day number  (-2,454,186.6178) 

Julian day number  (-2,454,186.6178) 

3) 2011, Gregory, P. C., MNRAS, 415, 2523  
 

  Borderline evidence for 5 planets. 

  Don’t support claim for planet 581g. 
 

  Find evidence that Keck HIRES  

  uncertainties are much larger than the  

  quoted values by an extra 1.8 m s-1  

  added in quadrature. 
Noise mod Bayes factors Model sel 6 planet Window fn 
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Gliese  periodogram plots  (4 planet model) 

                       p(f|M,I) ∝ 1/ f 
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Gliese  periodogram plots  (5 planet model) 

                       p(f|M,I) ∝ 1/ f 
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After filtering out the 

post burn-in FMCMC 

iterations that 

correspond to the 5 

dominant period 

peaks at 3.15, 5.37, 

12.9, 66.9, and 192d 
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Model Selection 

99 



posterior probability 

ratio 

   prior probability 

ratio 
Bayes factor 

Expand  with Bayes’ theorem 

Bayesian Model Selection  
          Compare two models by computing the ratio of their posterior 

probabilities (odds ratio) which automatically incorporates a 

quantitative Occam’s razor. 

I),M,θ|Dp(I),M|p(θdθI),M|p(D 111 
marginal likelihood for M1 

In words:  the marginal likelihood for a model is the weighted  average 

likelihood for its parameter(s).  The weighting function is the prior for 

the parameter. 

ratio  likelihood  marginal
I),M|p(D

I),M|p(D
B

0

1
10 Bayes factor, 

return Occam 
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    Bayesian Model Selection and Extrasolar Planets 
                         Eric B. Ford and Philip C. Gregory 
 

in ‘Statistical Challenges in Modern Astronomy IV’, G. J. Babu and E. D. Feigelson,eds, 

Astron. Soc. of the Pacific Conference Series, 371, pp. 189-205 (2007) 

  We compared a wide variety of estimators of the marginal likelihood 

and feature those that display desirable convergence properties based 

on the analysis of a sample data set for HD 88133. This was the focus 

of a SAMSI workshop on exoplanets. Some of the estimators 

considered: 

                 - Restricted Monte Carlo 

                 - Partial linearization and Laplace Approximation 

                 - Harmonic mean 

                 - Weighted harmonic mean 

                 - Basic importance sampling  

                 - Importance sampling with a mixture of multivariate normals 

                 - Ratio estimator 

                 - Parallel tempering 

  Since then I have added one new method: 

                 - Nested Restricted Monte Carlo 

  and compared to Parallel tempering  & Ratio estimator methods                
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Bayesian model selection from parallel tempering MCMC  

  Markov chain Monte Carlo analysis produces samples in model 

parameter space in proportion to the posterior probability 

distribution. This is fine for parameter estimation. 
 

  For model selection we need to determine the proportionality 

constant to evaluate the marginal likelihood p(D|Mi ,I) for each 

model.  

  One solution is to use the MCMC results from all the parallel  

tempering chains spanning a wide range of β values. 

  Here X represents the model parameters and β = 1 corresponds  

to our desired target distribution. Others values of β correspond  

to progressively flatter probability distributions.  

X D, M, , I p X M, I p D X, M, I 0 1

Prior  Likelihood  
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Model probabilities from parallel tempering chains 

  commonly known as thermodynamic integration 

where  

      

    = expectation value of                                for a given β 

 

     

    = 

n = number of MCMC iterations 

 

and                                  is the likelihood of the set of parameter 

 

choices for iteration t and for the given value of β. 
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used in the calculation of model probabilities 

HD 208487   nβ = 44  
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The third column gives the fractional 

error in the marginal likelihood that 

would result if this decade of β was not 

included, which indicates the sensitivity 

of the result to that decade. 

Fractional error in marginal likelihood  

versus parallel tempering β value  

return 208487  
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Marginal likelihood estimate versus MCMC iteration number 

A plot of the marginal likelihood, p(D|M2, X, I)PT , versus FMCMC 

iteration for the two planet HD 208487 model results for two trials. 
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       One method I developed  to estimate the marginal likelihoods is  

Nested Restricted Monte Carlo (NRMC) integration. For large parameter 

spaces, Monte Carlo (MC) integration is hopelessly inefficient in 

exploring the whole prior parameter range. The fraction of the prior 

volume containing significant probability rapidly declines as the 

number of dimensions increase. 

       In Nested RMC (NRMC) integration, multiple boundaries are 

constructed based on credible regions ranging from 30% to > 99%, as 

needed. We are able to compute the contribution to the total integral 

from each nested interval and sum these contributions. For example, for 

the interval between the 30% and 60% credible regions, we generate 

random parameter samples within the 60% region and reject any sample 

that falls within the 30% region. Using the remaining samples we can 

compute the contribution to the NRMC integral from that interval. 

       In Restricted MC (RMC) this is less of a problem because the 

volume of parameter space sampled is greatly restricted to a region 

delineated by the outer borders of the marginal distributions of the 

parameters obtained from the MCMC run. 

Nested Restricted Monte Carlo 
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Nested Restricted Monte Carlo (NRMC)  Integration 

Construction of hypercubes 

In NRMC integration, multiple boundaries of a restricted hypercube 

in parameter space are constructed based on credible regions ranging  

from 30% to ≥ 99%, as needed.  
 

To construct the x% hypercube we compute the x% credible region of  

the marginal distribution for each parameter of the particular model. 
 

The x% hypercube is delineated by the x% credible range of the  

marginal for each parameter.  

108 

Note: the actual fraction of the total probability of the joint 

posterior distribution contained within a hypercube defined in 

this way will be greater than x%. 



Nested Restricted Monte Carlo (NRMC)  Integration 

Construction of hypercubes 

In NRMC integration, multiple boundaries of a restricted hypercube 

in parameter space are constructed based on credible regions ranging  

from 30% to ≥ 99%, as needed.  
 

To construct the x% hypercube we compute the x% credible region of  

the marginal distribution for each parameter of the particular model. 
 

The x% hypercube is delineated by the x% credible range of the  

marginal for each parameter.  

For example, for the interval between the 30% and 60% hypercubes,  

generate random parameter samples within the 60% hypercube and  

reject any sample that falls within the 30% hypercube. Using the  

remaining samples we can compute the contribution to the NRMC 

integral from that interval.  

Contribution from each nested interval 
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NRMC Integration HD 208487  (1 planet) 

    The left panel shows the contributions from the individual intervals for 5 

repeats of the NRMC evaluation for the 1 planet HD 208487 model. The right 

panel shows the summation of the individual contributions versus the 

volume of the credible region.  

    The 9995% boundary is defined as follows. Let XU99 and XL99 

correspond to the upper and lower boundaries of the 99% credible region, 

for a particular parameter. Similarly, XU95 and XL95 are the upper and lower 

boundaries of the 95% credible region for the parameter.  

                                Then XU9995 = XU99 +(XU99−XU95), 

                                         XL9995 = XL99 +(XL99−XL95). 

                         Similarly, XU9984 = XU99 + (XU99 −XU84). 
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    The left panel shows the contributions from the individual intervals for 

5 repeats of the NRMC evaluation for the 1 planet Gliese 581 model. The 

right panel shows the summation of the individual contributions versus 

the volume of the credible region.  

   The mean value of the prior × likelihood within the 30% credible region 

is 2 ×105 larger than the mean in the shell between the 97 and 99% 

credible regions. However, the volume of the shell between 97 and 99% 

is 8 ×1011 larger so the contribution from the 30% credible region to the 

marginal likelihood is negligible. 

NRMC Integration Gliese 581  (1 planet) 
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NRMC Integration HD 208487  (2 planet) 

    The left panel shows the contributions from the individual intervals for 

5 repeats of the NRMC evaluation for the 2 planet Gliese 581 model. The 

right panel shows the summation of the individual contributions versus 

the volume of the credible region.  
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    The left panel shows the contributions from the individual intervals for 

5 repeats of the NRMC evaluation for the 3 planet Gliese 581 model. The 

right panel shows the summation of the individual contributions versus 

the volume of the credible region.  

NRMC Integration Gliese 581  (3 planet) 
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    The left panel shows the contributions from the individual intervals for 

5 repeats of the NRMC evaluation for the 4 planet Gliese 581 model. The 

right panel shows the summation of the individual contributions versus 

the volume of the credible region.  

NRMC Integration Gliese 581  (4 planet) 
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Left shows the maximum and min values of the Log10[prior × likelihood] 

for each interval of credible region versus parameter volume for the 

NRMC 4 planet fit samples. The right  shows the maximum and mean 

values of the Log10[prior × likelihood] versus the parameter volume. 
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Left panel: Contribution of the individual nested intervals to the NRMC 

marginal  likelihood for 5 planet Gl 581 model for 5 repeats. The right 

panel: the integral of these contributions versus the parameter volume 

of the credible region. 

return 

NRMC Integration Gliese 581  (5 planet) 
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Comparisons of  marginal 

likelihood estimators versus 

iteration for one to five planet 

model fits.  
 

-The left hand column of plots 

show parallel tempering 

marginal likelihoods versus 

iteration number.  
 

-The curves in the right hand 

column of panels show ratio 

estimator marginal 

likelihoods. 
 

-The horizontal black dashed 

lines are the NRMC marginal 

likelihoods with the numerical 

value of the mean and range 

of 5 repeats.  
 

-The horizontal gray dashed 

lines are the NRMC marginal 

likelihood value within the 

MCMC 95% credible region of 

the model parameters. 
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The fraction of the total NRMC marginal likelihood within the MCMC 

95% and 99% credible regions versus the number of planets. 

NRMC Integration Gliese 581 
118 



Comparison of the 3 marginal likelihood estimates 

Model             RE   :   NRMC   :   PT 

1 planet             1.0  :     0.96     :  1.82 

2 planet             1.0  :     0.75     :  0.52 

3 planet             1.0  :     2.22     :  0.94 

4 planet             1.0  :     5.6 

5 planet             1.0  :     2.4 

Conclusions 

1) For up to 3 planets (17 parameters) agreement within factor  ~ 2. 
 

2) The contribution to NRMC estimate from low probability density 

     regions increase markedly with increasing model parameters. 
 

3) There is an indication that the RE estimates and others directly  

    derived from the MCMC posterior samples may be dynamic range  

    limited by the number of iterations, leading to an under estimate  

    in large parameter spaces. 
 

4) NRMC method is conceptually simple and fast to compute.   
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Marginal Likelihood Ratio Estimator 

Starting point is Bayes’ theorem 

Re-arrange and multiply through by additional sampling distribution          

Integrate both sides over the prior range for X. 

The ratio estimator of the marginal likelihood, which we designate by 

p(D|Mi ,I)re , is given by 

h X
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Marginal Likelihood Ratio Estimator 

  The ratio estimator of the marginal likelihood, which we designate by 

p(D|Mi ,I)re , is given by 

  The arbitrary function        was set equal to a multivariate normal with a 

covariance matrix equal to twice the covariance matrix computed from 

a sub-sample of the β = 1 MCMC draws. 

  Interpret the numerator as the weighted average of the prior  x  

Likelihood, weighted by         . Similarly, interpret the denominator as the  

weighted average of         weighted by the posterior.  

h X

h X

h X

p D Mi , I re

1

ns
'

j 1

ns
'

p X j Mi, I p D Mi, X j , I

1

ns j 1

ns h X j

  To obtain the marginal likelihood ratio estimator, p(D|Mi ,I)re , we  
 

approximate the numerator by drawing samples  
 

from          and approximate the denominator by drawing samples 
 

                                   from the remainder of the MCMC draws.  

h X
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Marginal Likelihood Ratio Estimator 

This estimator is particularly useful, since there is no risk of a small 

denominator leading to a large variance, as in importance sampling. 

Detail:  Some of the samples from a multivariate normal         can have 

nonphysical parameter values (e.g. K < 0). Rejecting all 

nonphysical samples corresponds to sampling from a truncated 

multivariate normal. The factor required to normalize the truncated 

multivariate normal is just the ratio of the total number of samples 

from the full multivariate normal to the number of physical valid 

samples. Of course we need to use the same truncated multivariate 

normal in the denominator so the normalization factor cancels. 

h X
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Improved Marginal Likelihood Ratio Estimator 

We randomly choose nc = 100-150 samples to be removed from the 

original MCMC posterior draws to be used as the locations for the 

mixture components. We also determine the covariance matrix for each 

mixture component using another sub-sample of the posterior draws.  

For some data sets the  

posterior samples are not well  

modeled by a single 

multivariate normal.  

 

Better to replace          by          a  

mixture of multivariate normals,  

where 

g Xh X
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Bayesian false alarm probability 

In the context of claiming the detection of m planets the false alarm 

probability (FAPm) is the probability that there are actually fewer than 

m planets, i.e., m − 1 or less. 

where N is the maximum number of planets in the hypothesis space  

under consideration, and of course B11 = 1. For the purpose of 

computing FAPm we set N = m. 

 

For m = 2  

If we assume a priori that all models under consideration are equally 

likely, then the probability of each model is related to the Bayes 

factors by 
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Model Selection HD 208487 
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Model Selection Gliese 581 

Results for M5b are based on the ratio of post burn-in samples that were  

not in the 192d peak to the samples in the 192 d peak. 
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They have analyzed RV data using a MULTINEST version of John 

Skilling’s nested sampling algorithm.  
 

They  found that MultiNest is not able to calculate the evidence values 

directly for systems with more than 3 planets.  
 

Instead they base their model selection calculations for the n planet 

versus n+1 planet model on zero and one planet model fits to the n 

planet residuals. These results must necessarily be considered only 

approximate because in general inclusion of an additional planet (to 

n+1) will effect the best fit parameters for the n planet subset which 

will not be reflected in the n planet residuals. 

Detecting extrasolar planets from stellar radial velocities  

Using Bayesian evidence.     (MNRAS, 415, 3462, 2011)  

F. Feroz⋆, S. T. Balan and M. P. Hobson 

Astrophysics Group, Cavendish Laboratory 
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Stay tuned – I hear new developments  are underway 



Stellar activity 

Induced RV 

 

In this section I present results  

of a preliminary investigation  

aimed at identifying and/or  

correcting for stellar activity  

induced RV signals 
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Sunspots rotate with the Sun (every 27 days).  

They typical last from days to months. 

SOHO is a mission of international cooperation between ESA and NASA 
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Stellar activity 

Time Scale    Vel. noise     Type of activity      Partial solutions 

~ 10 years           1 – 20 m/s        Magnetic cycle           correlation 

  

  10 – 50 d            few m/s        Active regions        a) correlation 

                                                  spots and plages    b) FF’ analysis + 

                                                                                    Gaussian process 

                                   

 

15 min – 2 d         few m/s         Granulations        ave. 3x10 min/night 

                                                                                   reduce to ~ 0.5 m/s 

 

     ~ 1 hr               < 1 m/s               Flares 

 

     < 15 min          few m/s           Oscillations         ave. for 15 min 

                                                                                   reduce to ~ 0.2 m/s 
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Besides accurate RV measurements, HARPS provides additional information on 

the spectral line shapes that are extracted from the CCF, the average shape of all 

spectral lines of the star.   

If star’s velocity is due to a planetary companion, then the shape of the CCF  

should remain constant. On the other hand, RV variations caused by stellar  

variability should correlate with changes in the spectral line shapes and/or Ca II. 

Spectral line diagnostics for RV measurements (D. Queloz et al., 2009 A&A 506, 303) 

Any changes in the CCF that are correlated with the RV can be attributed to 

pulsation effects or stellar spots both of which affect the shapes and thus the 

centroids of the spectral line.  

Two simple diagnostics used to look for changes in the shape of the CCF:  

(a) width (FWHM) and (b) its bisector span.  

HARPS’ wavelength coverage  includes the Ca II H&K lines, so the activity S-

index is computed as well. The spectroscopic S-index is sensitive to active 

regions on the stellar surface. The Ca II H& K flux that is converted to the Mount 

Wilson system according to Santos et al. (2000 )and corrected for the 

photospheric flux is known as log(R(HK)) index.  

In summary, HARPS provides three diagnostic measurements of stellar 

variability: (a) the bisector span of the CCF,  (b) the FWHM of the CCF, and 

(c) the Ca II S-index. 

 

return 
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No planet for HD 166435 

D. Queloz, G. W. Henry, J. P. Sivan, S. L. 

Baliunas, J. L. Beuzit, R. A. Donahue, M. 

Mayor, D. Naef, C. Perrier, and S. Udry 

A&A 379, 279, 2001 

An emission feature is clearly visible in the core of the Ca II 

H line. For comparison, a solar integrated spectrum with the 

same resolution has been superimposed (hatched line). 

An emission feature is clearly visible in the core of the line. 

Note: larger line broadening of HD 166435 compared to the 

Sun. 
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No planet for HD 166435 D. Queloz, G. W. Henry, J. P. Sivan, S. L. 

Baliunas, J. L. Beuzit, R. A. Donahue, M. 

Mayor, D. Naef, C. Perrier, and S. Udry A&A 379, 279, 2001 
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Gliese 667C  isolated M dwarf (M = 0.31 MS) 

component of  triple star system  D = 22.1 ly 

History 

V
e
lo

c
it

y
  

(m
s

-1
) 

HARPS data 

1) 2011,  Planet  b  Per = 7.2 d 

                M sin i = 5.9 MEarth  

      + two other interesting periods at  

       90 & 28d (habitable zone orbit)  
 

        Bonfils et al., arXiv:1111.5019v2  

2) 2012, Anglada et al. & Delfosse et al., 

              Confirm planet  b & report 

              planet  c  28d,  4.3 MEarth   (HZ) 
 

3) 2012, Gregory, P. C. arXiv: 1212.4058V2 
 

  “Additional Keplerian signals  - - -” 

  Periods = 7.2, 28, 31, 39, 53, 91.5 d  

   

4) 2013,  Anglada-Escuda  et al. Ap.J. 751, L16     (HARPS, PFS, HIRES data) 
 

  “A dynamically-packed planetary system around  GJ 667C with 3 super-earths in  

    its habitable zone,” 

 Additional  P = 39, 62, 92 , 260 d  + tantalizing evidence for a  ~ 1ME with P = 17 d  
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RV data 

-Lomb-Scargle periodogram 

-Generalized Lomb-Scargle 
  (floating offset and weights) 

Multi-planet  

Kepler periodograms 
single sine 

wave model 

Exoplanet RV analysis 
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Periodogram  based on an apodized sine model 

Amplitude drops to 
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Exoplanet diagnostic analysis 

RV data 

-Lomb-Scargle periodogram 

-Generalized Lomb-Scargle 
  (floating offset and weights) 

Multi-planet  

Kepler periodograms 
single sine 

wave model 

Explore other 

types of  

periodograms 

-Multiple sine wave models 

-Apodized sine wave models 

-Apodized chirp models 

-Combination of chirp + sine models 

Correlation analysis between RV & diagnostics 

-Recent work by Paul Robertson et al. on Gliese 581 show seasonal 

dependent correlations between RV and Hα  stellar activity. The artifact RV 

component removed by linear regression eliminated planet d.  (Science 2014, 

arXiv 1407.1049R)  

-I will show an example of this in Gliese 667C and demonstrate how a 

hierarchical (multi-level) Bayesian analysis can effectively deconvolve the 

effects of the measurement errors to better estimate the underlying 

regression relation. 
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FWHM and S-index diagnostics before and after removal of outliers 
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Relative probabilities via Bayes factors of different 

periodogram models fit to the FWHM of CCF diagnostic 

   k – number 

    of signals 

  sine waves    apodized 

  sine waves 

   apodized 

 chirp signals 

1 chirped  +1 

sine  (both 

apodized) 

            0      3.8 x 10-14      3.8 x 10-14     3.8 x 10-14     3.8 x 10-14 

            1      5.9 x 10-5      3.7 x 10-4     4.1 x 10-3 

            2      5.2 x 10-3          1.0         0.15       0.22 

            3      1.5 x 10-2          0.1         0.05 

Relative probabilities via Bayes factors of different 

periodogram models fit to the S-index diagnostic 

   k – number 

     of signals 

  sine waves    apodized 

  sine waves 

   apodized 

 chirp signals 

            0          0.99          0.99         

            1          1.0          2.0    

1 2 

3 

5 

4 

6 
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Two apodized sine 

periodogram 

of FWHM diagnostic 

return 
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3 apodized chirp periodogram of FWHM diagnostic 

return 

chirped 

P1 at center 

of apodizing 

window 

chirped 

P2 at center 

of apodizing 

window 

chirped 

P3 at center 

of apodizing 

window 

Chirped P at  t = 0 

108 d 100 d 

34.5 d 27.6 d 
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One apodized sine 

periodogram of  

S-index diagnostic 

return 
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For FWHM diagnostic  

1) Apodized models are favored. 
 

2) Strongest period around 105 d. 

    Thought  to be the star’s rotation period. 
 

3) Chirped models yield period derivatives of the same  

    sign and with a magnitude  ≈ the maximum solar value 

    for P = 34.5 → 27.6 d and 108 → 100 d. 

For S-index diagnostic  

1) Apodized model very slightly favored. 
 

2) Strongest period around 106 d. 
 

3) Other suspicious artifacts around 17.5, 40 & 91.5 d. 

  Part 1 Conclusions 

conclusions 
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Exoplanet diagnostic analysis 

RV data 

-Lomb-Scargle periodogram 

-Generalized Lomb-Scargle 
  (floating offset and weights) 

Multi-planet  

Kepler periodograms 
single sine 

wave model 

Explore other 

types of  

periodograms 

-Multiple sine wave models 

-Apodized sine wave models 

-Apodized chirp models 

-Combination of chirp + sine models 

Correlation analysis between RV & diagnostics 

-Recent work by Paul Robertson et al. on Gliese 581 show seasonal 

dependent correlations between RV and Hα stellar activity. The artifact RV 

component removed by linear regression yields one less planet.  (Science 

2014, arXiv 1407.1049R) 

-I will show an example of this in Gliese 667C and demonstrate how a 

hierarchical (multi-level) Bayesian analysis can effectively deconvolve 

the effects of the measurement errors to better estimate the underlying 

regression relation. 
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Pearson correlation coefficient between 2 planet RV residuals 

and FWHM diagnostic for 4 different observing seasons. 
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Pearson correlation coefficient between 2 planet RV residuals 

and S index for 4 different observing seasons. 

Only one season exhibits a significant correlation. 

Correlation strongest with S-index  
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Pearson correlation coefficient between 2 planet RV  

residuals and S index for most correlated season. 
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Pearson correlation coefficient between 1 planet RV  

residuals and S index for most correlated season. 

return 
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    A common problem in astronomy is to explore whether there is a 

correlation (i.e., a straight line relationship, commonly referred to as 

the regression line), between the dependent and independent variables. 

    There is often some intrinsic scatter about the regression line. The 

intrinsic scatter arises from variations in the physical properties that 

are not completely captured by the independent variables included in 

the regression,  in this case the single independent variable, the S-

index. 

Hierarchical/multilevel Bayes regression analysis * 

    Because of measurement uncertainties we don’t know the true 

values of  RV and S only their measured values. We represent their true 

values by yt  and xt , frequently referred to as hidden or latent variables 

in hierarchical Bayes (also known as multilevel modeling). 

* Ref: Brandon Kelly, Ap.J., 665, 875, 2007 

  The effect of measurement error in the independent variable, x, is to 

bias the slope towards zero and reduce the magnitude of the observed 

correlation. Measurement error in the response, y, also reduces the 

magnitude of the correlation.  
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    Can allow for an intrinsic scatter in the regression relationship between 

the hidden true values of xt and yt according to the additive noise model 

    In a Bayesian analysis we can eliminate the hidden values by a process 

called marginalization           need to specify a prior for each and integrate 

the joint posterior probability distribution over their possible values.  

Hierarchical  Bayes regression analysis  
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    Multilevel models can have enough parameters to fit the data well, while 

the choice of an informative prior for the hidden parameters structures some 

dependence into these parameters thereby avoiding problems of over fitting. 

     To handle hidden true values, xt , we must first specify our prior 

information. As a first guess we might assume an independent uniform prior 

and specify some large prior range between -C and C that we are confident 

the xt value falls within. Suppose that the first n samples of the observed 

values, xi, fall within the much smaller range 0.01 C and 0.1 C. Do we really 

believe the next xti is likely to be anywhere in the range -C and C?  

How to handle hidden variables in a Bayesian analysis 

     Another choice for the prior is to choose what we will refer to as an 

informative prior like a Gaussian (or a mixture of Gaussians) and learn about 

the mean and variance of the Gaussian(s) from the measured sample.  

    This leads to a probabilistic dependence among the xti values that 

implements a pooling of information that can improve the accuracy of 

inference. Each xi measurement bears on the estimation of the unknown 

mean and variance of the population of xt values, and thus indirectly, each 

measured xi bears on the estimation of every other xti, via a kind of adaptive 

correction.  

     This is referred to as borrowing strength from each other and avoids the 

biased estimates of the intercept and slope common to ordinary least-

squares analysis of this situation.  
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Solid arrows denote 

conditional 

dependencies.  
 

Dashed arrows 

represent deterministic 

conditionals. 
 

Absence of a 

connection denotes 

conditional 

independence.  

Conditional 

probabilities 
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Multilevel Bayesian 

graphical model 



Hierarchical  Bayes Regression Line 
Yields representative samples of the underlying regression, 

effectively deconvolves  blurring effects of measurement errors. 

de-convolving the blurring effect of the measurement errors 

Panel (a) shows the raw data. In panel (c), the points and error bars are the 

mean and standard deviation of the MCMC estimates of the true coordinates. 

In both the solid line is the same mean regression line and the dashed lines 

show ±1 std. dev. fit uncertainty. The dot-dashed line is the MAP fit. Panels (b) 

& (d) show residuals. 

de-convolved 
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Correlation coefficient between  

2 planet RV residuals  and S-index 

The solid vertical line shows the correlation coefficient derived from the 

raw RV residuals and S-index values. The histogram is the marginal 

distribution of the correlation coefficient for the estimated true values of  

RV residuals and S-index from our hierarchical Bayesian analysis. The 

dashed line is predicted correlation from raw data and errors. 
return 
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Comparison of measured  (black) and predicted RV from  

regression line (red). Residual in black below. 

return 

The standard deviation of the corrected RV is reduced by a factor of 1.42.  

corrected 
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Relative probabilities via Bayes factors of different models 

analysis of Gliese 667C HARPS radial velocity data. 

     Number of  

        signals 

  Kepler  model     

            0          3.6 x 10-38      

            1          3.1 x 10-16      

            2          7.7 x 10-12      

            3          2.7 x 10-6      

            4          4.4 x 10-5     

            5               0.003          

            6              1.0 
1 

Before correction of radial velocity data. 

Return 
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6 planet Kepler periodogram of raw RV data (Gregory 2012) 

return 

Generalized Lomb-Scargle  

periodogram for the 6 planet 

fit 

residuals. Spectrum 

consistent with white noise. 
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Relative probabilities via Bayes factors of different models  

for Gliese 667C corrected radial velocities. 

     Number of  

        signals 

  Kepler  model       Apodized 

  Kepler  model 

            0       4.2 x 10-37     4.2 x 10-37 

            1       2.5 x 10-12     1.7 x 10-12 

            2       6.4 x 10-8     3.8 x 10-8 

            3       1.8 x 10-5     2.3 x 10-4 

            4          2 x 10-4     6.3 x 10-5 

            5               1.0         0.24 

            6            0.44     8.4 x 10-4 

1 sim 

3 4 

5 

6 

7 

2 

After correction of radial velocity data. 

Of those remaining, the 53 d signal is 2nd  harmonic of rotation period  

+ periods of 28, 31 & 91.5 d are suspect from their appearance in the  

apodized periodogram results of diagnostics shown above. 

39 d signal no longer significant 
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5 signal Kepler periodogram of corrected RV data 

return 

     Of the remaining signals , the 53 d signal is 2nd  harmonic of rotation  

period.  Periods of 28, 31 & 91.5 d are suspect from their appearance  

in the  apodized  periodogram results of diagnostics shown above. 
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1) Alternative periodogram models provide some insights 

     to distinguishing signals from stellar artifacts. 

  

2) A hierarchical  (multilevel) Bayes regression analysis 

    can effectively de-convolve the blurring effect of  

    measurement errors. 

3) Based on these preliminary findings, the only signal  

    that I would wager a bet on to be planetary in origin is 

    the 7.2 d period. The close proximity of the 28 and 31 d 

    signals together with the period derivative hinted by the 

    chirp analysis calls both into question. 

Preliminary conclusions based on HARPS data  
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