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Topics for Today

We will look at:

• Trans-dimensional MCMC

• Nested Sampling
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Trans-dimensional MCMC

Trans-dimensional MCMC is useful when the model dimension is

unknown. This arises quite frequently in astrophysics.
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Trans-dimensional examples

Some examples from my own work: How many stars are in these

images (and what are their positions and fluxes)?
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Trans-dimensional examples

How many stars were there?
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Trans-dimensional examples

How many stars were there?
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Trans-dimensional examples

Perhaps you can see how to use MCMC to estimate the parameters of

the stars (x and y position, and a brightness, for each), if we knew

the number of stars.

But we want to know the number of stars!
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Asteroseismology Example

Image credit: Tim Bedding
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Asteroseismology: Time Series Data

Image credit: Tim Bedding
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Asteroseismology Example: Power Spectrum

Image credit: Tim Bedding
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Asteroseismology Example: Toy Dataset
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Asteroseismology Example: Question
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Given this data, how many peaks are there? And what are their

parameters (position, height, width)?

12 of 51



Asteroseismology Example

Each of the peaks has a “Lorentzian” shape (same as the Cauchy

distribution!):

m(x) = B +
N∑
i=1

Ai[
1 +

(
x−ci
wi

)2] (1)

Ai = amplitude of ith component

ci = center of ith component

wi = width of ith component
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Asteroseismology Example

The sampling distribution/likelihood is

yi ∼ Exponential(m(xi ; θ)).

i.e.

p({yi}|θ) =
n∏

i=1

1

m(xi ; θ)
exp

[
− yi
m(xi ; θ)

]
.
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Asteroseismology Example

Some simple priors are:

N ∼ Uniform ({0, 1, 2, ..., 9, 10})
log(B) ∼ Uniform

[
log(10−3, log(103)

]
ci ∼ Uniform (xmin, xmax)

Ai ∼ Exponential(mean=10)

log(wi ) ∼ Uniform [log(0.01xrange), log(xrange)]
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Recall: Monte Carlo

• Marginalisation

becomes trivial

• We can quantify all

uncertainties we

might be interested

in
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Recall: The Metropolis Algorithm

• Start at some point θ in the hypothesis space.

• Loop

{
◦ Generate proposal from some distribution q(θ′|θ) (e.g. slightly

perturb the current position).

◦ With probability α = min
(

1, p(θ
′)p(D|θ′)

p(θ)p(D|θ)

)
, accept the proposal (i.e.

replace θ with θ′).

◦ Otherwise, stay in the same place.

}
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Trans-Dimensional MCMC

For problems of unknown dimensionality, the hypothesis space is the

union of several fixed-dimension hypothesis spaces. To do MCMC

with these models, you need a way to move between models with

different numbers of components.

N=0 N=1 N=2 N=3

18 of 51



Approaches to Trans-Dimensional MCMC

There are several approaches:

• Reversible Jump MCMC (Green, 1995)

• Birth and Death MCMC (Stephens, 2000)
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Approaches to Trans-Dimensional MCMC

We will do our MCMC like this:

• Put 10 components in the model, and do MCMC as usual.

• Interpret the parameter N as the number of components that

are “switched on”
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Code for the priors

Let’s take a look at the Python code for the priors. Remember, the

prior appears in two places:

• The function from prior, which we use to generate a starting

point

• The function log prior, which calculates the log of the prior

density, which is used to determine the acceptance probability.
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Code for the likelihood

Let’s take a look at the Python code for the likelihood function.

Note how the calculation of the model curve m(x) only sums over the

first N model components, the ones that are switched on.
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Label Switching Degeneracy

Imagine we found a solution with two peaks like this:

Peak 1 : {A, c ,w} = {5, 3, 2}
Peak 2 : {A, c ,w} = {3, 7, 1}

Then the following solution is completely equivalent:

Peak 1 : {A, c ,w} = {3, 7, 1}
Peak 2 : {A, c ,w} = {5, 3, 2}
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Label Switching Degeneracy

When there are N peaks, the posterior will have N! identical modes,

corresponding to switching the order of the peaks.

We can add a proposal move that switches labels. Since the meaning

of the models is the unchanged, this proposal will always be accepted.
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Label Switching Degeneracy

The shuffle function chooses two switched-on peaks “at random”

and swaps their parameter values.
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Label Switching Degeneracy

When there are N peaks, the posterior will have N! identical modes,

corresponding to switching the order of the peaks.

We can add a proposal move that switches labels. Since the meaning

of the models is the unchanged, this proposal will always be accepted.
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Label Switching Degeneracy

The shuffle function chooses two peaks “at random” and swaps

their parameter values.
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Label Switching Degeneracy

Consider the marginal posterior distribution for x1. It will be

multimodal, because of the label-switching issue.

In models like this, we can plot a mixture of the posterior for x1, x2

(when it exists), and so on.
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Part II: Nested Sampling

Nested Sampling is a Monte Carlo method (not necessarily MCMC)

that was introduced by John Skilling in 2004.

It is very popular in astrophysics and has some unique strengths.
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Marginal Likelihood

The marginal likelihood is useful for “model selection”. Consider

two models: M1 with parameters θ1, M2 with parameters θ2. The

marginal likelihoods are:

p(D|M1) =

∫
p(θ1|M1)p(D|θ1,M1) dθ1

p(D|M2) =

∫
p(θ2|M2)p(D|θ2,M2) dθ2

These are the normalising constants of the posteriors, within each

model.
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Bayesian Model Selection

If you have the marginal likelihoods, it’s easy:

P(M1|D)

P(M2|D)
=

P(M1)

P(M2)
× P(D|M1)

P(D|M2)
.

(posterior odds) = (prior odds)× (bayes factor)
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Challenging features

Another motivation: standard MCMC methods can get stuck in the

following situations:

x

y
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Nested Sampling

Nested Sampling was built to estimate the marginal likelihood.

But it can also be used to generate posterior samples, and it can

potentially work on harder problems where standard MCMC methods

get stuck.
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Notation

When discussing Nested Sampling, we use different symbols:

p(D|M1) =

∫
p(θ1|M1)p(D|θ1,M1) dθ1

becomes

Z =

∫
π(θ)L(θ) dθ.

Z = marginal likelihood, L(θ) = likelihood function, π(θ) = prior

distribution.
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Nested Sampling

Imagine we had an easy 1-D problem, with a Uniform(0, 1) prior, and

a likelihood that was strictly decreasing.
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Figure: Likelihood function with area Z.
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Nested Sampling

The key idea of Nested Sampling: Our high dimensional problem can

be mapped onto the easy 1-D problem. Figure from Skilling (2006):
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Nested Sampling X

Define

X (L∗) =

∫
π(θ)1 (L(θ) > L∗) dθ

X is the amount of prior probability with likelihood greater than L∗.

Loosely, X is the volume with likelihood above L∗.

Higher L∗ ⇔ lower volume.
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Numerical Integration

If we had some points with likelihoods Li , and we knew the

corresponding X -values, we could approximate the integral

numerically, using the trapezoidal rule or something similar.
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Nested Sampling Procedure

This procedure gives us the likelihood values.

• Sample θ = {θ1, . . . , θN} from the prior π(θ).

• Find the point θk with the worst likelihood, and let L∗ be its

likelihood.

• Replace θk with a new point from π(θ) but restricted to the region

where L(θ) > L∗.

Repeat the last two steps many times. The discarded points (the

worst one at each iteration) are the output.

39 of 51



Generating the new point

We need a new point from π(θ) but restricted to the region where

L(θ) > L∗. The point being replaced has the worst likelihood, so all

the other points satisfy the constraint!

So we can use one of the other points to initialise an MCMC run,

trying to sample the prior, but rejecting any proposal with likelihood

below L∗. See code.
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Generating the new point

There are alternative versions of NS available, such as MultiNest,

that use different methods (not MCMC) to generate the new point.

I also have a version of NS called Diffusive Nested Sampling, which

is a better way of doing NS when using MCMC. I’m happy to discuss

it offline.
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Nested Sampling Procedure

Nested Sampling gives us a sequence of points with increasing

likelihoods, but we need to somehow know their X -values!
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Estimating the X values

Consider the simple one-dimensional problem with Uniform(0, 1) prior.

When we generate N points from the prior, the distribution for the

X -value of the worst point is Beta(N, 1). So we can use a draw from

Beta(N, 1) as a guess of the X value.
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Estimating the X values

Each iteration, the worst point should reduce the volume by a factor

that has a Beta(N, 1) distribution. So we can do this:

X1 = t1

X2 = t2X1

X3 = t3X2

and so on, where ti ∼Beta(N, 1). Alternatively, we can use a simple

approximation.
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Deterministic Approximation
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Figure: Deterministic approximation. Each iteration reduces the volume by a

factor ≈ e−1/N . e.g. if N = 5, the worst likelihood accounts for about 1/5th

of the remaining prior volume.
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Posterior Distribution from Nested Sampling

The posterior sample can be obtained by assigning weights Wj to the

discarded points:

Wj =
Ljwj

Z

where wj = Xj−1 − Xj+1 is the “prior weight/width” associated with

the point. The “effective sample size” is given by

ESS = exp

− m∑
j=1

Wj logWj
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Information

NS can also calculate the information, also known as the

Kullback-Liebler divergence from the prior to the posterior.

H =

∫
p(θ|D) log

[
p(θ|D)

p(θ)

]
dθ

≈ log

(
volume of prior

volume of posterior

)
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Nested Sampling Code

I have written a basic implementation of Nested Sampling in Python.

Let’s use it on the transit problem and the asteroseismology problem.
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Nested Sampling Plots
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Nested Sampling Plots

A necessary but not sufficient condition for everything being okay is

that you see the entire peak in the posterior weights.

If it’s not there, you haven’t done enough NS iterations. i.e. your

parameter values have lower likelihoods than what is typical of the

posterior distribution.
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Nested Sampling Plots

The shape of the log(L) vs. log(X ) plot is also informative: if it is

straight for a long time, or concave up at some point, your problem

contains a phase transition, and it’s a good thing you used Nested

Sampling!
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