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Bayesian Inference How-To

As the title suggests, this session will be practical.

We will study a selection of techniques that you can use to solve any

inference problem that comes your way!

I will code in front of you, which is somewhat risky.
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That said...

It is inevitable that I will state some opinions and philosophies!

We can’t help it.
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Python

Examples will be given in Python, and will use numpy for numerical

things (arrays, random number generation), and matplotlib for

plotting.

Code should work in either Python 2 or 3.
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Python

All code will assume the following import statements.

import numpy as np

import numpy.random as rng

import matplotlib.pyplot as plt

import copy
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Python

When I code in Python, I have a C++ accent. Here’s a habit that

might seem strange:

x = 4 # I know this is an integer

y = 5. # This is a float because of the decimal point.
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Emphasis

I will try to emphasise the underlying ideas of the methods.

I will not be teaching specific software packages (e.g. DNest3, emcee,

JAGS, MultiNest, Stan), though I may mention them.
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Ingredients I

Bayesian inference need the following inputs:

• A hypothesis space describing the set of possible answers to our

question (“parameter space” in fitting is the same concept).

• A prior distribution p(θ) describing how plausible each of the

possible solutions is, not taking into account the data.
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Ingredients II

Bayesian inference need the following inputs:

• A sampling distribution p(D|θ) describing our knowledge about

the connection between the parameters and the data.

When D is known, this is a function of θ called the likelihood.
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The Posterior Distribution

The data helps us by changing our prior distribution to the posterior

distribution, given by

p(θ|D) =
p(θ)p(D|θ)

p(D)

where the denominator is the normalisation constant, usually called

either the marginal likelihood or the evidence.

p(D) =

∫
p(θ)p(D|θ) dθ.
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Posterior Distribution vs. Maximum Likelihood

The practical difference between these two concepts is greater in

higher dimensional problems.
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Updating Probabilities: Example

A patient goes to the doctor because he as a fever. Define

H ≡ “The patient has Ebola”

H̄ ≡ “The patient does not have Ebola”.
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Updating Probabilities: Example

Based on all of her knowledge, the doctor assigns probabilities to the

two hypotheses.

P(H) = 0.01

P(H̄) = 0.99

But she wants to test the patient to make sure.
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Updating Probabilities: Example

The patient is tested. Define

D ≡ “The test says the patient has Ebola”

D̄ ≡ “The test says the patient does not have Ebola”.

If the test were perfect, we’d have P(D|H) = 1, P(D̄|H) = 0,

P(D|H̄) = 0, and P(D̄|H̄) = 1.
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Updating Probabilities: Example

The Ebola test isn’t perfect. Suppose there’s a 5% probability it

simply gives the wrong answer. Then we have:

P(D|H) = 0.95

P(D̄|H) = 0.05

P(D|H̄) = 0.05

P(D̄|H̄) = 0.95
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Updating Probabilities: Example

Overall, there are four possibilities, considering whether the patient

has Ebola or not, and what the test says.

(H,D)

(H̄,D)

(H, D̄)

(H̄, D̄)
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Updating Probabilities: Example

The probabilities for these four possibilities can be found using the

product rule.

P(H,D) = 0.01× 0.95

P(H̄,D) = 0.99× 0.05

P(H, D̄) = 0.01× 0.05

P(H̄, D̄) = 0.99× 0.95

These four possibilities are mutually exclusive (only one of them is

true) and exhaustive (it’s not “something else”), so the probabilities

add up to 1.
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Updating Probabilities: Example

The test results come back and say that the patient has Ebola. That

is, we’ve learned that D is true. So we can confidently rule out those

possibilities where D is false:

P(H,D) = 0.01× 0.95

P(H̄,D) = 0.99× 0.05

P(H, D̄) = 0.01× 0.05

P(H̄, D̄) = 0.99× 0.95
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Updating Probabilities: Example

We are left with these two possibilities.

P(H,D) = 0.01× 0.95

P(H̄,D) = 0.99× 0.05

It would be strange to modify these probabilities just because we

deleted the other two. The only thing we have to do is renormalise

them, by dividing by the total, so they sum to 1 again.
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Updating Probabilities: Example

Normalising, we get

P(H|D) = (0.01× 0.95)/(0.01× 0.95 + 0.99× 0.05) = 0.161

P(H̄|D) = (0.99× 0.05)/(0.01× 0.95 + 0.99× 0.05) = 0.839
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Moral

Bayesian updating is completely equivalent to:

• Writing a list of possible answers to your question

• Giving a probability to each

• Deleting the ones that you discover are false.

It just seems more complicated than this because we often apply it to

more complex sets of hypotheses.
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Transit Example

This example is quite simple, yet it is complex enough to demonstrate

many important principles.

It is also closely related to many astronomical situations!
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Transit Example
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Related to the transit example...

• Realistic exoplanet transits

• Finding emission/absorption lines in spectra

• Finding stars/galaxies in an image

• ¡Y mucho más!
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Transit Example: The Truth

The red curve was:

µ(t) =

{
10, 2.5 ≤ t ≤ 4.5

5, otherwise.
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Transit Example: The Truth

The red curve was:

µ(t) =

{
10, 2.5 ≤ t ≤ 4.5

5, otherwise.

and the noise was added like this:

# Add noise

sig = 1.

y += sig*rng.randn(y.size)
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Transit Example: Inference

Let’s fit the data with this model:

µ(t) =

{
A, (tc − w/2) ≤ t ≤ (tc + w/2)

A− b, otherwise.

We don’t know A, b, tc , and w . But we do know the data D.
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Transit Example: Parameters

We don’t know A, b, tc , and w . These are our unknown parameters.

Let’s find the posterior.

p(A, b, tc ,w |D) =
p(A, b, tc ,w)p(D|A, b, tc ,w)

p(D)
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Transit Example: Problems I

The posterior is given by:

p(A, b, tc ,w |D) =
p(A, b, tc ,w)p(D|A, b, tc ,w)

p(D)

But...

How do we choose the prior, p(A, b, tc ,w)?

How do we choose the likelihood, p(D|A, b, tc ,w)?

How do we find p(D)?
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Choosing priors

The prior p(A, b, tc ,w) describes what values are plausible, without

taking the data into account.

Using the product rule, we can break this down:

p(A, b, tc ,w) = p(A)p(b|A)p(tc |b,A)p(w |tc , b,A)

Often, we can assume the prior factorises like this (i.e. the priors are

independent):

p(A, b, tc ,w) = p(A)p(b)p(tc)p(w)
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Choosing priors

Often, before we get the data, we have a lot of uncertainty about the

values of the parameters. That’s why we wanted the data!

This motivates vague priors.
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Uniform Priors

Let’s just use wide uniform priors.

e.g.

p(A) =

{
1

200 , −100 ≤ A ≤ 100

0, otherwise.

Abbreviated:

p(A) ∼ Uniform(−100, 100)

Or even more concisely:

A ∼ U(−100, 100)
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Uniform Priors

For all four parameters:

A ∼ U(−100, 100)

b ∼ U(0, 10)

tc ∼ U(tmin, tmax)

w ∼ U(0, tmax − tmin)

Where tmin and tmax give the time range of the dataset. Question: is

this legitimate? Are we using the data to set our priors?
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Sampling Distribution / Likelihood

Let’s assume “gaussian noise”:

p(yi |A, b, tc ,w) =
N∏
i=1

1

σi
√

2π
exp

[
− 1

2σ2i
(yi −m(ti ;A, b, tc ,w))2

]
.

or more concisely:

yi |A, b, tc ,w ∼ N
(
m(ti ;A, b, tc ,w), σ2i

)
.
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Transit Example: Problems II

Even if we can calculate the posterior p(A, b, tc ,w |D), it is still a

probability distribution over a four-dimensional space.

How can we understand and visualise it?
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Answer to Problem II: Monte Carlo

• Marginalisation

becomes trivial

• We can quantify all

uncertainties we

might be interested

in
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Answer to Problem II: Monte Carlo

e.g. Posterior mean of w :∫
wp(A, b, tc ,w |D) dA db dtc dw ≈

1

N

N∑
i=1

wi (1)

(i.e. just the arithmetic mean). Probability of being in some region R:∫
R
p(A, b, tc ,w |D) dA db dtc dw ≈

1

N

N∑
i=1

1 (θi ∈ R) (2)

(i.e. just the fraction of the samples in R).
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Monte Carlo

Samples from the posterior are very useful, but how do we generate

them?

Answer: Markov Chain Monte Carlo

This is not the only answer, but it’s the most popular.
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Monte Carlo

Samples from the posterior are very useful, but how do we generate

them?

https://www.youtube.com/watch?v=Vv3f0QNWvWQ
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The Metropolis Algorithm

• Start at some point θ in the hypothesis space.

• Loop

{
◦ Generate proposal from some distribution q(θ′|θ) (e.g. slightly

perturb the current position).

◦ With probability α = min
(

1, p(θ
′)p(D|θ′)

p(θ)p(D|θ)

)
, accept the proposal (i.e.

replace θ with θ′).

◦ Otherwise, stay in the same place.

}
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Acceptance Probability

The full acceptance probability is

α = min

(
1,

q(θ|θ′)
q(θ′|θ)

p(θ′)

p(θ)

p(D|θ′)
p(D|θ)

)
(3)

We’ll usually make choices where the qs cancel out, and sometimes

we’ll choose the qs to also cancel out the prior ratio (easier than it

sounds).
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Implementing the Metropolis Algorithm

To use Metropolis on the Transit Problem, we’ll need functions to:

• Generate a starting point (I like to draw the parameters from the

prior)

• Make proposals

• Evaluate the prior distribution at any point

• Evaluate the likelihood at any point
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Coding...

Note the use of logarithms to avoid overflow and underflow.
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Random Walk Proposals

# Generate a proposal

L = 1.

proposal = x + L*rng.randn()

Problem: Efficiency depends strongly on L. The only way to know the

optimal value of L is to have already solved the problem! Oh dear.
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Heavy-Tailed Random Walk Proposals

# Generate a proposal

L = jump_size*10.**(1.5 - 6.*rng.rand())

proposal = x + L*rng.randn()

where jump size ≈ prior width. Don’t need steps much bigger than

the prior width, may need them to be much smaller.
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Acceptance Probability

The full acceptance probability is

α = min

(
1,

q(θ|θ′)
q(θ′|θ)

p(θ′)

p(θ)

p(D|θ′)
p(D|θ)

)
(4)

For the random walk proposal, the q ratio is equal to 1. Do you

understand why?
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Proposing one parameter at a time

def proposal(params):

new = copy.deepcopy(params)

which = rng.randint(num_params) # Parameter to change

L = jump_sizes[which]*10.**(1.5 - 6.*rng.rand())

new[which] += L*rng.randn()

return new
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Useful Plots: The Trace Plot

# Trace plot of the first parameter

plt.plot(keep[:,0])
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Useful Plots: The Trace Plot
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Useful Plots: Marginal Posterior

# Marginal posterior for first parameter

# Excluding first 2000 points

plt.hist(keep[:,0], 100)
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Useful Plots: Marginal Posterior

9.7 9.8 9.9 10.0 10.1 10.2 10.3 10.4 10.5
A

0

50

100

150

200

250

300
N

u
m

b
er

of
sa

m
p

le
s
Marginal Posterior Distribution

51 of 79



Comment on Histograms

If your histograms have so many points that they look perfectly

smooth, you are working on an easy problem!
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Useful Plots: Joint Posterior

# Joint posterior for first two parameters

# excluding first 2000 points

plt.plot(keep[:,0], keep[:,1], ’b.’)
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Useful Plots: Joint Posterior
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Useful Plots: “Corner” or “Triangle” Plots

I like the package triangle.py by Dan Foreman-Mackey

(https://github.com/dfm/triangle.py)
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Useful Summaries

Posterior distributions can be complicated. Often, we want a simple

statement of the uncertainty. This leads to:

• Point estimates

• Credible intervals
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Calculating Summaries

# Posterior mean and sd

np.mean(keep[:,0])

np.std(keep[:,0])

# For median and credible interval

x = np.sort(keep[:,0].copy())

# Credible interval (68%)

x[0.16*len(x)]

x[0.84*len(x)]
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Bayes’ Rule

Here is Bayes’ rule again, with the background information (or

assumptions) made explicit:

p(θ|D, I ) =
p(θ|I )p(D|θ, I )

p(D|I )

In any particular application, we make a definite choice of the prior

and the sampling distribution, as well as what θ, D, and I are.
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What is a parameter?

What is a parameter?

• A quantity whose value you would like to know; or

• A quantity you think you need in order to write down p(D|θ).

The latter are often called nuisance parameters. For example, in the

transit problem we might be interested only in w , but we can’t use

our “gaussian noise” assumption without also including A, b, and tc .
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In the Transit Example

Our parameters were:

θ ≡ {A, b, tc ,w}

What was our data D? We had a data file with three columns: times

{ti}, measurements {yi}, and “error bars” {σi}. Was this all our data

D?
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Answer: No!

Only the {yi} from the data file was our data. Why? We wrote down

p({yi}|θ, I ), but we did not write down p({ti}|θ, I ), or p({σi}|θ, I ).

Therefore:

θ ≡ {A, b, tc ,w}
D ≡ {yi}
I ≡ {{ti}, {σi}, etc.}
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Assigning Priors

When assigning our priors (and sampling distribution), it is

completely legitimate to use two out of the three columns of our

“data” file!
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Alternative Vague Priors

How long is a piece of string?
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Alternative Vague Priors

How long is a piece of string?

Twice the distance from the middle to the end.
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Alternative Vague Priors

Same prior for θ as for 2θ =⇒ :

p(θ) ∝ 1

θ

or

log(θ) ∼ Uniform(, ).

By analogy with the log-normal distribution, I like to call this the

log-uniform distribution.
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Why use the log-uniform prior?

Let θ = the mass of a galaxy, in solar masses.

“Prior ignorance” might motivate this prior:

θ ∼ U(0, 1015).
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Why use the log-uniform prior?

“Prior ignorance” might motivate this prior:

θ ∼ U(0, 1015).

But this implies:

P(θ ≥ 1014) = 0.9

P(θ ≥ 1012) = 0.999.

i.e. we are not ignorant at all, with respect to some questions!
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Why use the log-uniform prior?

log10(θ) ∼ U(5, 15).

implies:

P(θ ≥ 1014) = 0.1

P(θ ≥ 1012) = 0.3

or

P(θ ∈ [1010, 1011]) = P(θ ∈ [1011, 1012]) = P(θ ∈ [1012, 1013])...
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Using the log-uniform prior in Metropolis

Easiest way: just make θ′ = log(θ) the parameter:

• Define proposals, etc, in terms of θ′, which has a uniform prior

• Just exponentiate it (θ = eθ
′
) before using it in the likelihood.

Let’s apply this to the w (width) parameter in the transit model.
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Using the log-uniform prior in Metropolis

Coding...
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Safety Features

In “(data) = (model) + noise” type models, be sceptical of the

gaussian noise assumption. For example, with N = 1000 data points

and σi = 1 for all i , one consequence of the sampling distribution

(really a prior) is:

P

(
1

N

N∑
i=1

(yi −m(ti ; θ)) ∈ [−0.06, 0.06]

)
≈ 95% (5)

Really? Seems a bit confident.
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Safety Features

There are many ways to do this kind of thing. This is just my

favourite. Replace:

yi |A, b, tc ,w ∼ N
(
m(ti ;A, b, tc ,w), σ2i

)
with

yi |A, b, tc ,w ∼ Student-t
(
m(ti ;A, b, tc ,w), (Kσi )

2, ν
)
.
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t Distributions from Wikipedia

73 of 79



t Density

For a single variable...

p(x |ν, µ, σ) =
Γ
(
ν+1
2

)
Γ
(
ν
2

)
σ
√
πν

[
1 +

1

ν

(x − µ)2

σ2

]− ν+1
2

Our likelihood is a product of N terms like this, and we have to code

up the log of the likelihood. Also, remember we’re scaling the widths

σ by a factor K .
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Priors for K and ν

Let’s use

log(ν) ∼ U(log(0.1), log(100)) (6)

(Almost certainly not the reference prior, sorry José!)

And for K ≥ 1, let’s use

p(K ) =
1

2
δ(K − 1) +

1

2
e−K . (7)

75 of 79



Prior for K

The prior

p(K ) =
1

2
δ(K − 1) +

1

2
e−(K−1). (8)

implies K might be precisely 1, or not. Computationally, there are two

approaches:

• Make a K = 1 model and a K 6= 1 model, run them separately

with a method that calculates marginal likelihoods (e.g. Nested

Sampling)

• Make a single model which includes both possibilities.
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Prior for K
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Prior for K

The prior

p(K ) =
1

2
δ(K − 1) +

1

2
e−(K−1). (9)

can be implemented by using uK as a parameter with a U(0, 1) prior,

and letting

K =

{
1, uK < 0.5

1− log (1− (2uK − 1)) , otherwise.
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Relationship between K and uK
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Let’s implement this and find the posterior probability that K = 1.
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