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José M. Bernardo

Universitat de València, Spain
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(i) Concept of Probability

• Introduction. Notation. Statistical models.

• Intrinsic discrepancy. Intrinsic convergence of distributions.

• Foundations. Probability as a rational degree of belief.

(ii) Basics of Bayesian Analysis

• Parametric inference. The learning process.

• Reference analysis. No relevant initial information.

• Inference summaries. Point and region estimation.

• Prediction. Regression.

• Hierarchical models. Exchangeability.
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(iii) Integrated Reference Analysis

• Structure of a decision problem. Axiomatics.

• Decision structure of inference summaries. Estimation and

Hypothesis testing.

• Loss functions in inference problems. The intrinsic discrep-

ancy loss.

• Objective Bayesian methods. Reference priors.

• An integrated approach to objective Bayesian inference. In-

trinsic posterior analysis.

(iv) Basic References
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Concept of Probability

Introduction

• One tentatively accepts a formal statistical model, typically sug-

gested by informal descriptive evaluation.

Conclusions are obviously conditional on the assumption that the

model is correct.

• The Bayesian approach is firmly based on axiomatic foundations.

These imply that all uncertainties must be described by probabilities.

• In particular, parameters must have a (prior) distribution describing

available information about their values.

This is not a description of their variability (since they are fixed

unknown quantities), but a description of the uncertainty about their

true values.
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• An important particular case arises when there is no relevant ob-

jective initial information, and the use of subjective information is

not desired.

This typically occurs in scientific and industrial reporting, public

decision making, auditing, and many other situations

• Bayesian analysis then requires a prior distributions exclusively based

on model assumptions and available, well-documented data.

This is the subject of Objective Bayesian Statistics.
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Notation

• Under conditions C, p(x |C), π(θ |C) are, respectively, probability

densities (or mass) functions of observables x and parameters θ.

p(x |C) ≥ 0,
∫
X p(x |C) dx = 1, E[x |C] =

∫
X x p(x |C) dx,

π(θ |C) ≥ 0,
∫

Θ π(θ |C) dθ = 1, E[θ |C] =
∫

Θ θ π(θ |C) dθ.

• Special densities (or mass) functions use specific notation, as

N(x |µ, σ), Bi(x |n, θ), or Po(x |λ).

In particular,

Be(x |α, β) = Γ(α+β)
Γ(α)Γ(β) x

α−1(1− x)β−1, 0 < x < 1, α > 0, β > 0.

Ga(x |α, β) = βα

Γ(α) x
α−1e−βx, x > 0, α > 0, β > 0.

St(x |µ, σ, α) = Γ{(α+1)/2)}
Γ(α/2)

1
σ
√
απ

[
1 + 1

α

(
x−µ
σ

)2
]−(α+1)/2

,

x ∈ <, µ ∈ <, σ > 0, α > 0.
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Statistical Models

• Statistical model generating x ∈ X , {p(x |θ),x ∈ X ,θ ∈ Θ}
Parameter vector θ = {θ1, . . . , θk} ∈ Θ.

Parameter space Θ ⊂ <k.
Data set x ∈ X . Sampling space X , of arbitrary structure.

• Likelihood function of x, l(θ |x).

l(θ |x) = p(x |θ), as a function of θ ∈ Θ.

• Maximum likelihood estimator (mle) of θ

θ̂ = θ̂(x) = arg supθ∈Θ l(θ |x)

• Data x = {x1, . . . , xn} random sample (iid) from model if

p(x |θ) =
∏n

j=1 p(xj |θ), xj ∈ X , X = X n.
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• Behaviour under repeated sampling (general, not necessarily iid data)

is obtained by considering {x1,x2, . . .}, a (possibly infinite) sequence

of possible replications of the complete data set x.

Denote by x(m) = {x1, . . . ,xm} a finite set of m such replications.

Asymptotic results are obtained as m→∞.

• Data {x1, . . . ,xn} are often assumed to be exchangeable in that

their joint distribution p(x1, . . . ,xn) may be considered to be invariant

under permutations (order of observation inmaterial)

• Under exchangeability, parameters may formally be definedas asymp-

totic limits of specific data functions.

Thus, If data {x1, . . . , xn} are exchangeable 0-1 random quantities,

then p(xi) = θxi(1 − θ)1−xi, with θ = limm→∞(1/m)
∑m

i=1 xi. Or, if

data {x1, . . . ,xn} are exchangeable normal vectors N(xi |µ,Σ), then

µ = limm→∞(1/m)
∑m

i=1xi.
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Intrinsic Divergence

Logarithmic divergences

• The logarithmic divergence (Kullback-Leibler) k{p̂ | p} of a density

p̂(x), x ∈ X from its true density p(x), is

κ{p̂ | p} =
∫
X p(x) log p(x)

p̂(x) dx, (provided this exists)

• The functional κ{p̂ | p} is non-negative; it is zero iff p̂(x) = p(x)

(a.e.), and it is invariant under one-to-one transformations of x.

• But κ{p1 | p2} is not symmetric and diverges if, strictly, X2 ⊂ X1 .

Intrinsic discrepancy between distributions

• δ{p1, p2} = min
{∫
X1

p1(x) log p1(x)
p2(x) dx,

∫
X2

p2(x) log p2(x)
p1(x) dx

}
The intrinsic discrepancy δ{p1, p2} is non-negative; it is zero iff,

p1 = p2 a.e., and it is invariant under one-to-one transformations

of x,
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• The intrinsic discrepancy is defined even if either X2 ⊂ X1 or

X1 ⊂ X2. It has an operative interpretation as the minimum amount

of information (in nits) required to discriminate between the two dis-

tributions.

Interpretation of the intrinsic discrepancy

• Let {p1(x |θ1),θ1 ∈ Θ1} or {p2(x |θ2),θ2 ∈ Θ2} be two alter-

native statistical models for x ∈ X , one of which is assumed to be

true. The intrinsic divergence δ{θ1,θ2} = δ{p1, p2} is then minimum

expected log-likelihood ratio in favour of the true model.

Indeed, if p1(x |θ1) true model, the expected log-likelihood ratio in

its favour is E1[log{p1(x |θ1)/p2(x |θ1)}] = κ{p2 | p1}. If the true

model is p2(x |θ2), the expected log-likelihood ratio in favour of the

true model is κ{p2 | p1}. But δ{p2 | p1} = min[κ{p2 | p1}, κ{p1 | p2}].
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Calibration of the intrinsic discrepancy

• If, say, δ = log[100] ≈ 4.6 nits, likelihood ratios for the true model

are expected to be larger than 100 making discrimination relatively

easy.

• For small ε > 0 values if δ = log(1+ε) ≈ ε nits, likelihood ratios for

the true model are expected to be about 1 + ε making discrimination

very hard.

• Some conventional values:

Intrinsic Discrepancy δ 0.01 0.69 2.3 4.6 6.9
Min Expected Likelihood Ratio for true model 1.01 2 10 100 1000

Thus, discrepancy values of, say, log[100] ≈ 4.6, corresponding to

minimum expected likelihood ratios of about 100 for the true model,

may be conventionally regarded as evidence that the two models are

too wide apart to be used indistinctly.
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Example. Conventional Poisson approximation Po(r |nθ) of Bino-

mial probabilities Bi(r |n, θ).

δ{Bi,Po |n, θ} = min[k{Bi |Po}, k{Po |Bi}] = k{Bi |Po}

=

n∑
r=0

Bi(r |n, θ) log

[
Bi(r |n, θ)

Po(r |nθ)

]
= δ{n, θ}

0.1 0.2 0.3 0.4 0.5
Θ

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16
∆ HBi, Po È n, Θ <

n=1

n=3
n=5
n=¥

δ{3, 0.05} = 0.00074

δ{5000, 0.05} = 0.00065

δ{∞, θ} = 1
2[−θ − log(1− θ)]

• Good Poisson approximations to Binomial probabilities are not pos-

sible if θ is not small, however large n might be.
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Intrinsic Convergence of Distributions

• Intrinsic convergence. A sequence of probability densities (or mass)

functions {pi(x)}∞i=1 converges intrinsically to p(x) if (and only if) the

intrinsic divergence between pi(x) and p(x) converges to zero. i.e., iff

limi→∞ δ(pi, p) = 0.

• Example. Normal approximation to a Student distribution.

δ(α) = δ{St(x |µ, σ, α),N(x |µ, σ)} = min[k{Stα |N}, k{N | Stα}]

= k{Stα |N} =

∫
<

N(x | 0, 1) log
N(x | 0, 1)

St(x | 0, 1, α)
dx ≈ 7

α(22 + 4α)

k{N | Stα} diverges for α ≤ 2

k{Stα |N} is finite for all α > 0.

δ(18) ≈ 0.04 δ(25) ≈ 0.02
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20 40 60 80 100

0.002

0.004

0.006

0.008

0.01

Α

kHNÈStΑL

∆HΑL=kHStΑÈNL

kHNÈSt39L=0.0012
kHSt39ÈNL=0.0010

Expected log-density ratios when approximating Student by Normal

smaller than 0.001 when α ≥ 40. This suggests that the approximation

may be reasonable if the degrees of freedom are larger than 40.
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Foundations

Foundations of Statistics

• Axiomatic foundations on rational description of uncertainty imply

that the uncertainty about all unknown quantities should be measured

with probability distributions {π(θ |C),θ ∈ Θ} describing their plau-

sibility given available conditions C.

• Axioms have a strong intuitive appeal; examples include:

• Transitivity of plausibility

If E1 > E2 |C, and E2 > E3 |C, then E1 > E3 |C
• The sure-thing principle

If E1 > E2 |A,C and E1 > E2 |A,C, then E1 > E2 |C).

• Axioms are not a description of actual human activity, but a nor-

mative set of principles for those aspiring to rational behaviour.
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• “Absolute” probabilities do not exist. Typical applications produce

Pr(E |x, A,K), a measure of rational belief in the occurrence of the

event E, given data x, assumptions A and available knowledge K.

Probability as a Measure of Conditional Uncertainty

• Axiomatic foundations imply that Pr(E |C), the probability of an

event E given C is always a conditional measure of the (presumably

rational) uncertainty, on a [0, 1] scale, about the occurrence of E in

conditions C.

• Probabilistic diagnosis. V is the event that a person carries a virus

and + a positive test result. All related probabilities, e.g.,

Pr(+ |V ) = 0.98, Pr(+ |V ) = 0.01, Pr(V |K) = 0.002,

Pr(+ |K) = Pr(+ |V ) Pr(V |K) + Pr(+ |V ) Pr(V |K) = 0.012

Pr(V |+, A,K) = Pr(+ |V ) Pr(V |K)
Pr(+ |K) = 0.164 (Bayes’ Theorem)

are conditional uncertainty measures (and proportion estimates).
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• Estimation of a proportion. Survey conducted to estimate

the proportion θ of positive individuals in a population.

Random sample of size n with r positive.

Pr(a < θ < b | r, n, A,K), a conditional measure of the uncertainty

about the event that θ belongs to [a, b] given assumptions A,

initial knowledge K and data {r, n}.
• Measurement of a physical constant. Measuring the unknown

value of a physical constant µ, with data x = {x1, . . . , xn}, considered

to be measurements of µ subject to error.

Desired to find Pr(a < µ < b |x = {x1, . . . , xn}, A,K), the prob-

ability that the unknown value of µ (fixed in nature, but unknown to

the scientists) belongs to [a, b], given the information provided by the

data x, any assumptions A made, and available knowledge K.
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Nuisance parameters

• The statistical model usually include nuisance parameters, unknown

quantities , which have to be eliminated in the statement of the final

results.

For instance, the precision of the measurements described by un-

known standard deviation σ in a N(x |µ, σ) normal model.

Restrictions

• Relevant scientific information may impose restrictions on the ad-

missible values of the quantities of interest. These must be taken into

account.

For instance, in measuring the value of the gravitational field g in a

laboratory, it is known that it must lie between 9.7803 m/sec2 (average

value at the Equator) and 9.8322 m/sec2 (average value at the poles).
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• Future discrete observations. Counting the number r of times that

an event E takes place in each of n replications. Desired to forecast the

number of times r that E will take place in a future, similar situation,

Pr(r | r1, . . . , rn, A,K). For instance, no accidents in each of n = 10

consecutive months may yield Pr(r = 0 |x, A,K) = 0.953.

• Future continuous observations. Data x = {y1, . . . ,yn}. Desired

p(y |x, A,K), to forecast a future observation y. For instance, from

breaking strengths x = {y1, . . . , yn} of n randomly chosen safety belt

webbings, the engineer may find Pr(y > y∗ |x, A,K) = 0.9987.

• Regression. Data set consists of pairs x = {(y1,v1), . . . , (yn,vn)}
of quantity yj observed in conditions vj. Desired to forecast the value

of y in conditions v, p(y |v,x, A,K). For instance, with y contam-

ination levels and v wind speed from source, environment authorities

may be interested in Pr(y > y∗ | v,x, A,K).
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Basics of Bayesian Analysis

Parametric Inference

Bayes Theorem

• Let M = {p(x |θ),x ∈ X ,θ ∈ Θ} be an statistical model, let

π(θ |K) be a probability density for θ given prior knowledge K and

let x be some available data.

π(θ |x,M,K) =
p(x |θ) π(θ |K)∫

Θ p(x |θ) π(θ |K) dθ
,

encapsulates all information about θ given data and prior knowledge.

• Simplifying notation, Bayes’ theorem may be expressed as

π(θ |x) ∝ p(x |θ) π(θ)

The posterior is proportional to the likelihood times the prior.
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• The missing proportionality constant in π(θ |x) ∝ p(x |θ) π(θ),

c(x) = [
∫

Θ p(x |θ) π(θ) dθ]−1 may be deduced from the fact that

π(θ |x) must integrate to one. To identify a posterior distribution it

suffices to identify a kernel k(θ,x) such that π(θ |x) = c(x) k(θ,x).

This is a very common technique.

Bayesian Inference with a Finite Parameter Space

• Model {p(x | θi),x ∈ X , θi ∈ Θ}, with Θ = {θ1, . . . , θm}, so that θ

may only take a finite number m of different values. Using the finite

form of Bayes’ theorem,

Pr(θi |x) =
p(x | θi) Pr(θi)∑m
j=1 p(x | θj) Pr(θj)

, i = 1, . . . ,m.
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• Example: Probabilistic diagnosis. A test to detect a virus, is known

from laboratory research to give a positive result in 98% of the infected

people and in 1% of the non-infected. The posterior probability that a

person who tested positive is infected as a function of p = Pr(V ) is

Pr(V |+) =
0.98 p

0.98 p + 0.01 (1− p)
.

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

Notice the sensitivity of posterior

probability Pr(V |+) to changes

in the prior p = Pr(V ).
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Example: Inference about a binomial parameter.

• Let data x consist of n Bernoulli observations with parameter θ

which contain r positives, so that p(x | θ, n) = θr(1− θ)n−r.

0.005 0.01 0.015 0.02 0.025

100

200

300

400

500

0.35 0.4 0.45 0.5 0.55 0.6 0.65

5

10

15

20

25

30• If π(θ) = Be(θ |α, β), then

π(θ |x) ∝ θr+α−1(1− θ)n−r+β−1

kernel of Be(θ | r + α, n− r + β).

• Prior information (K)

P (0.4 < θ < 0.6) = 0.95,

and symmetric, yields α = β = 47;

• No prior information α = β = 1/2

• n = 100, r = 0

P (θ < 0.01 |x) = 0.844

Notice: θ̂ = 0, but Me[θ |x] = 0.0023
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Sufficiency

• Given a model p(x |θ), t = t(x), is a sufficient statistic if it encap-

sulates all information about θ available in x. Formally, t = t(x) is

sufficient if (and only if), for any prior π(θ) π(θ |x) = π(θ | t). Hence,

π(θ |x) = π(θ | t) ∝ p(t |θ) π(θ). This is equivalent to the frequentist

definition; thus t = t(x) is sufficient iff p(x |θ) = f (θ, t)g(x).

• A sufficient statistic always exists, for t(x) = x is obviously suffi-

cient, but a much simpler sufficient statistic, with fixed dimensionality

independent of the sample size, exists whenever the statistical model

belongs to the generalized exponential family.

• Bayesian methods are independent of the possible existence of a

sufficient statistic of fixed dimensionality. For instance, if data come

from an Student distribution, there is no sufficient statistic of fixed

dimensionality: all data are needed.
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Example: Inference from Cauchy observations

• Data x = {x1, . . . , xn} random from Ca(x |µ, 1) = St(x |µ, 1, 1).

• Objective prior for the location parameter µ is π(µ) = 1, and

π(µ |x) ∝
∏n

j=1
Ca(xj |µ, 1)π(µ) ∝

∏n

j=1

1

1 + (xj − µ)2
.

• Five samples of size n = 2,

simulated from Ca(x | 5, 1)

x1 x2

4.034 4.054
21.220 5.831
5.272 6.475
4.776 5.317
7.409 4.743

0 5 10 15 20 25

0.1

0.2

0.3

0.4

0.5

0.6



Objective Bayesian Statistics 26

Improper prior functions

• Objective Bayesian methods often use functions which play the role

of prior distributions but are not probability distributions. An im-

proper prior function is an non-negative function π(θ) such that∫
Θ π(θ) dθ is not finite. The Cauchy example uses the improper prior

function π(µ) = 1, µ ∈ <.

• Let π(θ) be an improper prior function, {Θi}∞i=1 an increasing se-

quence approximating Θ, such that
∫

Θi
π(θ) <∞, and let {πi(θ)}∞i=1

be the proper priors obtained by renormalizing π(θ) within the Θi’s.

Then, For any data x with likelihood p(x |θ), the sequence of poste-

riors πi(θ |x) converges intrinsically to π(θ |x) ∝ p(x |θ) π(θ).

• This procedure allows a systematic use of improper prior functions,

whenever this is required, as it is often the case in objective Bayesian

statistics.
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• Example. Normal N(x |µ, σ) data, σ known, π(µ) = 1.

π(µ |x) ∝ p(x |µ, σ)π(µ) ∝ exp[− n
2σ2(x̄− µ)2].

Hence, π(µ |x) = N(µ | x̄, σ/
√
n).

For instance, with n = 9, x̄ = 2.11, σ = 4.

-4 -2 0 2 4 6 8
0

0.2

0.4

0.6

0.8

1

µ
π(µ |x)

πi(µ |x)
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Sequential updating

• Prior and posterior are only terms relative to a particular set of

data.

• If data x = {x1, . . . ,xn} are sequentially presented, the final result

will be the same whether data are globally or sequentially processed.

π(θ |x1, . . . ,xi+1) ∝ p(xi+1 |θ) π(θ |x1, . . . ,xi).

The “posterior” at a given stage becomes the “prior” at the next.

• As one should certainly expect, Bayesian procedures with exchange-

able data are always independent of the particular order or grouping

in which the data are processed. This is often not the case with con-

ventional statistical procedures.

• Typically (but not always), the new posterior, π(θ |x1, . . . ,xi+1),

is more concentrated around the true value than π(θ |x1, . . . ,xi).
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• Example. Poisson Po(x |λ) data, with x = {x1, . . . , xn}. Objective

prior π(λ) =∝ λ−1/2. Sufficient statistic r =
∑n

j=1 xj.

π(λ |x) ∝ p(x |λ)π(λ) ∝ exp(−nλ)λr−1/2 ∝ Ga(λ | r + 1/2, n).

1 2 3 4 5 6 7

0.5

1

1.5

2

λ

π(λ | ri, ni) ni = 100

ni = 50

ni = 5

• Posteriors Ga(λ | ri + 1/2, ni)

from increasingly large

simulated data from

Po(x |λ = 3).

The posteriors concentrate

around the true value λ = 3.
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Nuisance parameters

• In general the vector of interest is not the whole parameter vector θ,

but some function φ = φ(θ) of possibly lower dimension.

• By Bayes’ theorem π(θ |x) ∝ p(x |θ) π(θ). Let ω = ω(θ) ∈ Ω

be another function of θ such that ψ = {φ,ω} is a bijection of θ,

and let J(ψ) = (∂θ/∂ψ) be the Jacobian of the inverse function ψ =

ψ(θ). From probability theory, π(ψ |x) = |J(ψ)|
[
π(θ |x)

]
θ=θ(ψ)

and π(φ |x) =
∫

Ω π(φ,ω |x) dω. Any valid conclusion on φ will be

contained in π(φ |x).

• Particular case: marginal posteriors. If model is expressed in terms

of vector of interest φ, and vector of nuisance parameters ω, so that

p(x |θ) = p(x |φ,ω), specify the prior π(θ) = π(φ) π(ω |φ); get the

joint posterior π(φ,ω |x) ∝ p(x |φ,ω) π(ω |φ) π(φ), and integrate

out ω, so that π(φ |x) ∝ π(φ)
∫

Ω p(x |φ,ω) π(ω |φ) dω.
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Inferences about a Normal mean

• Data x = {x1, . . . xn} random from N(x |µ, σ) with likelihood

p(x |µ, σ) ∝ σ−n exp[−n{s2 + (x̄− µ)2}/(2σ2)],

where nx̄ =
∑

i xi, and ns2 =
∑

i(xi − x̄)2.

• The objective prior is π(µ, σ) = σ−1, uniform in both µ and log(σ);

the corresponding joint posterior is

π(µ, σ |x) ∝ σ−(n+1) exp[−n{s2 + (x̄− µ)2}/(2σ2)].

• Hence, the marginal posterior for µ is

π(µ |x) ∝
∫ ∞

0

π(µ, σ |x) dσ ∝ [s2 + (x̄− µ)2]−n/2

which is the kernel of the Student density

pi(µ |x) = St(µ | x̄, s/
√
n− 1, n− 1).
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• Example. Classroom experiment to measure gravity g, with n = 20

observations from a pendulum yielded x̄ = 9.8087 and s = 0.0428.

9.75 9.8 9.85 9.9

10

20

30

40
π(g | x̄, s, n)

g

π(g | x̄, s, n) = St(g | 9.9087, 0.0001, 19)

Pr(9.788 < g < 9.829 |x) = 0.95 (shaded area)
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Restricted parameter space

• The range of θ values is often restricted by contextual considerations.

If θ is known to belong to Θc ⊂ Θ, so that π(θ) > 0 iff θ ∈ Θc, the

use of Bayes’ theorem yields

π(θ |x,θ ∈ Θc) =
π(θ |x)∫

Ωc
π(θ |x) dθ

, if θ ∈ Θc,

and 0 otherwise.

• Thus, to incorporate a restriction, it suffices to renormalize the

unrestricted posterior distribution to the set Θc ⊂ Θ of admissible

parameter values.

• This is often very important in applications. Yet, incorporation of

parameter restrictions is often not possible in conventional, frequentist

statistics.
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• Example (cont). Measuring gravity g with restrictions to lie be-

tween g0 = 9.7803 (equator) and g1 = 9.8322 (poles).

9.7 9.75 9.8 9.85 9.9

10

20

30

40

g

π(g | x̄, s, n,<c)

Pr(9.7803 < g < 9.8322 |x) = 0.95 (shaded area).
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Asymptotic behaviour, discrete case

• If the parameter space Θ = {θ1, θ2, . . .} is countable and the true

parameter value θt is distinguishable from all the others, so that

δ{p(x |θt), p(x |θi)) > 0, for all i 6= t,

then the posterior converges to a degenerate distribution with proba-

bility one on the true value:

lim
n→∞

π(θt |x1 . . . ,xn) = 1

lim
n→∞

π(θi |x1 . . . ,xn) = 0, i 6= t.

• To prove this, take logarithms is Bayes’ theorem, define

zi = log[p(x |θi)/p(x |θt)],

and use the strong law of large numbers on the n i.i.d. random variables

z1, . . . , zn.
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• For instance, in probabilistic diagnosis the posterior probability of

the true disease converges to one as new relevant information accumu-

lates, provided the model distinguishes the probabilistic behaviour of

data under the true disease from its behaviour under the other alter-

natives.

• If the true value of the parameter id not in Θ the posterior concen-

trates on the closest model in the intrinsic discrepancy sense, i.e., in

that value θ∗ such that

θ∗ = arg min
θi∈Θ

δ{p(x |θt), p(x |θi)}.
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Asymptotic behaviour, continuous case

• If the parameter θ is one-dimensional and continuous, so that

Θ ⊂ <, and the model {p(x | θ), x ∈ X} is regular (basically, X
does not depend on θ, and p(x | θ) is twice θ differentiable)

• Then, as n→∞, π(θ |x1, . . . ,xn) converges intrinsically

to a normal distribution with mean at the mle estimator θ̂,

and with variance v(x1, . . . ,xn, θ̂), where

v−1(x1, . . . ,xn, θ̂) = −
∑n

j=1
∂2

∂θ2
log[p(xj | θ]

• To prove this, write Bayes’ theorem as

π(θ |x1, . . . ,xn) ∝ exp[log π(θ) +
∑n

j=1 log p(xj | θ)],

and expand
∑n

j=1 log p(xj | θ)] about its maximum, the mle θ̂.

• The result is easily extended to the multivariate case θ = {θ1, . . . , θk},
to obtain a limiting k-variate normal centered at θ̂, and with a disper-

sion matrix V (x1, . . . ,xn, θ̂) which generalizes v(x1, . . . ,xn, θ̂).
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Asymptotic behaviour, continuous case. Simpler form

• Using the strong law of large numbers on the sums above a simpler,

less precise approximation is obtained:

• If the parameter θ = {θ1, . . . , θk} is continuous, so that Θ ⊂ <k
and the model {p(x | θ), x ∈ X} is regular, so that X does not de-

pend on θ and p(x |θ) is twice differentiable with respect to each of

the θi’s, then, as n → ∞, π(θ |x1, . . . ,xn) converges intrinsically to

a multivariate normal distribution with mean the mle θ̂ and preci-

sion matrix (inverse of the dispersion or variance-covariance matrix)

nF (θ̂), where F (θ) is Fisher’s matrix, of general element

Fij(θ) = −Ex |θ[
∂2

∂θi∂θj
log p(x |θ)].
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• The properties of the multivariate normal easily yield from the last

result the asymptotic forms for the marginal and the conditional pos-

terior distributions of any subgroup of the θj’s.

• In one dimension,

π(θ |x1, . . . ,xn) ≈ N(θ | θ̂, [nF (θ̂)]−1/2)

a normal density centered at the mle θ̂ with precision nF (θ̂), where

F (θ) is Fisher’s function,

F (θ) = −Ex | θ[∂
2 log p(x | θ)/∂θ2].
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Example: Asymptotic approximation with Poisson data

• Data x = {x1, . . . , xn} a random sample from

Po(x |λ) ∝ e−λλx/x!

Hence, p(x |λ) ∝ e−nλλr, r = Σj xj, and λ̂ = r/n.

• Fisher’s function is F (λ) = −Ex |λ

[
∂2

∂λ2 log Po(x |λ)
]

= 1
λ

• The objective prior function is π(λ) = F (λ)1/2 = λ−1/2.

Hence π(λ |x) ∝ e−nλλr−1/2 which is the kernel of the Gamma

distribution

π(λ |x) = Ga(λ | r + 1/2, n).

• The Normal approximation is

π(λ |x) ≈ N{λ | λ̂, (nF (λ̂))−1/2} = N{λ | r/n,
√
r/n}.
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• Numerical illustration. Samples with n = 5 and n = 25, simulated

from a Poisson distribution with λ = 3, yielded r = 19 and r = 82.
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1

λ

π(λ |x)

The exact posteriors (solid black) are well approximated (dashed

red) even for relatively small samples.
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Reference Analysis

No Relevant Initial Information

• Identify the mathematical form of a “noninformative” prior: One

with minimal effect, relative to the data, on the posterior distribu-

tion of the quantity of interest. Intuitive basis:

(i) Use information theory to measure the amount on information

about the quantity of interest to be expected from the data, which

depends on prior knowledge.

(ii) Define the missing information about the quantity of interest

as that which infinite independent replications of the experiment

could possible provide.

(iii) Define the reference prior as that which maximizes the missing

information about the quantity if interest.
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Expected information from the data

• Given model {p(x | θ),x ∈ X , θ ∈ Θ}, the amount of information

Iθ{X , p(θ)} which may be expected to be provided by x, about the

value of θ is defined by

Iθ{X , p(θ)} = δ{p(x, θ), p(x)p(θ)},

the intrinsic discrepancy between the joint distribution p(x, θ) and

the product of their marginals p(x)p(θ), which is the instrinsic asso-

ciation between the random quantities x and θ.

• This is related to Shannon mutual information between x and θ,

S{p(x, θ)} =
∫
X
∫

Θ p(x, θ) log p(x,θ)
p(x)p(θ) dx dθ, while δ{p(x, θ), p(x)p(θ)}

is min[
∫ ∫

p(x, θ) log p(x,θ)
p(x)p(θ) dx dθ,

∫ ∫
p(x)p(θ) log p(x)p(θ)

p(x,θ) dx dθ].

Often, but not always, the minimum is attained by integrating with

the joint density, in which case, Iθ{X , π(θ)} = S{p(x, θ)}.
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• Consider Iθ{X k, p(θ)} the information about θ which may be ex-

pected from k conditionally independent replications of the original

setup.

As k → ∞, this would provide any missing information about θ.

Hence, as k → ∞, the functional Iθ{X k, π(θ)} will approach the

missing information about θ associated with the prior p(θ).

• Let πk(θ) be the prior which maximizes Iθ{X k, p(θ)} in the class P
of strictly positive prior distributions compatible with accepted as-

sumptions on the value of θ (which could be the class of all strictly

positive priors).

The reference prior π∗(θ) is the limit as k → ∞ (in a sense to be

made precise) of the sequence of priors {πk(θ), k = 1, 2, . . .}.
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Reference priors in the finite case

• If θ may only take a finite number m of different values {θ1, . . . , θm}
and p(θ) = {p1, . . . , pm}, with pi = Pr(θ = θi), then

limk→∞ I
θ{X k, p(θ)} = H(p1, . . . , pm) = −

∑m
i=1 pi log(pi),

that is, the entropy of the prior distribution {p1, . . . , pm}.
• In the finite case, with no additional structure,the reference prior is

that with maximum entropy within the class P of priors compatible

with accepted assumptions (cf. Statistical Physics).

• If, in particular, P contains all priors over {θ1, . . . , θm}, the refer-

ence prior is the uniform prior, π(θ) = {1/m, . . . , 1/m} (cf. Bayes-

Laplace postulate of insufficient reason) .

• Example. Prior {p1, p2, p3, p4} in genetics problem with p1 = 2p2.

Reference prior (maximum entropy given restriction) is

π(p) = {0.324, 0.162, 0.257, 0.257}.
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Reference priors in one-dimensional continuous case

• Let πk(θ) be the prior which maximizes Iθ{X k, π(θ)} in the class P
of acceptable priors. For any datax ∈ X , let πk(θ |x) ∝ p(x | θ) πk(θ)

be the corresponding posterior.

• The reference posterior density π∗(θ |x) is defined to be the limit

of the sequence {πk(θ |x), k = 1, 2, . . .}. A reference prior function

π∗(θ) is any positive function such that, for all x ∈ X , π∗(θ |x) ∝
p(x | θ) π∗(θ). This is defined up to an (irrelevant) arbitrary constant.

• Let x(k) ∈ X k be the result of k independent replications of x ∈ X .

The exact expression for πk(θ) (cf. calculus of variations) is

πk(θ) = exp [ E
x(k) | θ{log πk(θ |x(k))}] (a geometric average).

• This formula may be used, by repeated simulation from p(x | θ)

for different θ values, to obtain a numerical approximation to the

reference prior.
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Reference priors under regularity conditions

• Let θ̃k = θ̃(x(k)) be a consistent, asymptotically sufficient estimator

of θ. In regular problems this is often the case with the mle θ̂.

• The exact expression for πk(θ) then becomes, for large k,

πk(θ) ≈ exp[Eθ̃k | θ{log πk(θ | θ̃k)}].
As k →∞ this converges to πk(θ | θ̃k)|θ̃k=θ.

• Let θ̃k = θ̃(x(k)) be a consistent, asymptotically sufficient estimator

of θ. Let π(θ | θ̃k) be any asymptotic approximation to π(θ |x(k)), the

posterior distribution of θ. The reference prior may then be analyti-

cally computed as π∗(θ) = π(θ | θ̃k)|θ̃k=θ.

• Under regularity conditions, the posterior distribution of θ is asymp-

totically Normal, with mean θ̂ and precision nF (θ̂), where

F (θ) = −Ex | θ[∂
2 log p(x | θ)/∂θ2] is Fisher’s information function.

Hence, using the expression above, π∗(θ) = F (θ)1/2 (Jeffreys’ rule).
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One nuisance parameter

• Two parameters: reduce the problem to a sequential application

of the one parameter case. Model is {p(x | θ, λ, θ ∈ Θ, λ ∈ Λ} and a

θ-reference prior π∗θ(θ, λ) is required. Two steps:

(i) Conditional on θ, p(x | θ, λ) only depends on λ, and it is possible

to obtain the conditional reference prior π∗(λ | θ).

(ii) If π∗(λ | θ) is a proper distribution, integrate out λ to get the

one-parameter model p(x | θ) =
∫

Λ p(x | θ, λ) π∗(λ | θ) dλ, and use the

one-parameter solution to obtain π∗(θ).

• The θ-reference prior is then π∗θ(θ, λ) = π∗(λ | θ) π∗(θ).

• The required reference posterior is π∗(θ |x) ∝ p(x | θ)π∗(θ).
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• If π∗(λ | θ) is an improper prior function, proceed within an increas-

ing sequence {Λi} over which π∗(λ | θ) is integrable and, for given data

x, obtain the corresponding sequence of reference posteriors {π∗i (θ |x},
defined over the {Λi}’s.
• The required reference posterior π∗(θ |x) is their intrinsic limit.

π∗(θ |x) = lim
i→∞

π∗i (θ |x).

• A θ-reference prior is any positive function such that, for any data x,

π∗(θ |x) ∝
∫

Λ

p(x | θ, λ) π∗θ(θ, λ) dλ.
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The regular two-parameter continuous case

• Model p(x | θ, λ). If the joint posterior of (θ, λ) is asymptotically

normal, the θ-reference prior may be derived in terms of the corre-

sponding Fisher’s information matrix,

F (θ, λ) =

(
Fθθ(θ, λ) Fθλ(θ, λ)

Fθλ(θ, λ) Fλλ(θ, λ)

)
, S(θ, λ) = F−1(θ, λ)

• The θ-reference prior is

π∗θ(θ, λ) = π∗(λ | θ) π∗(θ),

π∗(λ | θ) ∝ F
1/2
λλ (θ, λ), λ ∈ Λ,

and, if π∗(λ | θ) is proper,

π∗(θ) ∝ exp {
∫

Λ

π∗(λ | θ) log[S
−1/2
θθ (θ, λ)] dλ}, θ ∈ Θ.
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• If π∗(λ | θ) is not proper, integrations are to be performed within an

approximating sequence {Λi} to obtain a sequence {π∗i (λ | θ) π∗i (θ)},
and the θ-reference prior π∗θ(θ, λ) is defined as its intrinsic limit,

π∗θ(θ, λ) = lim
i→∞

π∗i (λ | θ) π∗i (θ).

• Even if π∗(λ | θ) is improper, if

(i) θ and λ are variation independent, and

(ii) the functions Sθθ and Fλλ factorize such that

S
−1/2
θθ (θ, λ) ∝ fθ(θ) gθ(λ),

F
1/2
λλ (θ, λ) ∝ fλ(θ) gλ(λ),

Then the joint reference prior when θ is the quantity of interest is

π∗θ(θ, λ) = fθ(θ) gλ(λ).
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Example: Inference on normal parameters

• The information matrix for the normal model N(x |µ, σ) is

F (µ, σ) =

(
σ−2 0

0 2σ−2

)
, S(µ, σ) =

(
σ2 0

0 σ2/2

)
Since µ and σ are variation independent, and both Fσσ and Sµµ fac-

torize, π∗(σ |µ) ∝ F
1/2
σσ ∝ σ−1, π∗(µ) ∝ S

−1/2
µµ ∝ 1.

• The µ-reference prior is π∗µ(µ, σ) = π∗(σ |µ) π∗(µ) = σ−1, i.e.,

uniform on both µ and log σ.

• Since F (µ, σ) is diagonal the σ-reference prior is

π∗σ(µ, σ) = π∗(µ |σ)π∗(σ) = σ−1, the same as π∗µ(µ, σ).

• In fact, it may be shown that for all location-scale models, so that

p(x |µ, σ) = 1
σf (x−µσ ), the reference priors for the location and scale

parameters are π∗µ(µ, σ) = π∗σ(µ, σ) = σ−1.
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• Within any given model p(x |θ) the φ-reference prior π∗φ(θ) maxi-

mizes the missing information about φ = φ(θ) and, in multiparameter

problems, that prior may change with the quantity of interest φ.

• For instance, consider that the standardized mean φ = µ/σ within

a normal N(x |µ, σ) model, is the quantity of interest. Fisher’s in-

formation matrix in terms of φ and σ is F (φ, σ) = J tF (µ, σ) J ,

where J = (∂(µ, σ)/∂(φ, σ)), and this yields

F (φ, σ) =

(
1 φ/σ

φ/σ (2 + φ2)/σ2

)
, S(φ, σ) =

(
1 + φ2/2 −φσ/2

−φσ/2 σ2/2

)
.

• Hence, the φ-reference prior is, π∗φ(φ, σ) = (1 + φ2/2)−1/2σ−1. In

the original parametrization, π∗φ(µ, σ) = (1+ (µ/σ)2/2)−1/2σ−2, which

is different from π∗µ(µ, σ) = π∗σ(µ, σ). The prior π∗φ(µ, σ) leads to a

posterior for φ with consistent marginalization properties.
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Many parameters

• The reference algorithm generalizes to any number of parameters. If

the model is p(x |θ) = p(x | θ1, . . . , θm), a joint reference prior

π∗(φm |φm−1, . . . , φ1) × . . . × π∗(φ2 |φ1) × π∗(φ1) may sequentially

be obtained for each ordered parametrization, {φ1(θ), . . . , φm(θ)}.
Reference priors are invariant under reparametrization of the φi(θ)’s.

• The choice of the ordered parametrization {φ1, . . . , φm} describes

the particular prior required, namely that which sequentially

maximizes the missing information about each of the φi’s,

conditional on {φ1, . . . , φi−1}, for i = m,m− 1, . . . , 1.

• In many problems, the results are equal or similar for many param-

eterizations, but this is not necessarily the case. As a consequence, an

approximate overall reference prior is often pragmatically required.
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• An overall reference prior, one leading to marginal posteriors which

are not far from the appropriate reference posteriors for all quantities of

interest, may be obtained by minimizing the average intrinsic discrep-

ancy between the marginal and the reference posteriors. For details

sees Berger, Bernardo and Sun (2014).

• Example: Stein’s paradox. Data random from a m-variate normal

Nm(x |µ, I). The reference prior for any permutation of the µi’s is

uniform, and leads to appropriate posterior distributions for any of the

µi’s, but cannot be used if the quantity of interest is θ =
∑

i µ
2
i , the

distance of µ to the origin, for this leads to an inconsistent estimation

of θ.

However, the reference prior for θ, πθ(µ)} produces, an appropriate,

consistent marginal reference posterior for θ.
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Inference Summaries

Summarizing the posterior distribution

• The Bayesian final outcome of a problem of inference about any

unknown quantity θ is precisely the posterior density π(θ |x, C).

• Bayesian inference may be described as the problem of stating a

probability distribution for the quantity of interest encapsulating all

available information about its value.

• In one or two dimensions, a graph of the posterior probability den-

sity of the quantity of interest conveys an intuitive summary of the

main conclusions. This is greatly appreciated by users, and is an im-

portant asset of Bayesian methods.

• But graphical methods are not easily extended to more than two

dimensions and elementary quantitative conclusions are often required.
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The simplest forms to summarize the information contained in the

posterior distribution are closely related to the conventional concepts

of point estimation and interval estimation.

Point Estimation: Posterior mean and posterior mode

• It is often required to provide point estimates of relevant quanti-

ties. Bayesian point estimation is best described as a decision problem

where one has to choose a particular value θ̃ as an approximate proxy

for the actual, unknown value of θ.

• Intuitively, any location measure of the posterior density π(θ |x)

may be used as a point estimator. When they exist, either

E[θ |x] =
∫

Θ θ π(θ |x) dθ (posterior mean), or

Mo[θ |x] = arg supθ∈Θ π(θ |x) (posterior mode)

are often regarded as natural choices.



Objective Bayesian Statistics 58

• Lack of invariance. Neither the posterior mean not the posterior

mode are invariant under reparametrization. The point estimator ψ̃

of a bijection ψ = ψ(θ) of θ will generally not be equal to ψ(θ̃).

• In pure “inferential” applications, where one is requested to provide

a point estimate of the vector of interest without an specific application

in mind, it is difficult to justify a non-invariant solution:

The best estimate of, say, φ = log(θ) should be φ∗ = log(θ∗), but

this is not the case if the posterior mean or the posterior mode are used

as point estimators.

• Notice that most estimation procures in conventional statistics also

suffer from this lack of (intuitively necessary) invariance under repa-

rameterization. However, general invariant multivariate definitions of

point estimators is possible using Bayesian decision theory.
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Point Estimation: Posterior median

• In one-dimensional continuous problems the posterior median,

is easily defined and computed as

Me[θ |x] = q ;
∫
{θ≤q} π(θ |x) dθ = 1/2.

The one-dimensional posterior median has attractive properties:

(i) it is invariant under bijections, Me[φ(θ) |x] = φ(Me[θ |x]).

(ii) it exists and it is unique under very wide conditions.

(iii) it is rather robust under moderate perturbations of the data.

• The posterior median is often considered to be the best ‘automatic’

Bayesian point estimator in one-parameter continuous problems, but

its definition is not easily extended to a multiparameter setting.
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General Credible Regions

• To describe π(θ |x) it is often convenient to quote regions Θp ⊂ Θ

of given probability content p under π(θ |x). This is the intuitive basis

of graphical representations like boxplots.

• A subset Θp of the parameter space Θ such that∫
Θp
π(θ |x) dθ = p and, hence, Pr(θ ∈ Θp |x) = p,

is a posterior p-credible region for θ.

• A credible region is invariant under reparametrization:

If Θp is p-credible for θ, φ(Θp) is a p-credible for φ = φ(θ).

• For any given p there are generally infinitely many credible regions

• Credible regions may be selected to have minimum size (length, area,

volume), resulting in highest probability density (HPD) regions, where

all points in the region have larger probability density than all points

outside.
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• Like their related modal estimates, HPD regions are not invariant.

Thus, the image φ(Θp) of an HPD region Θp will be a credible region

for φ, but will not generally be HPD.

There is no reason to restrict attention to HPD credible regions.

Credible Intervals

• In one-dimensional continuous problems, posterior quantiles are

often used to derive credible intervals.

• If θq = Qq[θ |x] is the q-quantile of the posterior distribution of θ,

the interval Θp = {θ; θ ≤ θp} is a p-credible region,

and it is invariant under reparameterization.

• Equal-tailed p-credible intervals of the form

Θp = {θ; θ(1−p)/2 ≤ θ ≤ θ(1+p)/2}
are typically unique, and they invariant under reparametrization.
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• Example: Credible intervals for the normal mean.

• With model N(x |µ, σ), the reference posterior for µ given

x = {x1, . . . , xn} is π(µ |x) = St(µ | x̄, s/
√
n− 1, n− 1).

Hence the reference posterior distribution of

τ =
√
n− 1(µ− x̄)/s,

as a function of µ, is π(τ | x̄, s, n) = St(τ | 0, 1, n− 1).

• It then follows that the equal-tailed p-credible intervals for µ are

{µ; µ ∈ x̄ ± q
(1−p)/2
n−1 s/

√
n− 1},

where q
(1−p)/2
n−1 is the (1− p)/2 quantile of a standard Student density

with n− 1 degrees of freedom.

• To study the long term behavior of these credible intervals, the ex-

pression
√
n− 1(µ − x̄)/s may also be analyzed, for fixed µ, as a

function of the data.
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Calibration

The fact that the sampling distribution of the statistic

t = t(x̄, s |µ, n) =
√
n− 1(µ− x̄)/s

is also an standard Student p(t |µ, n) = St(t | 0, 1, n−1) with the same

degrees of freedom implies that, in this example, objective Bayesian

credible intervals are also be exact frequentist confidence intervals.

• Exact numerical agreement (exact matching) between Bayesian

credible intervals and frequentist confidence intervals is however the

exception, not the norm.

• For large samples, convergence to normality implies approximate

numerical agreement. This provides a frequentist calibration to

objective Bayesian methods.
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• Exact numerical agreement is obviously impossible when the data

are discrete: Precise (non randomized) frequentist confidence intervals

do not exist in that case for most confidence levels.

The computation of Bayesian credible regions for continuous param-

eters is however precisely the same whether the data are discrete or

continuous.

• The coverage properties of credible regions obtained form different

objective priors is often computed to compare the behavior of the priors

used to derive them. Although exact numerical agreement of posterior

probabilities and average coverage is not to be expected, they should

be close to order O(n−1/2).
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Prediction

Posterior predictive distributions

• Data x = {x1, . . . , xn}, xi ∈ X , set of “homogeneous” observations.

Desired to predict the value of a future observation x ∈ X generated

by the same mechanism.

• From the foundations arguments the solution must be a probability

distribution p(x |x, K) describing the uncertainty on the value that x

will take, given data x and any other available knowledge K. This is

called the (posterior) predictive density of x.

• To derive p(x |x, K) it is necessary to specify the precise sense in

which the xi’s are judged to be homogeneous.

• It is often directly assumed that the data x = {x1, . . . , xn} consist

of a random sample from some statistical model.
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Posterior predictive distributions from random samples

• Let x = {x1, . . . , xn}, xi ∈ X , a random sample of size n from

the statistical model {p(x |θ), x ∈ X ,θ ∈ Θ} and let π(θ) a prior

distribution describing available knowledge (in any) about the value of

the parameter vector θ.

• The posterior predictive distribution is

p(x |x) = p(x |x1, . . . , xn) =

∫
Θ

p(x |θ) π(θ |x) dθ.

This encapsulates all available information about the outcome of any

future observation x ∈ X from the same model.

• To prove this, make use the total probability theorem, to have

p(x |x) =
∫

Θ p(x |θ,x) π(θ |x) dθ, and notice the new observation

x has been assumed to be conditionally independent of the observed

data x, so that p(x |θ,x) = p(x |θ).
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• The observable values x ∈ X may be either discrete or continuous

random quantities. In the discrete case, the predictive distribution will

be described by its probability mass function; in the continuous case,

by its probability density function. Both are denoted p(x |x).

Prediction in a Poisson process

• Data x = {r1, . . . , rn} random from Po(r |λ). The reference poste-

rior density of λ is π∗(λ |x) = Ga(λ | t + 1/2, n), where t = Σj rj.

The (reference) posterior predictive distribution is

p(r |x) = Pr[r | t, n] =

∫ ∞
0

Po(r |λ) Ga(λ | t + 1/2, n) dλ

=
nt+1/2

Γ(t + 1/2)

1

r!

Γ(r + t + 1/2)

(1 + n)r+t+1/2
,

an example of a Poisson-Gamma probability mass function.
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• Example. Flash floods. No flash floods have been recorded on a

particular location in 10 consecutive years. Local authorities are inter-

ested in forecasting possible future flash floods. Using a Poisson model,

and assuming that meteorological conditions remain similar, the prob-

abilities that r flash floods will occur next year in that location are

given by the Poisson-Gamma mass function above, with t = 0 and

n = 10. This yields,

{Pr[0 | t, n] = 0.953, Pr[1 | t, n] = 0.043, Pr[2 | t, n] = 0.003, . . .}.

Prediction of Normal measurements

• Data x = {x1, . . . , xn} random from N(x |µ, σ). Reference prior

π∗(µ, σ) = σ−1 or, in terms of the precision λ = σ−2, π∗(µ, λ) = λ−1.

• The joint reference posterior, π∗(µ, λ |x) ∝ p(x |µ, λ) π∗(µ, λ), is

π∗(µ, λ |x) = N(µ | x̄, (nλ)−1/2) Ga(λ | (n− 1)/2, ns2/2).
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• The corresponding predictive distribution is

π∗(x |x) =

∫ ∞
0

∫ ∞
−∞

N(x |µ, λ−1/2) π∗(µ, λ |x) dµ dλ

∝ {(1 + n)s2 + (µ− x̄)2}−n/2,

a kernel of the Student density

π∗(x |x) = St(x | x̄, s
√
n + 1

n− 1
, n− 1).

• Example. Production of safety belts. Observed breaking strengths

of n = 10 randomly chosen webbings have mean x̄ = 28.011 kN and

standard deviation s = 0.443 kN. Specification requires x > 26 kN.

Reference posterior predictive p(x |x) = St(x | 28.011, 0.490, 9).

Pr(x > 26 |x) =
∫∞

26 St(x | 28.011, 0.490, 9) dx = 0.9987.
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Regression

• In prediction problems there is often additional information from

relevant covariates. The data structure consists of set of pairs {(yi,vi)},
where both the observables yi and the covariates vi may be vectors of

any dimension. Given a new observation, with v known, one wants to

predict the corresponding value of y. Formally, one has to compute

the predictive distribution p{y |v, (y1,v1), . . . (yn,vn)}.
• A model {p(y |v,θ),y ∈ Y ,θ ∈ Θ} is needed which makes precise

the probabilistic relationship between y and v. The simplest option

assumes a linear dependency of the form

p(y |v,θ) = N(y |V β,Σ),

but far more complex structures are common in applications.
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• Univariate linear regression on k covariates.

Y ⊂ <, v = {v1, . . . , vk}.
p(y |v,β, σ) = N(y |vβ, σ2), β = {β1, . . . , βk}t.
Data is x = {y,V }, where y = {y1, . . . , yn}t,
and V the n× k matrix with the vi’s as rows.

The likelihood is p(y |V ,β, σ) = Nn(y |V β, σ2In),

and the reference prior is π∗(β, σ) = σ−1.

• The predictive posterior is the Student density

p(y |v,y,V ) = St(y |vβ̂, f (v,V )
ns2

n− k
, n− k)

β̂ = (V tV )−1V ty, ns2 = (y − vβ̂)t(y − vβ̂) and

f (v,V ) = 1 + v(V tV )−1vt.
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• Example. Pollution control. Data: pairs {yj, vj}of pollution density

(in µgr/m3) and wind speed from source (in m/s).

yj 1212 836 850 446 1164 601
vj 4.8 3.3 3.1 1.7 4.7 2.1
yj 1074 284 352 1064 712 976
vj 3.9 0.9 1.4 4.3 2.9 3.4
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The predictive distributions

p(y | v,x) allow forecasting

pollution as a function of wind.

High levels (y > 50) are likely

even with no wind (v=0)

Pr[y > 50 | v = 0,x] = 0.66

(shaded area).
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Hierarchical Models

Exchangeability

• Random quantities are often “homogeneous” in the precise sense that

only their values matter, not the order in which they appear. The set of

random vectors {x1, . . . ,xn} is exchangeable iff their joint distribution

is invariant under permutations. An infinite sequence {xj} of random

vectors is exchangeable if all its finite subsequences are exchangeable.

• Any random sample is exchangeable. The representation theorem

establishes that if observations {x1, . . . ,xn} are exchangeable, they

are a a random sample from some model {p(x |θ),θ ∈ θ}, labeled

by a parameter vector θ, defined as the limit (as n → ∞) of some

function of the xi’s. Information about θ in prevailing conditions C is

necessarily described by some probability distribution π(θ |C).
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• Formally, the joint density of any finite set of exchangeable observa-

tions {x1, . . . ,xn} has an integral representation of the form

p(x1, . . . ,xn |C) =
∫
θ

∏n
i=1 p(xi |θ) π(θ |C) dθ.

• Complex data structures may often be usefully described by partial

exchangeability assumptions.

• Example: Public opinion. Sample k different regions in the coun-

try. Sample ni citizens in region i, and record whether or not (yij = 1

or yij = 0) citizen j would vote A. Assuming exchangeable citizens

within each region implies

p(yi1, . . . , yini |θ) =
∏ni

j=1
p(yij | θi) = θrii (1− θi)ni−ri,

where θi is the (unknown) proportion of citizens in region i voting A

and ri = Σjyij is the number of citizens voting A in region i.
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Assuming regions exchangeable within the country similarly yields

p(θ1, . . . , θkgφ) =
∏k

i=1
π(θi |φ)

for some probability distribution π(θ |φ) describing the political vari-

ation within the regions.

Often a general Beta density π(θ |φ) = Be(θ |α, β) is chosen to

describe this variation.

• The resulting two-stages hierarchical Binomial-Beta model

x = {y1, . . . ,yk}, yi = {yi1, . . . , yini}, random from Bi(y | θi),
{θ1, . . . , θk}, random from Be(θ |α, β)

provides a far richer model than (the rather unrealistic, but too

frequently used) simple binomial model.
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• Example: Biological response. Sample k different animals of the

same species in a specific environment. Control ni times animal i and

record his responses {yi1, . . . ,yini} to prevailing conditions. Assuming

exchangeable observations within each animal implies

p(yi1, . . . ,yini |θ) =
∏ni

j=1
p(yij |θi).

Often a normal model p(yij |θi) = Nr(y |µi,Σ1) is chosen, where

the dimension r is the number of biological responses measured.

Assuming exchangeable animals within the environment leads to

p(µ1, . . . ,µkgφ) =
∏k

i=1
π(µi |φ)

for some probability distribution π(µ |φ) describing the biological vari-

ation within the species.

Often a normal model π(µ |φ) = Nr(µ |µ0,Σ2) is chosen.
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• The two-stages hierarchical multivariate Normal-Normal model

x = {y1, . . . ,yk}, yi = {yi1, . . . ,yini}, random from Nr(y |µi,Σ1),

{µ1, . . . ,µk}, random from Nr(µ |µ0,Σ2)

provides a far richer model than (again unrealistic) simple multivariate

normal sampling.

• Finer subdivisions, such as subspecies within each species, similarly

lead to hierarchical models with more stages.

Bayesian analysis of hierarchical models

• A two-stages hierarchical model has the general form

x = {y1, . . . ,yk}, yi = {zi1, . . . ,zini}
yi random sample of size ni from p(z |θi), θi ∈ Θ,

{θ1, . . . ,θk}, random of size k from π(θ |φ), φ ∈ Φ.
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• To analyze a hierarchical model

(i) Specify a prior distribution (or a reference prior function)

π(φ) for the hyperparameter vector φ.

(ii) Use standard probability theory to compute all desired

posterior distributions:

π(φ |x) for inferences about the hyperparameters,

π(θi |x) for inferences about the parameters,

π(ψ |x) for inferences about the any function ψ = ψ(θ1, . . . ,θk),

π(y |x) for predictions on future observations,

π(t |x) for predictions on any function t = t(y1, . . . ,ym)

• Markov Chain Monte Carlo (MCMC) based software available for

the necessary computations.
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Integrated Reference Analysis
• The basic machinery of Baysian inference has been reviewed above.

However, there is no obvious agreement on the appropriate Bayesian

solution to even simple (textbook) stylized problems:

Best point estimate for the normal variance?

Inferences on the correlation coefficient of a bivariate normal?

Comparing two normal means or two binomial proportions?

Testing compatibility of the normal mean with a precise value?

• Let alone in problems within complex models with many parameters!

Proposal: Return to basics and use decision-theoretic machinery.
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Structure of a Decision Problem

Alternatives, consequences, relevant events

• A decision problem if two or more possible courses of action; A is

the class of possible actions.

• For each a ∈ A, Θa is the set of relevant events, those may affect

the result of choosing a.

• Each pair {a,θ}, θ ∈ Θa, produces a consequence c(a,θ) ∈ Ca. In

this context, θ if often referred to as the parameter of interest.

• The class of pairs {(Θa, Ca), a ∈ A} describes the structure of the

decision problem. Without loss of generality, it may be assumed that

the possible actions are mutually exclusive, for otherwise the appropri-

ate Cartesian product may be used.
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• In many problems the class of relevant events Θa is the same for all

a ∈ A. Even if this is not the case, a comprehensive parameter space

Θ may be defined as the union of all the Θa.

Foundations of decision theory

• Different sets of principles capture a minimum collection of logical

rules required for “rational” decision-making. These are axioms with

strong intuitive appeal.

• Their basic qualitative structure consists of:

(i) The transitivity of preferences:

If a1 > a2 given C, and a2 > a3 given C, then a1 > a3 given C.

(ii) The sure-thing principle:

If a1 > a2 given C and E, and a1 > a2 given C and not E

then a1 > a2 given C.
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• To make possible quantitative statements, this is supplemented by

(iii) The existence of standard events

These are events of known plausibility, which may be used as a unit

of measurement, and have the properties of a probability measure.

• These axioms are not a description of human decision-making,

but a normative set of principles defining coherent decision-making.

• There are many different axiom sets published with different levels

of generality, but they all basically lead to the same set of conclusions,

namely:
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• The consequences of making mistakes should be evaluated in terms

of a real-valued loss function `(a,θ) which specifies, on a numerical

scale, their degree of undesirability.

• The uncertainty about the parameter of interest θ should be mea-

sured with a probability distribution p(θ |C)

p(θ |C) ≥ 0, θ ∈ Θ,

∫
Θ

p(θ |C) dθ = 1,

describing all available knowledge about its value, given the condi-

tions C under which the decision must be taken.

• The relative undesirability of available actions a ∈ A is measured

by their expected loss

`[a |C] =

∫
Θ

`(a,θ) p(θ |C) dθ, a ∈ A.

• The best action is that with the smallest expected loss.
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Decision structure of Inference Summaries

• Assume data z have been generated as one random observation form

Mz = {p(z |θ,λ), z ∈ Z,θ ∈ Θ,λ ∈ Λ}, where θ is the vec-

tor of interest and λ a nuisance parameter vector, and let p(θ,λ) =

p(λ |θ) p(θ) be the assumed joint prior.

• Given data z and assuming model Mz, the complete solution to

all inference questions about θ is contained in the marginal posterior

p(θ | z), derived by standard use of probability theory.

• As mentioned before, appreciation of p(θ | z) may be enhanced by

providing both point and region estimates of the vector of interest θ,

and by declaring whether or not some context-suggested specific value θ0

(or maybe a set of values Θ0), is (are) compatible with the observed

data z. This provides useful (and often required) summaries of p(θ | z).
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• All these summaries may be framed as different decision problems

which use precisely the same loss function `{θ0, (θ,λ)} describing, as

a function of the (unknown) (θ,λ) values which have generated the

data, the loss to be suffered if, working with model Mz, the value θ0

were used as a proxy for the unknown value of θ.

• The results dramatically depend on the choices made for both the

prior and the loss functions but, given z, only depend on those through

the expected loss, `(θ0 | z) =
∫

Θ

∫
Λ `{θ0, (θ,λ)} p(θ,λ | z) dθdλ.

• As a function of θ0 ∈ Θ, `(θ0 | z) is a measure of the unacceptability

of all possible values of the vector of interest. This provides a dual,

complementary information on all θ values (on a loss scale) to that

provided by the posterior p(θ | z) (on a probability scale).
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Point estimation

To choose a point estimate for θ is a decision problem where the

action space is the class Θ of all possible θ values.

Definition 1 The Bayes estimator θ∗(z) = arg infθ0∈Θ `(θ0 | z) is

that which minimizes the posterior expected loss.

• Conventional examples include the ubiquitous quadratic loss

`{θ0, (θ,λ)} = (θ0 − θ)t(θ0 − θ), which yields the posterior mean as

the Bayes estimator, and the zero-one loss on a neighborhood of the

true value, which yields the posterior mode a a limiting result.

• Bayes estimators with conventional loss functions are typically not

invariant under one to one transformations. Thus, the Bayes estimator

under quadratic loss of a variance s not the square of the Bayes estima-

tor of the standard deviation. This is rather difficult to explain when

one merely wishes to report an estimate of some quantity of interest.
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Region estimation

Bayesian region estimation is achieved by quoting posterior credible

regions. To choose a q-credible region is a decision problem where the

action space is the class of subsets of Θ with posterior probability q.

Definition 2 (Bernardo, 2005). A Bayes q-credible region Θ∗q(z) is

a q-credible region where any value within the region has a smaller

posterior expected loss than any value outside the region, so that

∀θi ∈ Θ∗q(z), ∀θj /∈ Θ∗q(z), `(θi | z) ≤ `(θj | z).

• The quadratic loss yields credible regions with those θ values closest,

in the Euclidean sense, to the posterior mean. A zero-one loss function

leads to highest posterior density (HPD) credible regions.

• Conventional Bayes regions are often not invariant: HPD regions in

one parameterization will not transform to HPD regions in another.



Objective Bayesian Statistics 88

Precise hypothesis testing

• Consider a value θ0 which deserves special consideration. Testing

the hypothesis H0 ≡ {θ = θ0} is as a decision problem where the

action space A = {a0, a1} contains only two elements: to accept (a0)

or to reject (a1) the hypothesis H0.

• Foundations require to specify the loss functions `h{a0, (θ,λ)} and

`h{a1, (θ,λ)} measuring the consequences of accepting or rejecting H0

as a function of (θ,λ). The optimal action is to reject H0 iif∫
Θ

∫
Λ[`h{a0, (θ,λ)} − `h{a1, (θ,λ)}] p(θ,λ | z) dθdλ > 0.

• Hence, only ∆`h{θ0, (θ,λ)} = `h{a0, (θ,λ)}−`h{a1, (θ,λ)}, which

measures the conditional advantage of rejecting, must be specified.
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• Without loss of generality, the function ∆`h may be written as

∆`h{θ0, (θ,λ)} = `{θ0, (θ,λ)} − `0

where (precisely as in estimation), `{θ0, (θ,λ)} describes, as a function

of (θ,λ), the non-negative loss to be suffered if θ0 were used as a proxy

for θ, and the constant `0 > 0 describes (in the same loss units) the

context-dependent non-negative advantage of accepting θ = θ0 when

it is true.

Definition 3 (Bernardo and Rueda, 2002). The Bayes test criterion

to decide on the compatibility of θ = θ0 with available data z is to

reject H0 ≡ {θ = θ0} if (and only if), `(θ0 | z) > `0, where `0 is a

context dependent positive constant.

• The compound case may be analyzed by separately considering each

of the values which make part of the compound hypothesis to test.
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• Using a zero-one loss function, so that the loss advantage of reject-

ing θ0 is equal to one whenever θ 6= θ0 and zero otherwise, leads

to rejecting H0 if (and only if) Pr(θ = θ0 | z) < p0 for some context-

dependent p0. Use of this loss requires the prior probability Pr(θ = θ0)

to be strictly positive. If θ is a continuous parameter this forces the

use of a non-regular “sharp” prior, concentrating a positive probability

mass at θ0, the solution early advocated by Jeffreys.

This formulation (i) implies the use of radically different priors for

hypothesis testing than those used for estimation, (ii) precludes the use

of conventional, often improper, ‘noninformative” priors, and (iii) may

lead to the difficulties associated to Jeffreys-Lindley paradox.

• The quadratic loss function leads to rejecting a θ0 value whenever

its Euclidean distance to E[θ | z], the posterior expectation of θ, is

sufficiently large.
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• The use of continuous loss functions (such as the quadratic loss)

permits the use in hypothesis testing of precisely the same priors that

are used in estimation.

• With conventional losses the Bayes test criterion is not invariant

under one-to-one transformations. Thus, if φ(θ) is a one-to-one trans-

formation of θ, rejecting θ = θ0 does not generally imply rejecting

φ(θ) = φ(θ0).

• The threshold constant `0, which controls whether or not an expected

loss is too large, is part of the specification of the decision problem,

and should be context-dependent. However a judicious choice of the

loss function leads to calibrated expected losses, where the relevant

threshold constant has an immediate, operational interpretation.
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Loss Functions in Inference Problems
• A dissimilarity measure δ{pz, qz} between two probability densities

pz and qz for a random vector z ∈ Z should be

(i) non-negative, and zero if (and only if) pz = qz a.e.,

(ii) invariant under one-to-one transformations of z,

(iii) symmetric, so that δ{pz, qz} = δ{qz, pz},
(iv) defined for densities with strictly nested supports.

Definition 4 The intrinsic discrepancy δ{p1, p2} is

δ{p1, p2} = min [κ{p1 | p2}, κ{p2 | p1} ]

where κ{pj | pi} =
∫

Zi
pi(z) log[pi(z)/pj(z)] dz is the (KL) diver-

gence of pj from pi. The intrinsic discrepancy between p and a

family F = {qi, i ∈ I} is the intrinsic discrepancy between p and

the closest of them, δ{p,F} = infq,∈F δ{p, q}.
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The intrinsic discrepancy loss function

Definition 5 ConsiderMz = {p(z |θ,λ), z ∈ Z,θ ∈ Θ,λ ∈ Λ}.
The intrinsic discrepancy loss from using θ0 as a proxy for θ is

the intrinsic discrepancy between the true model and the class of

models with θ = θ0, M0 = {p(z |θ0,λ0), z ∈ Z,λ0 ∈ Λ},

`δ{θ0, (θ,λ) |Mz} = inf
λ0∈Λ

δ{pz(· |θ,λ), pz(· |θ0,λ0)}.

Invariance

• For any one-to-one reparameterization φ = φ(θ) and ψ = ψ(θ,λ),

`δ{θ0, (θ,λ) |Mz} = `δ{φ0, (φ,ψ) |Mz}.
This yields invariant Bayes point and region estimators, and invariant

Bayes hypothesis testing procedures.
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Reduction to sufficient statistics

• If t = t(z) is a sufficient statistic for modelMz, one may also work

with marginal modelMt = {p(t |θ,λ), t ∈ T ,θ ∈ Θ,λ ∈ Λ} since

`δ{θ0, (θ,λ) |Mz} = `δ{θ0, (θ,λ) |Mt}.

Additivity

• If data consist of a random sample z = {x1, . . . ,xn} from some

modelMx, so that Z = X n, and p(z |θ,λ) =
∏n

i=1 p(xi |θ,λ),

`δ{θ0, (θ,λ) |Mz} = n `δ{θ0, (θ,λ) |Mx}.
This considerably simplifies frequent computations.
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Objective Bayesian Methods
• The methods described may be used with any prior. However, an

“objective” procedure, where the prior function is intended to describe

a situation where there is no relevant information about the quantity

of interest, is often required.

• Objectivity is an emotionally charged word, and it should be explic-

itly qualified. No statistical analysis is really objective (both the experi-

mental design and the model have strong subjective inputs). However,

frequentist procedures are branded as “objective” just because their

conclusions are only conditional on the model assumed and the data

obtained. Bayesian methods where the prior function is derived from

the assumed model are objective is this limited, but precise sense.
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Development of objective priors

• Vast literature devoted to the formulation of objective priors.

• Reference analysis, (Bernardo, 1979; Berger and Bernardo, 1992;

Berger, Bernardo and Sun, 2009), has been a popular approach.

Very general, easily computable one-parameter result:

Theorem 1 Let z(k) = {z1, . . . ,zk} denote k conditionally inde-

pendent observations from Mz. For sufficiently large k

πk(θ) ∝ exp {Ez(k) | θ[ log ph(θ | z(k))]}

where ph(θ | z(k)) ∝
∏k

i=1 p(zi | θ)h(θ) is the posterior which corre-

sponds to some arbitrarily chosen prior function h(θ) which makes

the posterior proper for any z(k).
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Approximate reference priors

• Reference priors are derived for an ordered parameterization. Given

Mz = {p(z |ω), z ∈ Z,ω ∈ Ω} with m parameters, the reference

prior with respect to φ(ω) = {φ1, . . . , φm} is sequentially obtained

as π(φ) = π(φm |φm−1, . . . , φ1)× · · · × π(φ2 |φ1) π(φ1).

• One is often simultaneously interested in several functions of the

parameters. Given Mz = {p(z |ω), z ∈ Z,ω ∈ Ω ⊂ <m} with m

parameters, consider a set θ(ω) = {θ1(ω), . . . , θr(ω)} of r > 1 func-

tions of interest; Berger, Bernardo and Sun (2014) suggest a procedure

to select a joint prior πθ(ω) whose corresponding marginal posteriors

{πθ(θi | z)}ri=1 will be close, for all possible data sets z ∈ Z , to the

set of reference posteriors {π(θi | z)}ri=1 yielded by the set of reference

priors {πθi(ω)}ri=1 derived under the assumption that each of the θi’s

is of interest.
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Definition 6 Consider model Mz = {p(z |ω), z ∈ Z,ω ∈ Ω}
and r > 1 functions of interest, {θ1(ω), . . . , θr(ω)}. Let {πθi(ω)}ri=1

be the relevant reference priors, and {πθi(z)}ri=1 and {π(θi | z)}ri=1

the corresponding prior predictives and marginal posteriors. Let

F = {π(ω |a),a ∈ A} be a family of prior functions. For each

ω ∈ Ω, the best approximate joint reference prior within F is that

which minimizes the average expected intrinsic loss

d(a) =
1

r

r∑
i=1

∫
Z
δ{πθi(· |z), pθi(· |z,a)} πθi(z) dz, a ∈ A.

• Example. Use of the Dirichlet family in the m-multinomial model

(with r = m + 1 cells) yields Di(θ | 1/r, . . . , 1/r), with important

applications to sparse multinomial data and contingency tables.
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An Integrated Approach
• We suggest a systematic use of the intrinsic loss function, and an

appropriate joint reference prior, for an integrated objective Bayesian

solution to both estimation and hypothesis testing in pure inference

problems.

• We have stressed foundations-like decision theoretic arguments, but

a large collection of detailed, non-trivial examples prove that the pro-

cedures advocated lead to attractive, often novel solutions. Details in

Bernardo (2011) and references therein.
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Intrinsic point estimation

• Given the statistical model {p(x |θ),x ∈ X ,θ ∈ Θ} the intrinsic

discrepancy δ(θ1,θ2) between two parameter values θ1 and θ2 is the

intrinsic discrepancy δ{p(x |θ1), p(x |θ2)} between the correspond-

ing probability models. This is symmetric, non-negative (and zero iff

θ1 = θ2), invariant under both reparameterization and bijections of x.

• The intrinsic estimator is the reference Bayes estimator which

corresponds to the loss defined by the intrinsic discrepancy:

• The expected loss with respect to the reference posterior distribution

d(θ̃ |x) =

∫
Θ

δ{θ̃,θ} π(θ |x) dθ

is an objective measure, in information units, of the expected dis-

crepancy between the model p(x | θ̃) and the true (unknown) model

p(x |θ).
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• The intrinsic estimator θ∗ = θ∗(x) is the value which minimizes

such expected discrepancy,

θ∗ = arg inf
θ̃∈Θ

d(θ̃ |x).

Example: Intrinsic estimation of the Binomial parameter

• Data are x = {x1, . . . , xn}, a random sample of size n from

p(x | θ) = θx(1− θ)1−x, r = Σxj.

• The intrinsic discrepancy is δ(θ̃, θ) = n min{k(θ̃ | θ), k(θ | θ̃)},
k(θ1 | θ2) = θ2 log θ2

θ1
+ (1− θ2) log 1−θ2

1−θ1
,

• Reference prior and posterior are

π∗(θ) = Be(θ | 1
2,

1
2) and π∗(θ | r, n) = Be(θ | r + 1

2, n− r + 1
2).

• The expected reference discrepancy is

d(θ̃, r, n) =
∫ 1

0 δ(θ̃, θ) π∗(θ | r, n) dθ
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• The intrinsic point estimator is

θ∗(r, n) = arg min0<θ̃<1 d(θ̃, r, n)

If φ = φ(θ), φ∗ = φ(θ∗).
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• Analytic approximation

θ∗(r, n) ≈ r+1/3
n+2/3, n > 2

• Numerical example

n = 12, r = 0,

θ∗(0, 12) = 0.026

Me[θ |x] = 0.018

E[θ |x] = 0.038
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Intrinsic estimation of the normal variance

• Given a random sample {x1, . . . , xn} from a normal distribution

N(x |µ, σ), the intrinsic (invariant) point estimator of the normal stan-

dard deviation σ is

σ∗ ≈ n

n− 1
s, ns2 =

n∑
i=1

(xi − x̄)2.

• Hence, the intrinsic point estimator of the normal variance σ2 is

σ2∗ ≈ n

n− 1

ns2

n− 1
,

larger than both the mle s2 and the unbiased estimator ns2/(n− 1).
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Intrinsic region (interval) estimation

• The intrinsic q-credible region R∗(q) ⊂ Θ is that q-credible refer-

ence region which corresponds to minimum expected intrinsic loss:

(i)
∫
R∗(q) π(θ |x) dθ = q

(ii) ∀θi ∈ R∗(q), ∀θj /∈ R∗(q), d(θi |x) < d(θj |x)

• In one parameter problems, plotting together, with the same scale

for θ, both the posterior distribution π(θ |x) and the posterior ex-

pected intrinsic loss d(θi |x) provides an illuminating comprehensive

view, on a probability density and a loss scale respectively, of the in-

ferential implications of the data x on the value of the parameter θ.

This is illustrated below with two examples from binomial data.
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• Binomial example 1

r = 0, n = 12,

θ∗ = 0.0263;

R∗0.95 = [0, 0.145];
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• Binomial example 2

r = 25, n = 100,

θ∗ = 0.2514;

R∗0.95 = [0.172, 0.340];
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Precise Hypothesis Testing

• The intrinsic reference test criterion is the Bayes test criterion

which corresponds to the use of the intrinsic loss and the reference

prior:

Reject θ0 (and only if) the expected reference posterior intrinsic

discrepancy d(θ0 |x) is too large,

d(θ0 |x) =
∫

Θ δ(θ0,θ) π(θ |x) dθ > d∗, for some d∗ > 0.

Calibration of the test

• The intrinsic reference test statistic d(θ0 |x) is the reference poste-

rior expected value of the intrinsic discrepancy between p(x |θ0) and

p(x |θ), which is the minimum expected log-likelihood ratio against

the hypothesis that θ = θ0. Thus,
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A reference test statistic value d(θ0 |x) of, say, log(10) = 2.303

implies that, given data x, the average value of the likelihood ratio

against the hypothesis, p(x |θ)/p(x |θ0), is expected to be about 10,

suggesting some mild evidence against θ0.

Similarly, a value d(θ0 |x) of log(100) = 4.605 indicates an aver-

age value of the likelihood ratio against θ0 of about 100, indicating

rather strong evidence against the hypothesis, and log(1000) = 6.908,

a rather conclusive likelihood ratio against the hypothesis the of about

1000.

• Notice that the test statistic d(θ0 |x) is deemed to be large because

it directly indicates that given the data, the true model p(x |θ) is

probably rather different from p(x |θ0). This has nothing to do with

the sampling properties of d(θ0 |x) under p(x |θ0).
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A canonical example: Testing a value for the Normal mean

• Consider N(x |µ, σ) data. In the simplest case where σ is known,

δ(µ0, µ) = n(µ− µ0)2/(2σ2), π(µ |x) = N(µ | x̄, σ/
√
n),

d(µ0 |x) = 1
2(1 + z2), with z = x̄−µ0

σ/
√
n

Thus rejecting µ = µ0 if d(µ0 |x) > d∗ is equivalent to rejecting

if |z| >
√

2d∗ − 1 and, hence, to a conventional two-sided frequentist

test with significance level α = 2(1− Φ(|z|)).
• The expected value of d(µ0 |x) if the hypothesis is true is
∞∫
−∞

1
2(1 + z2)N(z | 0, 1) dz = 1.
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-4 -2 0 2 4
0

2

4

6

8

d∗ |z| α

log(10) 1.8987 0.0576
log(100) 2.8654 0.0042

log(1000) 3.5799 0.0003

z

d(µ0 |x) = (1 + z2)/2

• Notice that the conventional α = 0.05 significance level corresponds

to an expected discrepancy of about log(10), indicating that the like-

lihood under the null is expected to be only about 10 times less likely

that under the true model: a very mild evidence for rejection!
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Uniform model Un(x | 0, θ)
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0
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Π HΘ Èt,nL

Θ
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Θ0

`δ{θ0, θ |Mz) = n

{
log(θ0/θ), if θ0 ≥ θ,

log(θ/θ0, if θ0 ≤ θ.

π(θ) = θ−1, z = {x1, . . . , xn},
t = max{x1, . . . , xn}, π(θ | z) = n tnθ−(n+1)

The q-quantile is θq = t (1− q)−1/n;

Exact probability matching.

θ∗ = t 21/n (posterior median)

E[`δ(θ0 | t, n) | θ] = (θ/θ0)n−n log(θ/θ0);

this is equal to 1 if θ = θ0,

and increases with n otherwise.

• Simulation: n = 10 with θ = 2 which yielded t = 1.71;

θ∗ = 1.83, Pr[t < θ < 2.31 | z] = 0.95, `δ(2.66 | z) = log 1000.



Objective Bayesian Statistics 112

Extra Sensory Power (ESP) testing
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Jahn, Dunne and Nelson (1987)

Binomial data. Test H0 ≡ {θ = 1/2}
with n = 104, 490, 000 and r = 52, 263, 471.

For any sensible continuous prior p(θ),

p(θ | z) ≈ N(θ |mz, sz),

with mz = (r+ 1/2)/(n+ 1) = 0.50018,

sz = [mz(1−mz)/(n+2)]1/2 = 0.000049.

`(θ0 | z) ≈ n
2 log[1 + 1

n(1 + tz(θ0)2)],

tz(θ0) = (θ0 −mz)/sz, tz(1/2) = 3.672.

`(θ0 | z) = 7.24 = log 1400: Reject H0

• Jeffreys-Lindley paradox: With any “sharp” prior, Pr[θ = 1/2] = p0,

Pr[θ = 1/2 | z] > p0 (Jefferys, 1990) suggesting data support H0 !!!
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More sophisticated examples

• Two sample problems: Equality of two normal means.

`(H0 | z) ≈ n log[1 + 1
2n(1 + t2)], t =

√
n(x̄− ȳ)/(s/

√
2).

• Trinomial data: Testing for Hardy-Weinberg equilibrium.

`(H0 | z) ≈
∫
A `δ{H0, (α1, α2)} π(α1, α2 | z)dα1dα2,

where `δ{H0, (α1, α2)} = n θ(α1, α2),

θ(α1, α2) is the KL distance of H0 from Tri(r1, r2, r3 |α1, α2 and

π(α1, α2 | z) = Di[α1, α2 | r1 + 1/3, r2 + 1/3, r3 + 1/3].

• Contingency tables: Testing for independence.

Data z = {{n11, . . . , n1b}, . . . , {na1, . . . , nab}}, k = a× b,
`(H0 | z) ≈

∫
Θ n φ(θ) π(θ | z) dθ, φ(θ) =

∑a
i=1

∑b
j=1 θij log [

θij
αi βj

],

where αi =
∑b

j=1 θij and βj =
∑a

i=1 θij are the marginals, and

π(θ | z) = Dik−1(θ |n11 + 1/k, . . . , nab + 1/k).
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