
Second part of the talk



• No matter where they come from, PMFs could have left an imprint on the CMB anisotropy 
pattern in temperature and polarization.  

• In case of an homogeneous PMF, our Universe would be described by the Bianchi metric.

• Inhomogenous PMFs (respecting homogeneity and isotropy globally) can source scalar, 
vector and tensor non-gaussian perturbations.

• CMB predictions in presence of a SB of PMFs has drawn a lot of interest as a non-standard 
cosmological model beyond the simplest ΛCDM rich of observational signatures (B-mode 
polarization from the vector contribution, Faraday rotation, non-gaussianities, effects due 
to non-zero helicity): most of these effects are larger at high multipoles, which have been 
characterized better and better by several experiments in the last years (ACBAR, SPT, 
ACT, Planck ....).   

• Affecting cosmological perturbations, PMF could leave an imprint also on the LSS.  

Homogeneous vs Inhomogeneous

Barrow, Ferreira & Silk 1997



Inhomogeneous Magnetic Field
• A SB of PMFs is modeled as a fully inhomogeneous component (i.e. does not affect the 

evolution of the Hubble parameter).

• The infinite conductivity limit is assumed (E is zero and the SB is comoving with the expansion 
of the universe).

• On considering B2 at the same level of metric and density fluctuations, PMFs affects matter and 
metric perturbations in three ways:

       a. PMFs carry energy density and pressure and therefore gravitate at the level of perturbations.                                                                                                                      

       b. PMFs have anisotropic stress - differently from perfect fluids - which adds to the photon and        
neutrino ones (the photon anisotropic stress is negligible before the decoupling epoch).  This 

anisotropic stress has scalar, vector and tensor component.                                                                              

     c. PMFs induce a Lorentz force on baryons, which indirectly affects also photons during the tight 
coupling regime. The Lorentz force has a scalar and vector component.

• PMFs therefore lead to inhomogeneous solutions to scalar, vector and tensor metric and matter 
perturbations.

• These inhomogeneous solutions inherit the statistics of the source terms in B2 which is non-
Gaussian (more precisely a chi-square distribution) and this is an important point for the imprint 
on CMB non-gaussianities.



The relevant GR equations
• Einstein equations: Gµ⌫ = 8⇡G(Tµ⌫ + TPMF

µ⌫ )

• Due to the infinite conductivity limit 

       a. the induced electric field vanishes 

       b. the magnetic field is frozen in: B(x, ⌧) =
B(x)
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• As already stated,             is a stiff source of the Einstein equations acting only at the level 
of perturbations (same treatment of a network of topological defects, a similar component 
which also does not respect the symmetries of isotropy and homogeneity locally).
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Metric Perturbations
• Inhomogeneous perturbations around homogeneous background:

gµ⌫(x, ⌧) = g(0)µ⌫ (⌧) + �gµ⌫(x, ⌧)

Tµ⌫(x, ⌧) = T (0)
µ⌫ (⌧) + �Tµ⌫(x, ⌧)

g(0)µ⌫ (⌧) = a2(⌧) diag (�,+,+,+)

Trace

• Metric perturbations have ten degrees of freedom (dofs) which can be divided in scalar, vector 
and tensor as for any symmetric tensor:

All except PMF have homogeneous EMT: non relativistic components (baryons, CDM), relativistic 
components (radiation, massless neutrinos), dark energy (only homogeneous if     ). ⇤
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• This split into scalar, vector and tensor components holds as well for the PMF anisotropic 
stress        (with the difference that is traceless).

• The ten metric perturbations (4 scalar, 4 vector and 2 tensor) are redundant and is convenient 
to keep separate the physical perturbations from the infinitesimal changes in the coordinate 
system (called gauge) transformations:

x̃

µ = x

µ + ⇠

µ(x)

g̃µ⌫ = gµ⌫ �rµ⇠⌫ �r⌫⇠µ

• The four dofs of the infinitesimal coordinate transformation corresponds to 2 scalar and 2 
vector functions. The tensor part is not affected by gauge transformations and is directly 
gauge invariant.
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• The power spectra are related to the symmetric part and to the helical part:
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• Above definition of helicity is gauge-invariant, similar to kinetic helicity. 

• Other definitions of helicity are available as  
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A stochastic background of PMF

• We assume the magnetic field satisfy in Fourier space:

which is not gauge invariant unless the normal direction of the B field perpendicular 
to the surface decays sufficiently faster.  With this latter definition, the helicity would 
be constant due to the large conductivity.



• Power spectrum smoothed on a scale     (tipically chosen as 1 Mpc).  
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• The helical term must satisfies a Schwarz inequality:

|PA(k)|  PS(k)

• Example of a coupling to a pseudo-scalar field in which the helicity basis is convenient:

PA / |A+|2 � |A�|2

PS / |A+|2 + |A�|2

• Analysis including helicity in preparation, selected comparison with non-helical 
results for completeness.

• Also used the mean square of B:
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• We assume the magnetic field satisfy (no helicity is considered, note the change in 
notation):
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• Power spectrum damped at small scales larger than kD by radiation viscosity:  
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where     is a pivot scale and       is a damping scale. k� kD

• The spectra of the energy momentum components of the PMF are 4-point functions 
of the magnetic field.

• Example of energy density:
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Power-spectra of the PMF EMT



• Wick theorem (example for four point correlation function): 
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• Spatial components of the EMT: 

• Scalar, vector and tensor of the spatial anisotropic stress: 
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• With these inputs:
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Integration scheme
The region of integration is defined where P(k) is non-zero as:

p < kD |k� p| < kD

The second condition introduces a k-dependence on the angular integration domain and the two allow 
the energy power spectrum to be non zero only for 0 < k < 2kD. Such conditions split the double 
integral (over γ and over p) in three parts depending on the γ and p lower and upper limit of 
integration. A sketch of the integration is thus the following:

1) 0 < k < kD :

Z kD�k

0
dp

Z 1

�1
d� · · ·+

Z kD

kD�k
dp

Z 1

k2+p2�k2
D

2kp

d� · · · ⌘
Z kD�k

0
dpIa(p, k) +

Z kD

kD�k
dpIb(p, k)

2) kD < k < 2kD :

Z kD

k�kD

dp

Z 1

k2+p2�k2
D

2kp

d� · · · ⌘
Z kD

k�kD

dpIc(p, k)

0.2 0.4 0.6 0.8 1 1.2 1.4
p

-0.5

0.5

1

1.5

2

2.5
k

a
b

c

FF, Paci & Paoletti 2008

Careful computation of angular integrals
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• For k << kD  and nB>-3/2 we obtain

• For nB=-3/2 we have a logarithmic dependence and for -3 < nB < -3/2

• Differences with respect to previous results in the literature in the infrared 
part due to the exact computation of the angular part

• There is non-zero correlation between density and Lorentz
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Similarly we obtain for the vector and tensor part of the anisotropic stress
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• Differences with respect to previous results in the literature in the infrared part 
due to the exact computation of the angular part Mack, Kahniashvili & Kosowsky 2002

Caprini, Durrer & Kahniashvili 2004
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• All contributions (scalar energy density and Lorentz force, vector and tensor 
anisotropic stress) are comparable 

• The various contributions differ because of the transfer functions to Cl.
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The damping scale
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• The damping of the magnetic field is determined by the Alfven velocity and the Silk 
damping scale: 

• This allows us to fix the damping scale by other cosmological and magnetic 
parameters and vary only       and nB B�

Subramanian & Barrow 1998
Jedamzik, Katalinic & Olinto 1998
Kahniashvili & Ratra 2006

Posterior probability for kD [Mpc-1] obtained from a Monte Carlo Markov Chain on the six 
cosmological parameters,       and nB plus nuisance foreground parameters. This posterior 
probability is marginalized over the other parameters varied in the Monte Carlo.
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Paoletti & FF, 2012



• Wavelengths relevant for CMB anisotropies are almost not affected by the 
quantitative details with which magnetic fields are damped by viscosity. 

• The methodology of computing the correlators analitically is therefore quite 
powerful for the investigation of probes for PMF on scales much smaller than those 
relevant for CMB.
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Damping modeled 
as a sharp cut-off

Damping modeled as a 
Gaussian smoothing 

• Analytical integration feasible for generic spectral index only by a damping with a 
sharp cut-off. 
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• Vector Contribution 

• Tensor Contribution 

• Scalar contribution

Predictions of inhomogeneous PMFs on CMB 
anisotropies

Durrer, Ferreira & Kahniashvili 2000
Mack, Kahniashvili & Kosowsky 2002
Caprini, Durrer & Kahniashvili 2004
Lewis 2004
Paoletti, FF & Paci 2008 
......

Subramanian & Barrow 1998
Seshadri & Subramanian 2001
Mack, Kahniashvili & Kosowsky 2002
Lewis 2004
Yamazaki et al. 2006
Paoletti, FF & Paci 2008 
.......

Adams et al., 1997
Koh & Lee 2002
Giovannini 2004, 2005, 2006 (2)
Kahniashvili & Ratra 2006
Yamazaki et al. 2006
Giovannini 2007
FF, Paci & Paoletti 2008
Paoletti, FF & Paci 2008
Giovannini & Kunze 2008 (6)
Giovannini 2009 (2)
......



• Several public codes which compute the evolution of linear fluctuations in the Einstein-
Boltzmann system and compute the spectrum of CMB anisotropies and matter:

                http://camb.info/

                http://www.thphys.uni-heidelberg.de/~robbers/cmbeasy/

                http://class-code.net/

 The progenitors of the CAMB and CMBEASY, COSMICS (Ma & Bertschinger 1995) and       
CMBFAST (Seljak & Zaldarriaga ) are no longer supported. 

• To predict the effects of PMF on cosmological perturbations and CMB anisotropies: 

Modifications of the Einstein-Boltzmann system of equations to include PMF contribution

Inclusion of power spectra for the EMT components of PMF

Computation of initial conditions for cosmological perturbations deep in the radiation era 

Lewis & Challinor, 2000

the Cosmic Linear Anisotropy Solving System

Code for Anisotropies in the Microwave Background

• Although several pioneering works were analytical, our approach is numerical. 

Doran, Robbers, Mueller 2003

Lesgourgues 2011

Predictions

• The results are from a modified version of the CAMB code created and mantained 
by Daniela Paoletti.



Scalar fluctuations

• Synchronous gauge (or longitudinal gauge, quite common choices):
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Baryons velocity
• Lorentz force acting on baryons velocity scalar potential:

✓̇b = �H✓b + k2c2sb�b � k2
L(S)

⇢b
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Initial conditions for the radiation era 

Terms proportional to PMF energy and Lorentz density is the 
regular inhomogeneous solution 

a. with 

b. exhibits compensation
(the same for pressures, velocities)

c.                                        , i.e. this inhomogeneous mode 
does not carry curvature on large scales and is regular at early 
times 

d. subsequently in the matter era this inhomogeneous mode 
source curvature perturbation on large scales.

e. neutrino hierarchy needs to be closed to higher order wtr 
to the adiabatic homogeneous solution

f. other initial conditions for the inhomogeneous solution can 
be chosen (isocurvature modes can also be studied in presence 
of PMFs, Giovannini & Kunze 2008)

g.  agrees with Shaw and Lewis 2009
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Vector fluctuations

ḣV
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• In absence of inhomogeneous sources or free streaming particles, vector 
fluctuations are usually neglected since corresponds to decaying modes. In presence 
of PMF vector modes play a relevant role.

• As for the scalar sector the anisotropic stress in related to the Lorentz force.

• The vector part of the velocity field of baryons is driven by the (vector part of the) 
Lorentz force



Tensor fluctuations

ḧij + 2Hḣij + k2hij = 16⇡Ga2(⇢⌫⇡
⌫
ij +⇧(B,T )

ij )

• Tensor perturbations:

• The neutrino tensor anisotropic stress satisfy a differential equation of the Boltzmann 
hierarchy. Deep in the radiation era:

• Initial conditions:

• The absence of a constant mode on large scales is the consequence of 
compensation - as for the scalar mode - for the regular tensor inhomogeneous 
solution in presence of PMF and free streaming neutrinos. 
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CMB anisotropies

• Analogous formula for vector and tensor contribution to CMB anisotropies

• Photons travelling from the surface of last scattering surface when matter and radiation 
decoupled. 

• Anisotropies of the cosmic black-body radiation with T=2.7255 K
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• The anisotropy spectrum is a convolution of the 3-D Fourier spectrum
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Status of CMB temperature measurements
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CMB polarization
• Thomson scattering generates partial linear polarization from density perturbations 

close to the last scattering surface

• Two additional observables: 

           Stokes parameters Q, U at the map level

           E,B decomposition at the power spectrum 

           level

Courtesy from A. Challinor

• B modes generated only by vector and 
tensor fluctuations as primary anisotropies 
or by lensing of scalar fluctuations as a 
secondary anisotropy

• Only cross-correlation between T and E 
for parity symmetry 

            



Status of CMB polarization measurements



PMF scalar contribution

Scalar mode driven by PMF



PMF vector contribution

Lewis 2003

Vector mode driven by 
neutrino hierarchy

Vector mode driven by PMF



PMF tensor contribution

Tensor mode driven by PMF

Tensor inflationary 
mode



Dependence on the spectral index: scalar

Black Primary CMB
Blue n=2
Cyan n=1
Green n=0
Yellow n=-1.5
Orange n=-2.5
Red n=-2.9

• For k << kD  and nB>-3/2 the Fourier spectra of the scalar part of the PMF EMT have a white 
noise spectrum and the same occurs for the scalar contribution to CMB anisotropies.



Dependence on the spectral index: vector

Black Primary CMB
Blue n=2
Cyan n=1
Green n=0
Yellow n=-1.5
Orange n=-2.5
Red n=-2.9

• For k << kD  and nB>-3/2 the Fourier spectra of the vector part of the PMF EMT have a white 
noise spectrum and the same occurs for the vector contribution to CMB anisotropies.



Tutti insieme: TT



Tutti insieme: EE



Tutti insieme: TE



Tutti insieme: BB



Comparison of CMB generated by compensated 
and passive modes

• So far we have shown results based on initial conditions which satisfy the 
Einstein-Boltzmann system after neutrino decoupling and correspond to 
cosmological perturbations which are regular (these perturbation carry an 
infinitesimal curvature on long wavelength as for the so-called isocurvature 
modes)  

• It has been argued that passive scalar and tensor fluctuations are generated 
at neutrino decoupling by the matching of pre-existing scalar and tensor 
fluctuations (which are characterized by modes which are singular and not 
regular before neutrino decoupling) which were not compensated by the free 
streaming neutrinos. 

• These passive modes correspond to adiabatic scalar and tensor homogeneous 
solution of the Einstein-Boltzmann system with an amplitude fixed by the 
spectrum of the PMF
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Shaw and Lewis 2010



• Interesting results which deserve further attention (including a careful matching through 
the neutrino decoupling process) 

Shaw and Lewis 2010



The impact of helicity

hBi(k)B
⇤
j (k

0)i =(2⇡)3

2
�(k� k0)

h
(�ij � k̂ik̂j)PS(k) + i✏ijlk̂lPA(k)

i

Ballardini, FF, Paoletti 2013

• PA contributes to all the PMF EMT Fourier correlations shown so far (parity even 
correlations).  As an example consider the tensor anisotropic stress

Caprini, Durrer, Kahniashvili 2004

|⇧(T )(k)|2 =
2

(4⇡)5

Z
d3p

h
PS(p)PS(|k� p|)(1 + �2)(1 + �2) + 4PA(p)PA(|k� p|)��

⇤

• An helical component of a SB of PMF would open a new window on the physics of early 
Universe or in our understanding of turbulence. 
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Plot which shows the relative magnitude in the case of a maximally helical background: AS=AA , nS=nA 

nS=nA=-3/2,
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from the solid to 
large dashed
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• A non-zero helical component generates also correlations which do not respect parity 
symmetry (parity odd).  As an example consider the tensor part:

A(T )(k) =
4

(4⇡)5

Z
d3p


PS(p)PA(|k� p|)(1 + �2)� + PA(p)PS(|k� p|)�(1 + �2)

�

k/kD

nB=-3/2,-1,0,1,2,3

from the solid to large 
dashed

k3A(T )(k)

• The role of exact computation of the angular part is emphasized in comparison to 
previous works.

Caprini, Durrer, Kahniashvili 2004


