Relativistic Magnetohydrodynamics Governing equations, wave behavior in special relativity

Rony Keppens

including work with Z. Meliani, O. Porth, et al.

Centre for mathematical Plasma-Astrophysics Department of Mathematics, KU Leuven

Rony Keppens (KU Leuven)

Relativistic MHD

Nov. 2013, IAC winter school 1 / 71

< ロ > < 同 > < 回 > < 回 >

Outline

- Special relativistic MHD introduction
 - ⇒ SRMHD equations
 - \Rightarrow linear waves in homogeneous media
 - \Rightarrow RMHD shock relations
- **Relativistic MHD simulations:** MPI-AMRVAC
 - \Rightarrow relativistic (M)HD two-component jet simulations
 - \Rightarrow helically magnetized, relativistic jets
- Outlook

< 同 ト < 三 ト < 三 ト

- lecture material from modern (2004 & 2010) textbooks
 - ⇒ Goedbloed et al., Cambridge University Press
 - \Rightarrow chapter 21 on relativistic MHD ...

Advanced Magnetohydrodynamics

With Applications to Laboratory and Astrophysical Plasmas

J. P. (Hans) Goedbloed Rony Keppens and Stefaan Poedts

COMBINE

Rony Keppens (KU Leuven)

Relativistic MHD

Nov. 2013, IAC winter school 3 / 71

Relativity intro

- Newtonian limit
- 3) Waves in special relativistic (M)HD
- 4 MPI-AMRVAC
- 5 AGN jet applications

• (10) • (10)

Relativity intro

Special Relativity I

- 4D flat space-time, with *c* as maximal propagation speed \Rightarrow four-vector $\mathbf{X} = (ct, \mathbf{x})^T$ squared length invariant $\mathbf{X} \cdot \mathbf{X} = -c^2 t^2 + x_1^2 + x_2^2 + x_3^2$ \Rightarrow Minkowski metric $g_{\alpha\beta} = g^{\alpha\beta} = \text{diag}(-1, 1, 1, 1)$ \Rightarrow contra- & covariant components $X^{\alpha} = g^{\alpha\beta} X_{\beta}$: only reverse $X^0 = -X_0$
- particle wordline: ideal clock for proper time τ

Special Relativity II

tangent fourvector to worldline

 \Rightarrow four-velocity $\mathbf{U} = \mathbf{dX}/d\tau$, components

$$U^{\alpha} = \left(c \underbrace{\frac{dt}{d\tau}}_{\text{dilation}}, \underbrace{\frac{dx_{i}}{dt}}_{v_{i}} \frac{dt}{d\tau} \right) = (c\Gamma, \Gamma \mathbf{v})^{T}$$

 \Rightarrow spatial three-velocity **v** in chosen Lorentzian lab frame

$$\Rightarrow$$
 Lorentz factor $\Gamma = \frac{1}{\sqrt{1 - v^2/c^2}}$

Rony Keppens (KU Leuven)

Special Relativity III

- inertial frames Lorentz transform $\mathbf{X}' = L_{\alpha}^{\alpha'} \mathbf{X}$
 - $\Rightarrow~$ lost simultaneity, length contracts, time dilates
- proper density: $\rho = m_0 n_0$ with n_0 rest frame number density
 - \Rightarrow lab 'density' $D = \Gamma \rho$: volume change by length contraction
- Particle conservation is $\partial_{\alpha} \left(\rho U^{\alpha} \right) = 0$ or

$$\frac{\partial D}{\partial t} + \nabla \cdot (D\mathbf{v}) = 0$$

stress-energy tensor:

$$\left(\begin{array}{cc} T^{00} & T^{0i} \\ T^{i0} & T^{ij} \end{array}\right) = \left(\begin{array}{cc} \text{energy density} & \text{energy flux} \\ \text{momentum flux} & \text{stresses} \end{array}\right)$$

< ロ > < 同 > < 回 > < 回 >

Special Relativity IV

• gas stress-energy contribution from expression in rest frame:

 \Rightarrow to lab frame by inverse Lorentz $T^{\alpha\beta} = L^{-1,\alpha}_{\alpha'}L^{-1,\beta}_{\beta'}T^{\alpha'\beta'}$

$$\left(\begin{array}{cc} T^{00} & T^{0i} \\ T^{i0} & T^{ij} \end{array}\right) = \left(\begin{array}{cc} \tau_{g} + Dc^{2} & \frac{\mathbf{S}_{g}}{c} \\ \frac{\mathbf{S}_{g}}{c} & \frac{\mathbf{S}_{g}\mathbf{v}}{c^{2}} + p\mathbf{I} \end{array}\right)$$

 $\Rightarrow \mathbf{S}_{g} = (\rho c^{2} + \rho \epsilon + \rho)\Gamma^{2}\mathbf{v} \text{ and } \tau_{g} + Dc^{2} = (\rho c^{2} + \rho \epsilon + \rho)\Gamma^{2} - \rho$

Special Relativity V

when also allowing for electromagnetic fields: EM stress-energy

⇒ EM energy flux is Poynting flux $\mathbf{S}_{em} = \frac{\mathbf{E} \times \mathbf{B}}{\mu_0}$ ⇒ use $\mathbf{E} = -\mathbf{v} \times \mathbf{B}$: perfect conductivity

イロト イヨト イヨト イヨト

Special Relativity VI

energy-momentum conservation

$$\partial_{\beta}\left(T^{\alpha\beta}+T^{\alpha\beta}_{\mathrm{em}}\right)=0$$

introduce energy density minus rest mass and total energy flux

$$\begin{aligned} \tau &= \tau_{\rm g} + \frac{B^2}{2\mu_0} + \epsilon_0 \frac{B^2 v^2 - (\mathbf{v} \cdot \mathbf{B})^2}{2} \\ \mathbf{S}_{\rm tot} &= \mathbf{S}_{\rm g} + \mathbf{S}_{\rm em} \end{aligned}$$

 \Rightarrow temporal part gives

$$\frac{\partial \tau}{\partial t} + \nabla \cdot \left((\tau + \boldsymbol{p}_{\text{tot}}) \mathbf{v} - (\mathbf{v} \cdot \mathbf{B}) \frac{\mathbf{B}}{\mu_0} \right) = \mathbf{0}$$

 \Rightarrow spatial part:

$$\frac{\partial \mathbf{S}_{\text{tot}}}{\partial t} + \nabla \cdot \left(\mathbf{S}_{\text{tot}} \mathbf{v} + \boldsymbol{\rho}_{\text{tot}} \boldsymbol{c}^2 \mathbf{I} - \frac{c^2}{\mu_0} \frac{\mathbf{B}\mathbf{B}}{\Gamma^2} - \frac{1}{\mu_0} (\mathbf{v} \cdot \mathbf{B}) \mathbf{v} \mathbf{B} \right) = \mathbf{0}$$

Rony Keppens (KU Leuven)

→ ∃ → < ∃ →</p>

10/71

< A

Special Relativity VII

- total pressure $p_{\text{tot}} = p + \frac{(\mathbf{v} \cdot \mathbf{B})^2}{2c^2} + \frac{B^2}{2\Gamma^2}$
- close system with homogeneous Maxwell equations:

$$\nabla \cdot \mathbf{B} = \mathbf{0}$$
$$\frac{\partial \mathbf{B}}{\partial t} - \nabla \times (\mathbf{v} \times \mathbf{B}) = \mathbf{0}$$

 \Rightarrow together with equation of state, e.g. polytropic relation

$$\rho \epsilon = \frac{p}{\gamma - 1}$$

 \Rightarrow enters specific enthalpy *h* where $\rho h = \rho c^2 + \rho \epsilon + p$

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Special Relativity VIII

- Equation of state in relativistic MHD
 - \Rightarrow specific internal energy $\epsilon = p/(\gamma 1)\rho$
 - \Rightarrow assumes constant polytropic index γ
- Relativistically correct ideal gas: effective $\hat{\gamma}(T)$
 - \Rightarrow compare Synge with Mathews proxy (no Bessel functions)

- special relativistic magnetofluids → flat Minkowski space-time; particle, tensorial energy-momentum conservation, full Maxwell
- ideal magnetohydrodynamic: vanishing electric field in comoving frame

$$\mathbf{E} = -\mathbf{v} imes \mathbf{B}$$

 \Rightarrow fix Lorentz frame, use 1 + 3 split (time/space), obtain

$$\partial_t \mathbf{U} + \partial_i \mathbf{F}^i = \mathbf{0}$$

- \Rightarrow conserved variables $\mathbf{U} = (D, \mathbf{S}_{tot}, \tau, \mathbf{B})$
- \Rightarrow primitives (ρ , **v**, ρ , **B**)

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Relativity intro

Waves in special relativistic (M)HD

4 MPI-AMRVAC

5 AGN jet applications

• $\Gamma \rightarrow 1$: conservation laws for density ρ , momentum density $\mathbf{m} = \rho \mathbf{v}$, \mathcal{H} and \mathbf{B}

$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\mathbf{v} \rho) = \mathbf{0}$$

• $D \rightarrow \rho$ and $\mathbf{S}_{tot} \rightarrow c^2 \rho \mathbf{v}$ and $p_{tot} \equiv$ thermal + magnetic pressure

• $\Gamma \rightarrow 1$: conservation laws for density ρ , momentum density $\mathbf{m} = \rho \mathbf{v}, \mathcal{H}$ and **B**

$$\frac{\partial \mathbf{m}}{\partial t} + \nabla \cdot (\mathbf{v} \rho \mathbf{v} - \mathbf{B} \mathbf{B}) + \nabla \boldsymbol{\rho}_{tot} = \mathbf{0}$$

• $D \rightarrow \rho$ and $\mathbf{S}_{tot} \rightarrow c^2 \rho \mathbf{v}$ and $p_{tot} \equiv$ thermal + magnetic pressure

• $\Gamma \rightarrow 1$: conservation laws for density ρ , momentum density $\mathbf{m} = \rho \mathbf{v}, \mathcal{H}$ and \mathbf{B}

$$\frac{\partial \mathcal{H}}{\partial t} + \nabla \cdot (\mathbf{v} \mathcal{H} + \mathbf{v} \boldsymbol{p}_{tot} - \mathbf{B} \mathbf{B} \cdot \mathbf{v}) = \mathbf{0}$$

• total energy density $au
ightarrow \mathcal{H}$ has 3 contributions

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

• $\Gamma \rightarrow 1$: conservation laws for density ρ , momentum density $\mathbf{m} = \rho \mathbf{v}$, \mathcal{H} and **B**

$$\frac{\partial \mathbf{B}}{\partial t} + \nabla \cdot (\mathbf{v}\mathbf{B} - \mathbf{B}\mathbf{v}) = \mathbf{0}$$

idem in relativistic/Newtonian setting

< 回 > < 回 > < 回 >

Newtonian intermezzo: wave diagrams

- linearize (ideal) MHD equations about uniform, static state, uniform field B₀
 - \Rightarrow Lagrangian displacement ξ , normal mode analysis $e^{-i\omega t}$
 - \Rightarrow algebraic eigenvalue problem

 \Rightarrow analytic expressions for dispersion relation $\omega^2(\mathbf{k})$, when perturbations assume plane wave form

$$\hat{\boldsymbol{\xi}}(\mathbf{k};\omega) \exp i(\mathbf{k}\cdot\mathbf{r}-\omega t)$$

 \Rightarrow Alfvén modes then e.g. $\omega_{\mathcal{A}}^2 = (\mathbf{k} \cdot \mathbf{B}_0)^2 / \mu_0 \rho_0$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Newtonian intermezzo: wave diagrams

• linearize (ideal) MHD equations about uniform, static state, uniform field B₀

 $\Rightarrow \text{ dispersion diagram } \omega^2 = \omega^2(k_x) \text{ for } k_y \text{ and } k_z = k_{\parallel} \text{ fixed}$

• continuous curves to quantized modes: $k_x = n\pi/a$ if $x \in [0, a]$

Newtonian limit

phase diagram: endpoint of k vector as angle between k and B₀ varies: for Alfvén yields two spheres left/right of origin

(a) Phase diagram for Alfvén waves is circle \Rightarrow (b) wavefronts pass through **points** $\pm b$ \Rightarrow (c) those points are the group diagram.

Rony Keppens (KU Leuven)

Relativistic MHD

Nov. 2013, IAC winter school 17 / 71

A D b 4 A

Phase and group diagrams

Friedrichs diagrams (schematic)

parameter $c/b = \frac{1}{2}\gamma\beta$, $\beta \equiv 2p/B^2$

Phase diagram (plane waves) **Group diagram** (point disturbances)

Rony Keppens (KU Leuven)

Relativistic MHD

Nov. 2013, IAC winter school 18 / 71

< 回 > < 三 > < 三 >

Newtonian limit

MHD waves

• 7 wavespeeds *entropy*, ± *slow*, ± *Alfvén*, ± *fast* [anisotropic!]

 \Rightarrow speeds $v, v \pm c_s, v \pm b, v \pm c_f$

- ⇒ 7 characteristic speeds of the hyperbolic PDE system
- MHD waves in uniform medium

Rony Keppens (KU Leuven)

Relativistic MHD

Nov. 2013, IAC winter school 19 / 71

Relativity intro

- Newtonian limit
- 3 Waves in special relativistic (M)HD
- 4 MPI-AMRVAC
- 5 AGN jet applications

• (10) • (10)

Special Relativistic HD

• relativistic hydro in 3 + 1 form reads:

$$\begin{aligned} \frac{\partial S}{\partial t} &+ \mathbf{v} \cdot \nabla S = 0, \\ \frac{\partial \rho}{\partial t} &+ \mathbf{v} \cdot \nabla \rho + \frac{\rho h}{u} \nabla \cdot \mathbf{v} \\ &- \frac{1}{u\Gamma^2} \mathbf{v} \cdot \nabla (S\rho^{\gamma}) = 0, \\ \frac{\partial \mathbf{v}}{\partial t} &+ (\mathbf{v} \cdot \nabla) \mathbf{v} + \frac{c^2}{\rho h \Gamma^2} \nabla (S\rho^{\gamma}) \\ &- \mathbf{v} (\nabla \cdot \mathbf{v}) \left[1 - \frac{yc^2}{u} \right] - \mathbf{v} \frac{yc^2}{u\rho h \Gamma^2} \mathbf{v} \cdot \nabla (S\rho^{\gamma}) = 0. \end{aligned}$$

 \Rightarrow using entropy $S = \rho \rho^{-\gamma}$, rest frame density ρ , 3-velocity **v**

Linear waves in RHD I

• linearize about static v = 0, uniform gas (constant S, ρ)

 \Rightarrow assume plane wave variation of linear quantities $S_1, \rho_1, \mathbf{v}_1$

$$\exp(-i\omega t + i\mathbf{k}\cdot\mathbf{x})$$

obtain in chosen (rest) Lorentz frame

$$\begin{split} \omega S_1 &= 0, \\ \omega \rho_1 &= \rho \mathbf{k} \cdot \mathbf{v}_1, \\ \omega \mathbf{v}_1 &= \frac{c^2}{\rho h} \mathbf{k} \left(S \gamma \rho^{\gamma - 1} \rho_1 + \rho^{\gamma} S_1 \right) \end{split}$$

 \Rightarrow five solutions, entropy + shear waves at $\omega = 0$, two sound waves

Rony Keppens (KU Leuven)

イロト イポト イヨト イヨト

Linear waves in RHD II

sound waves dispersion relation

$$\frac{\omega^2}{k^2 c^2} = \frac{\gamma S \rho^{\gamma - 1}}{h} = \frac{\gamma p}{\rho h} = \frac{c_g^2}{c^2}$$

 \Rightarrow phase speed for plane wave with wavevector **k** = k**n** from

$$\frac{\mathbf{v}_{\rm ph}}{c} = \frac{c_g}{c} \mathbf{n}$$

Rony Keppens (KU Leuven)

< 回 > < 三 > < 三 >

Linear waves in RHD III

• vary direction of wavevector over 2π , obtain phase diagram

- \Rightarrow isotropic propagation at sound speed
- \Rightarrow group (energy propagation) and phase speed coincide

$$\frac{\mathbf{v}_{\rm gr}}{c} = \frac{\partial \omega}{\partial \mathbf{k}} = \frac{c_g}{c} \mathbf{n}$$

Rony Keppens (KU Leuven)

Relativistic MHD

Nov. 2013, IAC winter school 24 / 71

Linear waves in RHD IV

in frame L' where source moves at velocity v

 \Rightarrow Lorentz transform: L' coordinates (ct', x') and L with (ct, x)

- plane wave in *L'* with $\exp(-i\omega't' + i\mathbf{k}' \cdot \mathbf{x}')$ still plane wave in *L* with $\exp(-i\omega t + i\mathbf{k} \cdot \mathbf{x})$
 - ⇒ changed frequency: relativistic Doppler effect

 \Rightarrow altered wave vector direction: Relativistic wave aberration

$$\begin{split} \omega &= & \Gamma \left(\omega' + \mathbf{k}' \cdot \mathbf{v} \right) \,, \\ \mathbf{k} &= & \mathbf{k}' + \mathbf{v} \left[\frac{\omega' \Gamma}{C^2} + \left(\mathbf{k}' \cdot \mathbf{v} \right) \frac{\Gamma - 1}{v^2} \right] \end{split}$$

< 回 > < 回 > < 回 >

Linear waves in RHD V

phase speed relation is then

$$\frac{v_{\rm ph}^{\prime 2}}{c^2} = \frac{\Gamma^2 \left(v_{\rm ph} - \mathbf{n} \cdot \mathbf{v}\right)^2}{c^2 + \Gamma^2 \left(v_{\rm ph} - \mathbf{n} \cdot \mathbf{v}\right)^2 - v_{\rm ph}^2}$$

 \Rightarrow graphically: phase diagram for moving source (wave aberration)

Linear waves in RHD VI

Group diagram in same Lorentz frame: use Huygens
 construction

 \Rightarrow group diagram: observed wavefront for moving point source

Rony Keppens (KU Leuven)

Relativistic MHD

Nov. 2013, IAC winter school 27 / 71

A > + = + + =

Relativistic MHD waves I

- in MHD: anisotropic wave behavior in rest frame
 - \Rightarrow phase & group (Friedrich) diagrams for slow, Alfvén, fast

 \Rightarrow horizontal **B**, uniform plasma

 $\Rightarrow \delta$ -perturbation yields group diagram, also Huygens construction

Relativistic MHD waves II

- Alfvén waves as source moves at
 - $v = 0.9 [\sin(\pi/4) e_x + \cos(\pi/4) e_z]$
 - \Rightarrow circular phase diagrams get displaced

⇒ group diagram: Alfvén pulse traveling along perturbed fieldline

Relativistic MHD waves III

Depending on uniform medium: Alfvén & fast speeds may approach c

 \Rightarrow phase and group diagrams for slow, Alfvén, fast modes in rest frame

Relativistic MHD waves IV

same case: draw phase diagram when source moves at

 $v = 0.9 [sin(\pi/4)e_x + cos(\pi/4)e_z]$

Relativistic MHD waves V

• group speed diagram then fully 3D objects, no more symmetry

⇒ use Huygens constructions: slow and fast fronts

Rony Keppens (KU Leuven)

Relativistic MHD

Nov. 2013, IAC winter school 32 / 71

A (10) A (10) A (10)
Relativistic MHD waves VI

- when speed $\mathbf{v} = 0.9c\mathbf{e}_z$ aligned with **B**, still up-down symmetry
 - \Rightarrow from Lorentz transform get group diagram

see Physics of Plasmas 15, 102103, 2008

Rony Keppens (KU Leuven)

Relativistic MHD

Nov. 2013, IAC winter school 33 / 71

 MHD wave speed expressions: analytic expressions for entropy and Alfvén phase speeds, while fast and slow pairs from quartic polynomial (can use e.g. Laguerre iteration to locate roots)

 $\Rightarrow\,$ needed for solvers like TVDLF, HLL(C), \ldots (characteristic wave speeds)

Relativistic MHD shocks

shockfront: discontinuity across 4-manifold φ(ct, x) = 0
 ⇒ normal to shockfront: space-like 4-vector I, components

 $I_{lpha} = \partial_{lpha} \phi$

 \Rightarrow Rankine-Hugoniot express conservation across manifold

$$\begin{bmatrix} \rho U^{\alpha} \end{bmatrix} I_{\alpha} = 0 \\ \begin{bmatrix} T^{\alpha\beta} \end{bmatrix} I_{\alpha} = 0$$

 \Rightarrow directly follow from laws $\partial_{\alpha}(\rho U^{\alpha}) = 0$ and $\partial_{\alpha}(T^{\alpha\beta}) = 0$

four-vector for magnetic field (ideal MHD)

$$\boldsymbol{b}^{\alpha} = \left[\boldsymbol{\Gamma}\frac{\boldsymbol{\mathsf{v}}\cdot\boldsymbol{\mathsf{B}}}{\boldsymbol{c}}, \frac{\boldsymbol{\mathsf{B}}}{\boldsymbol{\Gamma}} + \boldsymbol{\Gamma}(\boldsymbol{\mathsf{v}}\cdot\boldsymbol{\mathsf{B}})\boldsymbol{\mathsf{v}}/\boldsymbol{c}^2\right]^{\mathrm{T}}$$

 \Rightarrow induction equations yields

$$\llbracket U^{lpha}b^{eta}-b^{lpha}U^{eta}
rbrack I_{lpha}=0$$

Rony Keppens (KU Leuven)

Relativistic MHD

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

• involved relations, add complication of different reference frames

 \Rightarrow in SRF (left): $\mathbf{I} = (0, \mathbf{e}_x)$, with four-velocities up/downstream

$$\begin{array}{rcl} \boldsymbol{\mathsf{U}}^{\mathrm{u}} & = & (\boldsymbol{c}\boldsymbol{\Gamma}_1,\boldsymbol{\Gamma}_1\boldsymbol{\mathsf{v}}_1) \\ \boldsymbol{\mathsf{U}}^{\mathrm{d}} & = & (\boldsymbol{c}\boldsymbol{\Gamma}_2,\boldsymbol{\Gamma}_2\boldsymbol{\mathsf{v}}_2) \end{array}$$

 many relativistic MHD shock invariants known, e.g. Lichnerowicz adiabat (like Hugoniot/Taub adiabat)

Rony Keppens (KU Leuven)

Relativistic MHD

Nov. 2013, IAC winter school 36 / 71

Relativity intro

- Newtonian limit
- 3 Waves in special relativistic (M)HD

5 AGN jet applications

Adaptive Mesh Refinement & MPI-AMRVAC

• extreme contrasts, positive $p, \rho, \tau, \nu < 1, \Gamma \ge 1$, solenoidal **B**

 \Rightarrow stringent demands on numerics and accuracy: AMR vital

• Special relativistic HD and MHD: 'modules' in MPI-AMRVAC

 $\Rightarrow\ CPC$ 179 2008, 617; JCP 226 2007, 925; MNRAS 376 2007, 1189; JCP 231 2012, 718

- \Rightarrow advection, hydro, MHD, relativistic (M)HD modules
- ⇒ different EOS implemented for relativistic modules
- \Rightarrow any-D, explicit grid adaptive framework
- ⇒ full MPI octree variant, cartesian/cylindrical/spherical
- shock-capturing schemes (TVDLF/HLL/HLLC/Roe), 2nd to higher order reconstructions

MPI-AMRVAC

Relativistic Hydro jets: standard test case

- Relativistic HD Jet: classical Mach $v_{\rm jet}/c_s \simeq 11$
 - \Rightarrow uniform pressure, density $ho_{jet}/
 ho_{ext} =$ 0.01 (light jet)
 - $\Rightarrow~\Gamma\simeq7,$ effective resolution 1440×4800 (5 levels)
 - ⇒ morphology as in Marti et al 1997, Mignone et al 2005

RMHD Orszag-Tang test

- relativistic analogue of 2D MHD Orszag-Tang test
 - \Rightarrow double periodic, supersonic relativistic vortex rotation
 - \Rightarrow initial field configuration: double island structure

 \Rightarrow

current sheets form, shock interactions, reconnections

Rony Keppens (KU Leuven)

Relativistic MHD

Nov. 2013, IAC winter school 40 / 71

< 同 ト < 三 ト < 三 ト

MPI-AMRVAC

• AMR vital: captures small-scale 'reconnection' effects

min=1.000000, max=1.704703

\Rightarrow to revisit in true resistive RMHD!

Rony Keppens (KU Leuven)

Relativistic MHD

Nov. 2013, IAC winter school 41 / 71

RMHD wave test

• linear waves in homogeneous plasma with $\rho = 1 = p$ \Rightarrow uniform **B** = 0.3**e**_x, perturb with $\delta p = 0.1 = \delta v_z$

- \Rightarrow triggers all 3 wave signals, reproduces group diagram
- $\Rightarrow\,$ note: AMR only active late: typical easy to detect shocks!

MPI-AMRVAC

MPI-AMRVAC and HPC-Europa2

excellent scaling: domain decomposition and multi-level AMR

 \Rightarrow 2D MHD at \simeq 400², 1000 Δt in < 5 seconds (include IO)

 \Rightarrow 10 level AMR special relativistic HD sustained 80% efficiency on 2000 CPUs!

Rony Keppens (KU Leuven)

A (10) > A (10) > A (10)

MPI-AMRVAC

• 3D MHD weak scaling to >31000 CPUs (Fermi)

Rony Keppens (KU Leuven)

Relativistic MHD

Nov. 2013, IAC winter school 44 / 71

 conservative to primitive transformation: no longer purely algebraic as in Newtonian MHD

 \Rightarrow in each grid point, local rootfinding required

 $\Rightarrow\,$ many equivalent formulations exist: accuracy/speed crucial in selection

• MPI-AMRVAC: use auxiliary variables $(\xi = \rho h \Gamma^2, \Gamma)$

 \Rightarrow nonlinear transcendental equation solves ξ from

$$0 = \xi - \boldsymbol{p} - \tau - \boldsymbol{D} + \boldsymbol{B}^2 - \frac{1}{2} \left[\frac{\boldsymbol{B}^2}{\Gamma^2} + \frac{(\boldsymbol{S}_{\text{tot}} \cdot \boldsymbol{B})^2}{\xi^2} \right]$$

Relativity intro

- Newtonian limit
- 3 Waves in special relativistic (M)HD

4 MPI-AMRVAC

6 AGN jet applications

• (10) • (10)

Internal stratification effects and jet deceleration

- AGN jets radial stratification: fast inner, slow outer jet
 ⇒ different launch mechanism → different rotation
 - outer 'disk' jet launched magnetocentrifugally
 - ⇒ Magnetized Accretion-Ejection Structure (MAES)

- generic mechanism for jet launch
 - ⇒ magnetic torque brakes disk matter
 - \Rightarrow magnetic torque spins up jet matter
 - \Rightarrow mass source for jet: disk
 - \Rightarrow **B** collimates, accelerates
 - ⇒ Jet formation & Escaping accretion
- accretor can be compact object, AGN

Rony Keppens (KU Leuven)

Two-component jet model

close to engine: GR mechanisms launch inner jet

 \Rightarrow efficient extraction AM from inner disk + black hole (Blandford-Znajek mechanism)

- ⇒ fast rotating inner jet, introduce radially layered jet
- $\Rightarrow~$ inner $\Gamma\sim$ 30, outer $\Gamma\sim$ 3

- \Rightarrow both HD and MHD runs
- \Rightarrow explore differences in effective inertia
- study jet integrity for axisymmetric runs
 - \Rightarrow vary precise spine-sheath structure

Meliani & Keppens, ApJ 705, 1594-1606 (2009)

- vary relative contribution inner jet to total $L_{\rm Jet,Kin} \sim 10^{46} {
 m ergs/s}$
 - ⇒ discover new relativistic, centrifugal Rayleigh-Taylor

 \Rightarrow efficient AM redistribution, enhance inner/outer jet mixing

Rony Keppens (KU Leuven)

Relativistic MHD

Nov. 2013, IAC winter school 49 / 71

< ロ > < 同 > < 回 > < 回 >

- novel relativistically enhanced Rayleigh-Taylor mode
 ⇒ Stable: effective inertia outer > inner jet
 - \Rightarrow No classical counterpart (relativistic flow essential)!
 - $\Rightarrow \Gamma^2 h$ effect with *h* specific enthalpy
- stable versus unstable jets: design initial conditions with varying contribution inner/outer jet to total kinetic energy
 - \Rightarrow criterion predicts cases A, C, D stable; B1, B2 unstable
 - ⇒ evolution of inner jet mean Lorentz factor

- novel relativistically enhanced Rayleigh-Taylor mode
 - ⇒ Stable: effective inertia outer > inner jet
 - ⇒ No classical counterpart (relativistic flow essential)!
 - $\Rightarrow \Gamma^2 h$ effect with *h* specific enthalpy
- stable versus unstable jets: design initial conditions with varying contribution inner/outer jet to total kinetic energy
 - \Rightarrow criterion predicts cases A, C, D stable; B1, B2 unstable
 - ⇒ evolution of inner jet mean Lorentz factor

Rony Keppens (KU Leuven)

novel relativistically enhanced Rayleigh-Taylor mode

\Rightarrow approximate dispersion relation

 \Rightarrow insert spatio-temporal dependence $\exp(\lambda\,t-k\mid \zeta\mid)$ with displacement ζ

$$\lambda^2 \propto k \, \left[\left(\Gamma^2 \, \rho h + B_z^2 \right)_{\rm in} - \left(\Gamma^2 \, \rho h + B_z^2 \right)_{\rm out} \right]$$

- Stability: effective inertia outer jet > inner jet
 - \Rightarrow works for both HD and MHD relativistic jets
 - \Rightarrow purely poloidal **B** effect incorporated
 - ⇒ relativistic EOS crucial: cold/hot outer/inner jet

< ロ > < 同 > < 回 > < 回 >

novel relativistically enhanced Rayleigh-Taylor mode

\Rightarrow approximate **dispersion relation**

 \Rightarrow insert spatio-temporal dependence $\exp(\lambda\,t-k\mid \zeta\mid)$ with displacement ζ

$$\lambda^2 \propto k \, \left[\left(\Gamma^2 \, \rho h + B_z^2 \right)_{\rm in} - \left(\Gamma^2 \, \rho h + B_z^2 \right)_{\rm out} \right]$$

- Stability: effective inertia outer jet > inner jet
 - \Rightarrow works for both HD and MHD relativistic jets
 - \Rightarrow purely poloidal **B** effect incorporated
 - ⇒ relativistic EOS crucial: cold/hot outer/inner jet

can quantify jet de-collimation due to mode development

- \Rightarrow due to non-axisymmetric mode development
- \Rightarrow relativistic RT decelerates inner, decollimates total jet
- FR II/FR I transition thereby related to central engine
 ⇒ depends on distribution kinetic energy over two-component jet

Rony Keppens (KU Leuven)

Relativistic MHD

Nov. 2013, IAC winter school 52 / 71

can quantify jet de-collimation due to mode development

- \Rightarrow due to non-axisymmetric mode development
- \Rightarrow relativistic RT decelerates inner, decollimates total jet
- FR II/FR I transition thereby related to central engine
 ⇒ depends on distribution kinetic energy over two-component jet

Rony Keppens (KU Leuven)

3D two-component scenarios

- set up cylindrical, two-component jet models
 - \Rightarrow assume periodic segment, ignore jet opening angle
- 3D case liable to RT mode versus stable to RT

Rony Keppens (KU Leuven)

Relativistic MHD

Summary two-component jet evolutions in 3D

- despite additional Kelvin-Helmholtz modes with axial variation
 main evolution driven by newly discovered RT mode
- further work
 - \Rightarrow observational consequences: synthetic radio maps!
 - \Rightarrow integrity two-components over large propagation distances

< 回 > < 三 > < 三 >

- two-component model and mixing during propagation
 - \Rightarrow axisymmetric, rotating jets (suppress enhanced RT mode)
 - \Rightarrow investigating spine-sheath integrity at kpc scales!
- radial jet stratification: rotation & isothermal/isochoric

< 回 > < 三 > < 三 >

 isothermal spine-sheath model: layered structure persists on long scales! (Walg et al, 2013)

 \Rightarrow view on density and mixing

Rony Keppens (KU Leuven)

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

 identified effective impact area of radially structured jet (important to quantify jet propagation!)

 \Rightarrow yellow streamlines, all plotted in Mach disk rest frame

even after about 9 internal jet beam shocks ...

Rony Keppens (KU Leuven)

Relativistic MHD

Nov. 2013, IAC winter school

57 / 71

- identified effective impact area of radially structured jet (important to quantify jet propagation!)
 - \Rightarrow yellow streamlines, all plotted in Mach disk rest frame

even after about 9 internal jet beam shocks ...

Rony Keppens (KU Leuven)

Relativistic MHD

Nov. 2013, IAC winter school 57 / 71

Helically magnetized jets

- Axisymmetric helical fields (Keppens et al. 2008)
 - \Rightarrow again 2.5D, density contrast 1/10: light jet

$$\Rightarrow$$
 inlet profile of Γ and $\mu = \frac{R_j B_q}{R B_z}$

• average $\overline{\Gamma} \simeq 7$, $\beta_I = 0.3$ and $\sigma = 0.006$

⇒ kinetic energy dominated, near equipartition

• both helical field and rotation within jet!

Rony Keppens (KU Leuven)

Relativistic MHD

Nov. 2013, IAC winter school 58 / 71

- magnetic field: helicity throughout the jet beam
 - \Rightarrow changes at internal cross-shocks
 - $\Rightarrow\,$ localized mainly toroidal field within vortical backflows

Relativistic MHD

Rony Keppens (KU Leuven)

- beam cross-shocks: helical field pinches flow
 - \Rightarrow matter reaccelerates up to next cross-shock
 - \Rightarrow deceleration jet with equipartition **B**: extreme lengths

60/71

detailed variation of field quantities at jet head
 ⇒ significant 2D effects compared to 1D Riemann problems

quantified propagation characteristics

Rony Keppens (KU Leuven)

Relativistic MHD

Nov. 2013, IAC winter school

61/71

AGN jet applications

• explored transition $\overline{\Gamma} = 1.15 \rightarrow 7$

 \Rightarrow non-relativistic: strong toroidal field in cocoon

Rony Keppens (KU Leuven)

- power maps give indication of sites of synchrotron emission
 - \Rightarrow total radiation emitted is $\propto v^2 \Gamma^2 B^2 \sin^2 \Psi$
 - \Rightarrow varies significantly from toroidal to poloidal field cases
 - \Rightarrow simultaneous plots of pressure/temperature at right

63/71

• Porth (2013): look at 3D MHD jet launch issues

 $\Rightarrow\,$ mimic keplerian disc corona, start from monopole-flared magnetic field

Rony Keppens (KU Leuven)

Relativistic MHD

Nov. 2013, IAC winter school

64/71
• jet self-collimates, reaches $\Gamma \simeq 2$ speeds

quantify poloidal mode dominance along the jet

 \Rightarrow barycenter location: axial deviations only beyond 70-80 disc radii: self-stabilizes to kink!

pitch profile, and electric force (black) and Lorentz force (white)
 ⇒ electric forces counteract magnetic contribution!

to get significant non-axial perturbation: clumpy medium
 ⇒ toroidal field has decreased: jet seeks path of least
 resistance, still kink-stable!

Rony Keppens (KU Leuven)

Relativistic MHD

Nov. 2013, IAC winter school 68 / 71

• filamentary current layer structure develops: particle acceleration sites & reconnection!

Rony Keppens (KU Leuven)

Relativistic MHD

Nov. 2013, IAC winter school 69 / 71

• *summary:* relativistic MHD models for AGN jets

 $\Rightarrow\,$ radial stratification: mixing in 2-component (M)HD jets (spine-sheath) due to relativistic RT

 \Rightarrow helical **B**: magnetic reacceleration at cross-shocks

 \Rightarrow self-consistent stabilization to kink during launch from disc

Related References:

- \Rightarrow Keppens & Meliani, Phys. of Plasmas 15, 102103, (2008)
- ⇒ Keppens et al., A&A 486, 663 (2008) A&A Highlight
- ⇒ Meliani & Keppens, ApJ 705, 1594 (2009)
- \Rightarrow Keppens et al., JCP 231, 718 (2012)
- \Rightarrow Porth, MNRAS 429, 2482 (2013)

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Outlook

• relativistic MHD: relax the $v \ll c$ assumption

 \Rightarrow stressed special relativistic, ideal MHD

 \Rightarrow modern efforts: GRMHD in evolving spacetimes, ideal to resistive RMHD, extremely energetic events (magnetars, GRB engines, ...)

- applications to relativistic jets (microquasar, AGN, GRB, PWN)
 ⇒ synthetic observations confront reality!
- future: cross-scale challenges (reconnection and microphysics, large scale collimated and accelerated flow patterns)

Outlook

• relativistic MHD: relax the $v \ll c$ assumption

 \Rightarrow stressed special relativistic, ideal MHD

 \Rightarrow modern efforts: GRMHD in evolving spacetimes, ideal to resistive RMHD, extremely energetic events (magnetars, GRB engines, ...)

- applications to relativistic jets (microquasar, AGN, GRB, PWN)
 ⇒ synthetic observations confront reality!
- future: cross-scale challenges (reconnection and microphysics, large scale collimated and accelerated flow patterns)

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >