Exoplanet Microlensing III: Inverting Lightcurves, µlens vs. world Andy Gould (Ohio State)

Simple Point Lens 3 Features & 3 Parameters

- Time of Peak
- Height of Peak
- Width of Peak

- t_0
- u_0
- t_E

Simple Planetary (G&L) Lenses 6 Features & 6 Parameters

- Time of Peak
- Height of Peak
- Width of Peak
- Time of Perturbation
- Height of Perturbation
- Width of Perturbation

- t_0
- u_0
- t_E
- Trajectory angle: α
- Planet-star separation: s
- Planet/star mass ratio: q

Planetary Lenses usually have FS 7 Features & 7 Parameters

- Time of Peak
- Height of Peak
- Width of Peak
- Time of Perturbation
- Height of Perturbation
- Width of Perturbation
- Width of Caustic Cr.

- t_0
- u_0
- t_E
- Trajectory angle: α
- Planet-star separation: s
- Planet/star mass ratio: q
- $t_* = \rho * t_E$

OGLE-2005-BLG-390 Solved by Inspection!

Beaulieu et al. 2006, Nature, 439, 437

Source Centered on Point Lens

$$A = \frac{\pi (u_{\pm}^2 - u_{-}^2)}{\pi \rho^2}, \qquad u_{\pm} = \frac{\rho \pm \sqrt{\rho^2 + 4}}{2}$$
$$A = \sqrt{1 + \frac{4}{\rho^2}} \to 1 + \frac{2}{\rho^2}, \qquad \rho \equiv \frac{\theta_*}{\theta_{\rm E}}$$

Conjecture for Big Source on Planet Caustic

$$A_p = 2\left(\frac{\theta_{\mathrm{E},p}}{\theta_*}\right)^2$$

Plus Simple Timing Argument

$$\frac{t_p}{t_{\rm E}} = \frac{\theta_*}{\theta_{\rm E}}$$

Yields Mass-Ratio Estimate

$$q = \frac{M_p}{M} = \frac{\theta_{\mathrm{E},p}^2}{\theta_{\mathrm{E}}^2} = \frac{\theta_{\mathrm{E},p}^2}{\theta_*^2} \frac{\theta_*^2}{\theta_{\mathrm{E}}^2} = \frac{A_p}{2} \frac{t_p^2}{t_{\mathrm{E}}^2}$$

Mass-Ratio Estimate a la Gould & Loeb

- $q=(A_p/2)(t_p/t_E)^2$
- $A_p = 0.2$
- t_p =0.3 day
- t_E=10 day
- q=9e-5
- q_actual = 8e-5

Separation Estimate a la Gould & Loeb

- A_perturb = 1.37
- $u(A_perturb) = 0.96$
- $s = u_{+}(u) = 1.59$
- s_actual = 1.61

Angle Estimate a la Gould & Loeb

- A_perturb = 1.37
- $u(A_perturb) = 0.96$
- A_peak = 2.9
- $u_0(A_peak) = 0.36$
- $\alpha = \arcsin(u0/u(A_p))$ = 22 deg
- $\alpha_{actual} = 22 \text{ deg}$

Source Size Estimate a la Gould & Loeb

- $u_0 = 0.36; t_* = 0.3 \text{ day}$
- $\tau(u=1)=(1-0.36^2)^{1/2}$ = 0.93
- t(A=1.34) = 10 day
- $t_E = t(1.34)/\tau(1.34) =$ 10.7 days
- $\rho = t_*/t_E = 0.28$
- $\rho_{actual} = 0.26$

MOA-2009-BLG-266

Minor Image Planetary Caustic

Preliminary Model (Cheongho Han)

Generic Caustic Exit

Gould & Andronov 1999, ApJ, 516, 236

Minor Image Analytic Formulae

Han 2006, ApJ, 638, 1080

MOA-2009-BLG-266

$$t_{\rm cross,1} = \frac{t_{\rm planet-peak,1} - t_{\rm planet-trough,1}}{1.7} = 0.41 \,\mathrm{day}$$

$$t_{\rm cc,1} = t_{\rm planet-peak,1} + 0.7 * t_{\rm cross,1} = 5085.98$$

$$t_{\text{planet-peak},1} = 5085.7, \quad t_{\text{planet-trough},1} = 5086.4$$

$$t_{\rm cross,2} = \frac{t_{\rm planet-peak,2} - t_{\rm planet-trough,2}}{-1.7} = 0.38 \,\mathrm{day}$$

$$t_{\rm cc,2} = t_{\rm planet-peak,2} - 0.7 * t_{\rm cross,2} = 5086.93$$

$$t_{\text{planet-peak},2} = 5087.2, \quad t_{\text{planet-trough},1} = 5086.55$$

$$t_{\rm cross} = \frac{t_{\rm cross,1} + t_{\rm cross,2}}{2} = 0.397 \,\mathrm{day}$$

$$\Delta u = \frac{t_{\rm cc,2} - t_{\rm cc,1}}{t_{\rm E}} \sin \alpha = 0.0128$$

$$\Delta u = 4\sqrt{\frac{qu_{\text{planet}}}{s}} \Rightarrow q = \frac{s}{u_{\text{planet}}} \left(\frac{\Delta u}{4}\right)^2 = 5.8 \times 10^{-5}$$

$$t_* = t_{\rm cross} \sin \alpha = 0.32 \,{\rm day}, \qquad \rho = \frac{t_*}{t_{\rm E}} = 5.3 \times 10^{-3}$$

MOA-2009-BLG-266

TABLE 1

MB09266:	Eye va	s. Computer
----------	--------	-------------

Parameter	Eye	Computer
t_0	5093.1	5093.07
u_0	0.13	0.13
$t_{\rm E}$	$60\mathrm{d}$	$60.2\mathrm{d}$
q	$5.8 imes 10^{-5}$	$5.4 imes 10^{-5}$
s	0.922	0.914
α	54°	51°
ρ	$5.3 imes 10^{-3}$	$5.3 imes 10^{-3}$

Minor Image Test
$\frac{A_{\rm trough}}{A_{\rm planet}} = 10^{0.4(I_{\rm planet} - I_{\rm trough})}$
$= 10^{0.4(13.58 - 14.02)} = 0.667$
$\frac{A_{\text{planet}} + 1}{2A_{\text{planet}}} = 0.657$

Why Planetary Caustics?

$$\begin{split} \gamma &= \frac{q}{s^2} \qquad (\gamma \ll 1) \\ \theta_{\gamma} &= 4\gamma \theta_{\rm E} = 4\frac{q}{s^2}\theta_{\rm E} \\ \theta_{\gamma} &= 4\frac{m/M}{(\Delta\theta/\theta_{\rm E})^2}\theta_{\rm E} = 4\frac{m\theta_{\rm E}^3}{M(\Delta\theta)^2} \\ \theta_{\gamma} &= 4\frac{m(\kappa\pi_{\rm rel}M)^{3/2}}{M(\Delta\theta)^2} = 4\sqrt{mM}\frac{(\kappa\pi_{\rm rel})^{3/2}}{(\Delta\theta)^2}m^{1/2} \end{split}$$

Why Central Caustics? First "High-Mag" Event

Udalski et al. 2005, ApJ, 628, L109

Amateurs + Professionals Grant. Ian. Jennie. Phil

Amateurs + Professionals

"It just shows that you can be a mother, you can work full-time, and you can still go out there and find planets."

Jennie McCormick (Amateur Astronomer, Auckland, New Zealand)

OGLE-2005-BLG-169: Second High-Mag Event

Deokkeun An

OGLE-2006-BLG-109: Third High-Mag Event (OGLE only)

Solution Search Methods I: (s,q) Grid

- Construct a grid of (s,q) maps ("map making")
- Make plausible guess for (t_0, u_0, t_E, ρ)
- Work on sequence of α , (0< α < 2π)
- MCMC
 - Start (s,q, α ,t₀, u₀, t_E, ρ), vary (α ,t₀, u₀, t_E, ρ)
- Fit: $f_i(t_k) = f_{s,i} * A(t_k) + f_{b,i}$ (i=1 ... n_obs)

Solution Search Methods II: Intelligent Seeds

- Make plausible guess for (t_0, u_0, t_E, ρ)
- Choose set of (s,q) seeds that sample topologies
- Work on sequence of α , (0< α <2 π)
- MCMC vary $(s,q,\alpha,t_0, u_0, t_E, \rho)$ [All]
- Fit: $f_i(t_k) = f_{s,i} * A(t_k) + f_{b,i}$ (i=1 ... n_obs)
- Requires Contour or Adaptive Ray Shooting

Microlensing vs. Other Methods

- No Light from Planet/Host System
 - Distant planets
 - Low-mass planets
 - Free floating planets
- Einstein-Ring/Snow-Line Coincidence
- Host Rarely Seen
- Usually Just a Snap Shot

Microlensing vs. Other Methods I: Free-Floating Planets

- Crucial to Planet-Formation Theories
- Microlensing: Only FFP Method
- Key characteristic: Mass/Not Light

Free-Floating Planets Point-Lens Events w/o FFPs (short)

$$\begin{split} \Gamma \propto \int dM F(M) \int dD_L D_L^2 n(D_L) \int d^2 \mu \mu f_\mu(\mu) \theta_{\rm E}(M, D_L) \\ t_{\rm E} &= \frac{\theta_{\rm E}}{\mu}, \qquad \theta_{\rm E} = \sqrt{\kappa M \pi_{\rm rel}} \end{split}$$

 $t_{\rm E} \text{ small} \Rightarrow D_{LS} \ll D_S$

$$dD_L D_L^2 n(D_L) \to dD_{LS} D_S^2 n(D_S) = K dD_{LS}; \quad \theta_{\rm E} \to \sqrt{\frac{\kappa {\rm AU} M}{D_S^2}} D_{LS}$$
$$\Gamma \propto \int dM F(M) M^{1/2} \int d^2 \mu \, \mu f_\mu(\mu) \int d\ln D_{LS} D_{LS}^{3/2}$$
$$\frac{d\Gamma}{d\ln t_{\rm E}} \propto t_{\rm E}^3 \int dM F(M) M^{-1} \int d^2 \mu \mu f_\mu(\mu)$$

Free-Floating Planets Point-Lens Events w/o FFPs (long)

$$\Gamma \propto \int dMF(M) \int dD_L D_L^2 n(D_L) \int d^2 \mu \mu f_\mu(\mu) \theta_{\rm E}(M, D_L) dE_{\rm E}(M, D_L) dE_{\rm$$

MOA Point-Lens Events

JD - 2450000

FFP Best-Fit Characteristics

Microlensing vs. Other Methods II: Bound-Planet Parameter Space

• Sensitivity Peaks Just Beyond Snow Line

- Where giant planets are thought to form

• Key characteristic: Einstein radius

$$r_{\rm E} = 4 \,\mathrm{AU} \left(\frac{M}{M_{\odot}}\right)^{1/2} \left(\frac{D_L D_{LS}}{16 \,\mathrm{kpc}^2}\right)^{1/2}$$
$$r_{\rm snow} = 2.7, \,\mathrm{AU} \frac{M}{M_{\odot}}$$

Planets 2010

Planets 2010

Microlensing vs. Other Methods III: Faint/Dim Hosts

- Other methods: struggle
- Microlensing: comes naturally
- Key Characteristic: Mass/Not Light

Microlensing vs. Other Methods IV: Biggest Challenge: Host ID

- Host superposed on source (glare)
- Typically moves at 4 mas/yr
 - -10+ years to separately resolve
- μ lens masses require $\theta_{\rm E}^{}$, $\pi_{\rm E}^{}$
 - -Usually: $\theta_{\rm E}$ si; $\pi_{\rm E}$ non
 - -Hence: "Bayesian Estimates"

Bayesian Information Flow (typical: finite source/no parallax)

- Line of Sight toward Bulge Source known well
- Proper motion $\mu = \theta_E / t_E$ known well
- $\theta_{\rm E} = > (M \pi_{\rm rel})$ known well
- Galactic model favors bulge lenses, unless μ big
- Galactic model favors low mass, unless θ_E big

Extra Info: High Resolution Imaging MOA-2008-BLG-310 (Janczak et al)

Extra Light Definitely Detected, but .. Host, host-comp, source-comp, random?

Multiple Partial Information OGLE-2005-BLG-071 (Dong et al)

1-D Parallax Measurement

Blended Light Detected with HST

Differential V/I source+blend proper motion from 2 HST epochs

Some Tension Among Measurements

Likely to be an M dwarf

µlens Planet Frequency Estimates

- Gould et al. 2010, ApJ, 720, 1073
- Cassan et al. 2012, Nature, 481, 167
 - Gould et al. (2010)
 - Sumi et al. 2010, ApJ, 710, 1641

OGLE-2008-BLG-279:

Yee et al. 2009, ApJ, 730, 2082

Jennifer Yee

OGLE-2007-BLG-050: A = 432

Batista et al. 2009, A&A, 508, 467

Virginie Batista

Planet Sensitivity OGLE-2008-BLG-279

Planet Sensitivity OGLE-2007-BLG-050

Well-covered events: fair sample (Amax>200) Well-Covered All Events

Planet Sensitivity Vs. Detections

Planet Sensitivity Vs. Mass Ratio

RV & Microlensing Inside vs Outside Snow Line

Solar System is Richer than Average ... But Not Dramatically So

Distribution of Planets on Sky

Combined Planet Frequency Cassan et al (2012)

Combined Planet Frequency Cassan et al (2012)

