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Recap: image classifications
Ordinary (det A ≠ 0) images occur at
i.e., images are local extrema or saddles of Fermat surface
(Fermat’s Principle) for fixed β.  Note τij = Aij.

Image types:
Type I: minimum of τ

 det A > 0;   tr A > 0
Type II: saddle point of τ

 det A < 0
Type III: maximum of τ

 det A > 0;   tr A < 0

For mass distributions of finite total mass and that are
smooth, there will be at least one Type I image.

[Blandford & Narayan 1986]
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Given smooth κ( θ) that decreases faster than |θ |-2 for |θ |→∞
Then lens has finite total mass, α(θ) continuous and bounded
Denote nI, nII, nIII = # of Type I, II, III images, respectively

  n = nI + nII + nIII = total # of images

For source at position β not on a caustic,
(a) nI ≥ 1
(b) n < ∞
(c) nI + nIII = 1 + nII
(d) For sufficiently large β, n = nI = 1
Therefore,
• total number of images n = 1 + 2nII is odd
• images of positive parity (type I & III) exceed negative parity
(type II) by 1 [Burke 1981]
• n > 1 if and only if nII ≥ 1

Odd-number theorem
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Given smooth κ( θ) that decreases faster than |θ |-2 for |θ |→∞
Then lens has finite total mass, α(θ) continuous and bounded
Denote nI, nII, nIII = # of Type I, II, III images, respectively

  n = nI + nII + nIII = total # of images

For source at position β not on a caustic,
(a) nI ≥ 1
(b) n < ∞
(c) nI + nIII = 1 + nII
(d) For sufficiently large β, n = nI = 1

The image of the source which arrives first at the observer is
of type I and appears brighter than, or equally bright as the
source would appear in the absence of the lens [Schneider 1984]

Magnification theorem
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(a) An isolated transparent lens can produce multiple
images if and only if there is a point θ with det A(θ) < 0

(b) A sufficient (but not necessary) condition for possible
multiple images is that there exists a point θ such that
κ(θ) > 1

• Recall κ = Σ / Σcrit
• Significance of the critical density Σcrit

Conditions for multiple imaging
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Question:

A mass distribution has κ(θ) < 1 everywhere.  Can it be
a strong gravitational lens?

(1) Yes

(2) No

Conditions for multiple imaging
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Given a lens mass distribution κ(θ) with potential ψ(θ)
Consider the following transformation:

Mass-sheet degeneracy I

corresponding
to constant shift
on source plane
(unobservable)

zero point of
lens potential
(unobservable)

Transformed convergence (=∇2ψλ/2):

Transformed deflection angle (=∇ψλ):
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Mass-sheet degeneracy II

Lens equation:

source scaled and shifted, both unobservable ⇒ degeneracy

Last slide:
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Mass-sheet degeneracy III
source scaled and shifted,
both effects unobservable

Magnification

Recall

Reduced shear invariant
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Mass-sheet degeneracy IV
Fermat potential:

[Courbin et al. 2002]

 Recall

Big impact on cosmography!

 Recall

 For fixed Δt, model

True (including external convergence)
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Mass-sheet degeneracy V
To break the degeneracy:
• need the absolute size or luminosity of source (unpractical)
• stellar kinematics 
• study of the lens environment

θ Einsteinθeff



Simple Lens Models
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Given a mass distribution ρ(r)
κ(θ)   [convergence]
α(θ)   [scaled deflection angle]

lens equation

ψ(θ)   [lens potential]

  [Fermat potential]

Recap of Lecture II

[Schneider et al. 2006]
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Axisymmetric mass distribution:

Recall

For axisymmetric mass distribution:

[Exercise: derive the above equation]

Note: α is collinear with θ.
         lens equation, β = θ - α, implies β is also collinear with α

Axisymmetric mass distributions I
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Define

Axisymmetric mass distributions II

Lens equation reduces to 1-d:

Note

Define mean surface mass density inside circular radius θ:

with the dimensionless mass inside θ

and
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Lens equation rewritten as

Axisymmetric mass distributions III

Using           , derive [exercise]

Tangential critical curve:

Radial critical curve:

critical curves
are defined by

det A = 0
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Lens equation rewritten as

Axisymmetric mass distributions III

Using           , derive [exercise]

Tangential critical curve:

Radial critical curve:

Credit: A. Amara & T. Kitching
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Tangential critical curve at radius θE has

Mass enclosed within  θE is

Axisymmetric mass distributions IV

Rewriting:

Mass scale sets radius of tangential critical curve,
which is approximately the location of tangential arcs
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3 dimensional mass density of SIS:

Leads to flat rotation curve with rotation velocity

Surface mass density:

Singular isothermal sphere I

Dimensionless surface mass density

where
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Singular isothermal sphere II
where

Properties

[exercise: derive these]

Question:

   Which of the following is true regarding

(1) It corresponds to the radial critical curve
(2) It corresponds to the tangential critical curve
(3) Neither of the above is true
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Singular isothermal sphere III
Lens equation with

Question:
Which source positions
have multiple images?
(1) β > 0
(2) β > θE
(3) -θE < β < θE
(4) β < -θE
(5) β < 0
(6) No idea
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Singular isothermal sphere III
Lens equation with

Question:
Which source positions
have multiple images?
(1) β > 0
(2) β > θE
(3) -θE < β < θE
(4) β < -θE
(5) β < 0
(6) No idea

βtwo
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Singular isothermal sphere IV
Lens equation with

Question:
What is the separation
between the two images
when -θE < β < θE?
(1) θE/2
(2) θE
(3) 2θE
(4) None of the above since
      the image separation
      depends on β

βtwo
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Singular isothermal sphere V
For -θE < β < θE, the two images are at

βtwo θ+θ-

θ+

θ-

[Wambsganss 1998]

Magnification:

image at θ − can be highly
demagnified as θ −→0, or
β→θE
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Non-singular isothermal sphere
with external shear

Solid curve:
caustics

Dashed curve:
critical curve

Solid symbols:
source position

Open symbols:
Image positions

xc characterizes
the core size
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Non-singular isothermal ellipsoid
strength
core radius

axis ratio of isodensity contour
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isothermal
elliptical
distributions
can produce
4 images
(quads)


