Lensing Basics: III. Basic Theory (continued)

Sherry Suyu

Academia Sinica Institute of Astronomy and Astrophysics
University of California Santa Barbara
KIPAC, Stanford University

November 6, 2012

@ XXIV Canary Islands Winter School of Astrophysics

Recap: image classifications

Ordinary (det A \neq 0) images occur at $\nabla \tau(\boldsymbol{\theta}; \boldsymbol{\beta}) = 0$ i.e., images are local extrema or saddles of Fermat surface (Fermat's Principle) for fixed $\boldsymbol{\beta}$. Note $\tau_{ij} = A_{ij}$.

Image types:

Type I: minimum of τ det A > 0; tr A > 0

Type II: saddle point of τ det A < 0

Type III: maximum of τ det A > 0; tr A < 0

[Blandford & Narayan 1986]

For mass distributions of finite total mass and that are smooth, there will be at least one Type I image.

[Blandford &Narayan 1986]

Odd-number theorem

Given smooth $\kappa(\theta)$ that decreases faster than $|\theta|^{-2}$ for $|\theta| \rightarrow \infty$ Then lens has finite total mass, $\alpha(\theta)$ continuous and bounded Denote n_I , n_{II} , n_{III} = # of Type I, II, III images, respectively

 $n = n_I + n_{II} + n_{III} = total # of images_d$

For source at position β not on a caustic,

- (a) $n_1 \ge 1$
- (b) $n < \infty$
- (c) $n_i + n_{iii} = 1 + n_{ii}$
- (d) For sufficiently large β , $n = n_1 = 1$ Therefore,
- total number of images $n = 1 + 2n_{II}$ is odd
- images of positive parity (type I & III) exceed negative parity (type II) by 1 [Burke 1981]
- n > 1 if and only if $n_{II} \ge 1$

Blandford & Narayan 1986

Magnification theorem

Given smooth $\kappa(\theta)$ that decreases faster than $|\theta|^{-2}$ for $|\theta| \rightarrow \infty$ Then lens has finite total mass, $\alpha(\theta)$ continuous and bounded Denote n_{I} , n_{II} , n_{III} = # of Type I, II, III images, respectively

 $n = n_I + n_{II} + n_{III} = total # of images_d$

For source at position β not on a caustic,

- (a) $n_1 \ge 1$
- (b) $n < \infty$
- (c) $n_i + n_{iii} = 1 + n_{ii}$
- (d) For sufficiently large β , $n = n_1 = 1$

The image of the source which arrives first at the observer is of type I and appears brighter than, or equally bright as the source would appear in the absence of the lens [Schneider 1984]

Conditions for multiple imaging

- (a) An isolated transparent lens can produce multiple images if and only if there is a point θ with det $A(\theta) < 0$
- (b) A sufficient (but not necessary) condition for possible multiple images is that there exists a point θ such that $\kappa(\theta) > 1$
 - Recall $\kappa = \Sigma / \Sigma_{crit}$
 - Significance of the critical density Σ_{crit}

Conditions for multiple imaging

Question:

A mass distribution has $\kappa(\theta)$ < 1 everywhere. Can it be a strong gravitational lens?

- (1) Yes
- (2) No

Mass-sheet degeneracy I

Given a lens mass distribution $\kappa(\theta)$ with potential $\psi(\theta)$ Consider the following transformation:

$$\psi_{\lambda}(\boldsymbol{\theta}) = \frac{\lambda}{2} |\boldsymbol{\theta}|^2 + \underline{\boldsymbol{s} \cdot \boldsymbol{\theta}} + c + (1 - \lambda) \psi(\boldsymbol{\theta})$$
 corresponding zero point of to constant shift on source plane (unobservable) (unobservable)

Transformed deflection angle (= $\nabla \psi_{\lambda}$):

$$\alpha_{\lambda}(\boldsymbol{\theta}) = \lambda \boldsymbol{\theta} + \boldsymbol{s} + (1 - \lambda) \boldsymbol{\alpha}(\boldsymbol{\theta})$$

Transformed convergence (= $\nabla^2 \psi_{\lambda}/2$):

$$\kappa_{\lambda}(\boldsymbol{\theta}) = \lambda + (1 - \lambda)\kappa(\boldsymbol{\theta})$$

Mass-sheet degeneracy II

Last slide: $\kappa_{\lambda}(\boldsymbol{\theta}) = \lambda + (1 - \lambda)\kappa(\boldsymbol{\theta})$

Lens equation:

$$\beta_{\lambda} = \theta - \alpha_{\lambda}(\theta) = \theta - \lambda\theta - s - (1 - \lambda)\alpha(\theta)$$

$$\Rightarrow \frac{\beta_{\lambda}}{1 - \lambda} + \frac{s}{1 - \lambda} = \theta - \alpha(\theta) \equiv \beta$$

source scaled and shifted, both unobservable ⇒ degeneracy

Mass-sheet degeneracy III

$$\frac{\boldsymbol{\beta}_{\lambda}}{1-\lambda} + \frac{\boldsymbol{s}}{1-\lambda} = \boldsymbol{\beta}$$

source scaled and shifted, both effects unobservable

Magnification

$$\mathcal{A}_{\lambda} = (1 - \lambda)\mathcal{A} \quad \Longrightarrow \quad \mu_{\lambda} = \frac{\mu}{(1 - \lambda)^2}$$

Recall

$$\mathcal{A} = egin{pmatrix} 1 - \kappa - \gamma_1 & -\gamma_2 \ -\gamma_2 & 1 - \kappa + \gamma_1 \end{pmatrix}$$

$$g_{\lambda} = rac{\gamma}{1-\kappa} = g$$

Mass-sheet degeneracy IV

Fermat potential:
$$\tau_{\lambda}(\boldsymbol{\theta};\boldsymbol{\beta}) = \frac{1}{2}(\boldsymbol{\theta} - \boldsymbol{\beta}_{\lambda})^2 - \psi_{\lambda}(\boldsymbol{\theta})$$

 $= (1 - \lambda)\tau(\boldsymbol{\theta}; \boldsymbol{\beta}) + \text{constant}$

Recall
$$\kappa_{\lambda}(\boldsymbol{\theta}) = \lambda + (1 - \lambda)\kappa(\boldsymbol{\theta})$$

Big impact on cosmography!

Recall
$$\Delta t(m{ heta};m{eta}) = \frac{D_{\Delta t}}{c} \, \Delta au(m{ heta};m{eta})$$

[Courbin et al. 2002]

For fixed Δt , $D_{\Delta t,\,\lambda}=rac{D_{\Delta t}}{1-\lambda}$

True (including external convergence)

Mass-sheet degeneracy V

To break the degeneracy:

- need the absolute size or luminosity of source (unpractical)
- stellar kinematics
- study of the lens environment

Simple Lens Models

Recap of Lecture II

Given a mass distribution $\rho(\mathbf{r})$

[Schneider et al. 2006]

 $\Rightarrow \kappa(\theta)$ [convergence]

 $\alpha(\theta)$ [scaled deflection angle]

$$\alpha(\boldsymbol{\theta}) = \frac{1}{\pi} \int_{\Re^2} d^2 \theta' \kappa(\boldsymbol{\theta'}) \frac{\boldsymbol{\theta} - \boldsymbol{\theta'}}{|\boldsymbol{\theta} - \boldsymbol{\theta'}|^2}$$

lens equation

$$oldsymbol{eta} = oldsymbol{ heta} - oldsymbol{lpha}(oldsymbol{ heta})$$

 $\psi(\theta)$ [lens potential]

$$\nabla^2 \psi = 2\kappa$$

$$\tau(\boldsymbol{\theta}; \boldsymbol{\beta}) [\text{Fermat potential}]$$

$$\tau(\boldsymbol{\theta}; \boldsymbol{\beta}) = \frac{1}{2} (\boldsymbol{\theta} - \boldsymbol{\beta})^2 - \psi(\boldsymbol{\theta})$$

Axisymmetric mass distributions I

Axisymmetric mass distribution: $\kappa(oldsymbol{ heta}) = \kappa(|oldsymbol{ heta}|)$

Recall
$$\alpha(\boldsymbol{\theta}) = \frac{1}{\pi} \int_{\Re^2} d^2 \theta' \kappa(\boldsymbol{\theta'}) \frac{\boldsymbol{\theta} - \boldsymbol{\theta'}}{|\boldsymbol{\theta} - \boldsymbol{\theta'}|^2}$$

For axisymmetric mass distribution:

$$\Rightarrow \alpha(\boldsymbol{\theta}) = \frac{2\boldsymbol{\theta}}{|\boldsymbol{\theta}|^2} \int_0^{|\boldsymbol{\theta}|} d\theta' \, \theta' \kappa(\theta')$$

[Exercise: derive the above equation]

Note: α is collinear with θ .

lens equation, $\beta = \theta - \alpha$, implies β is also collinear with α

Axisymmetric mass distributions II

Define
$$\beta = \beta \hat{\boldsymbol{e}} \implies \boldsymbol{\theta} = \theta \hat{\boldsymbol{e}}$$
 $\implies \boldsymbol{\alpha} = \alpha \hat{\boldsymbol{e}}$ and $\alpha(\theta) = \frac{2}{\theta} \int_0^{\theta} \mathrm{d}\theta' \, \theta' \, \kappa(\theta')$

Lens equation reduces to 1-d:

$$\beta = \theta - \alpha(\theta)$$

Note
$$\alpha(-\theta) = -\alpha(\theta)$$

Define mean surface mass density inside circular radius θ :

$$ar{\kappa}(heta)=rac{m(heta)}{ heta^2}$$
 with the dimensionless mass inside $heta$ $m(heta)=2\int_0^ heta {
m d} heta'\, \kappa(heta')$

$$\Rightarrow \alpha(\theta) = \frac{m(\theta)}{\theta} = \bar{\kappa}(\theta)\theta$$

Axisymmetric mass distributions III

Lens equation rewritten as

$$\boldsymbol{\beta} = [1 - \bar{\kappa}(|\boldsymbol{\theta}|)] \boldsymbol{\theta}$$

Using
$$\mathcal{A}(oldsymbol{ heta}) = rac{\partial oldsymbol{eta}}{\partial oldsymbol{ heta}}$$
 , derive [exercise]

$$\det \mathcal{A} = (1 - \bar{\kappa})(1 + \bar{\kappa} - 2\kappa)$$

critical curves are defined by det A = 0

Tangential critical curve:

$$1 - \bar{\kappa}(\theta) = 0$$

Radial critical curve:

$$1 + \bar{\kappa}(\theta) - 2\kappa(\theta) = 0$$

Axisymmetric mass distributions III

Lens equation rewritten as

$$\boldsymbol{\beta} = [1 - \bar{\kappa}(|\boldsymbol{\theta}|)] \boldsymbol{\theta}$$

Using $\mathcal{A}(oldsymbol{ heta}) = \frac{\partial oldsymbol{eta}}{\partial oldsymbol{ heta}}$, derive [exercise]

$$\det \mathcal{A} = (1 - \bar{\kappa})(1 + \bar{\kappa} - 2\kappa)$$

Source Plane

Caustic curves

Image Plane

Tangential critical curve:

$$1 - \bar{\kappa}(\theta) = 0$$

-Radial critical curve:

$$1 + \bar{\kappa}(\theta) - 2\kappa(\theta) = 0$$

Credit: A. Amara & T. Kitching

Axisymmetric mass distributions IV

Tangential critical curve at radius θ_E has

$$\bar{\kappa}(\theta_{\rm E}) = 1$$

Mass enclosed within θ_{F} is

$$M(\leq \theta_{\rm E}) = \bar{\kappa}(\theta_{\rm E}) \,\pi \theta_{\rm E}^2 \, D_{\rm d}^2 \, \Sigma_{
m cr}$$

 $= \pi \theta_{\rm E}^2 \, D_{\rm d}^2 \, \Sigma_{
m cr}$

Rewriting:

$$heta_{
m E} = \left(rac{4GM}{c^2} rac{D_{
m ds}}{D_{
m d}D_{
m s}}
ight)^{1/2} \ pprox 0.9'' \left(rac{M(\le heta_{
m E})}{10^{12}M_{\odot}}
ight)^{1/2} \left(rac{D_{
m ds}\,1{
m Gpc}}{D_{
m d}D_{
m s}}
ight)^{1/2}$$

Mass scale sets radius of tangential critical curve, which is approximately the location of tangential arcs

Singular isothermal sphere I

3 dimensional mass density of SIS: $ho(r) = \frac{\sigma_v^2}{2\pi G r^2}$

Leads to flat rotation curve with rotation velocity $v_{
m c} = \sqrt{2}\sigma_v$

Surface mass density:

$$\Sigma(\xi) = \int_{-\infty}^{\infty} dr_3 \, \rho(\sqrt{\xi^2 + r_3^2}) = \frac{\sigma_v^2}{2G} \xi^{-1}$$

Dimensionless surface mass density

$$\kappa(heta) = rac{ heta_{
m E}}{2| heta|} \quad ext{where} \quad heta_{
m E} = 4\pi \left(rac{\sigma_v}{c}
ight)^2 rac{D_{
m ds}}{D_{
m s}}$$

Singular isothermal sphere II

$$\kappa(heta) = rac{ heta_{
m E}}{2| heta|} \quad ext{where} \quad heta_{
m E} = 4\pi \left(rac{\sigma_v}{c}
ight)^2 rac{D_{
m ds}}{D_{
m s}}$$

Properties

$$ar{\kappa}(heta) = rac{ heta_{
m E}}{| heta|} \qquad |\gamma|(heta) = rac{ heta_{
m E}}{2| heta|} \qquad lpha(heta) = heta_{
m E} rac{ heta}{| heta|}$$

[exercise: derive these]

Question:

Which of the following is true regarding $heta_{
m E} = 4\pi \left(rac{\sigma_v}{c}
ight)^2 rac{D_{
m ds}}{D_{
m s}}$

- (1) It corresponds to the radial critical curve
- (2) It corresponds to the tangential critical curve
- (3) Neither of the above is true

Singular isothermal sphere III

Lens equation with
$$\alpha(\theta) = \theta_{\rm E} \frac{\theta}{|\theta|}$$

$$\Rightarrow \beta = \theta - \theta_{\rm E} \frac{\theta}{|\theta|}$$

Question:

Which source positions have multiple images?

$$(1) \beta > 0$$

(2)
$$\beta > \theta_{E}$$

$$(3) - \theta_{\mathsf{E}} < \beta < \theta_{\mathsf{E}}$$

(4)
$$\beta$$
 < - $\theta_{\rm E}$

$$(5) \beta < 0$$

(6) No idea

Singular isothermal sphere III

Lens equation with
$$\alpha(\theta) = \theta_{\rm E} \frac{\theta}{|\theta|}$$

$$\Rightarrow \beta = \theta - \theta_{\rm E} \frac{\theta}{|\theta|}$$

Question:

Which source positions have multiple images?

(1)
$$\beta > 0$$

(2)
$$\beta > \theta_{E}$$

$$(3) - \theta_{\mathsf{E}} < \beta < \theta_{\mathsf{E}}$$

(4)
$$\beta$$
 < - $\theta_{\rm E}$

$$(5) \beta < 0$$

(6) No idea

Singular isothermal sphere IV

Lens equation with
$$\alpha(\theta) = \theta_{\rm E} \frac{\theta}{|\theta|}$$

$$\Rightarrow \beta = \theta - \theta_{\rm E} \frac{\theta}{|\theta|}$$

Question:

What is the separation between the two images when $-\theta_{\rm E} < \beta < \theta_{\rm E}$?

- (1) $\theta_{\rm E}/2$
- (2) $\theta_{\rm E}$
- (3) $2\theta_{\rm E}$
- (4) None of the above since the image separation depends on β

Singular isothermal sphere V

For $-\theta_{\rm E} < \beta < \theta_{\rm E}$, the two images are at

$$heta_+ = eta + heta_{
m E} \ heta_- = eta - heta_{
m E}$$

[Wambsganss 1998]

Magnification:

$$\mu = \frac{1}{\det \mathcal{A}} = \frac{|\theta|}{|\theta| - \theta_{\mathrm{E}}}$$

$$\rightarrow \mu_+ > 1$$

image at θ_- can be highly demagnified as $\theta_- \rightarrow 0$, or $\beta \rightarrow \theta_E$

Non-singular isothermal sphere with external shear

Solid curve: caustics

Dashed curve: critical curve

Solid symbols: source position

Open symbols: Image positions

x_c characterizes the core size

Non-singular isothermal ellipsoid

