Lensing Basics: II. Basic Theory

Sherry Suyu

Academia Sinica Institute of Astronomy and Astrophysics
University of California Santa Barbara
KIPAC, Stanford University

November 5, 2012

@ XXIV Canary Islands Winter School of Astrophysics

Lens equation

[Schneider et al. 2006]

$$oldsymbol{\eta} = rac{D_{
m s}}{D_{
m d}} oldsymbol{\xi} - D_{
m ds} oldsymbol{\hat{lpha}}(oldsymbol{\xi})$$

In terms of angular coord.:

$$oldsymbol{\eta} = D_{
m s} oldsymbol{eta}$$
 $oldsymbol{\xi} = D_{
m d} oldsymbol{ heta}$

$$\boldsymbol{\xi} = D_{\mathrm{d}}\boldsymbol{\theta}$$

$$\boldsymbol{\beta} = \boldsymbol{\theta} - \boldsymbol{\alpha}(\boldsymbol{\theta})$$

where
$$m{lpha}(m{ heta}) = rac{D_{
m ds}}{D_{
m s}} m{\hat{lpha}}(D_{
m d}m{ heta})$$

Deflection angle

Recall from General Relativity:

$$\hat{m{lpha}} = rac{4GM}{c^2 \xi}$$

For weak gravitational field and small deflection angles (geometrically-thin lens), a light ray with spatial trajectory ($\xi_1(\lambda)$, $\xi_2(\lambda)$, $r_3(\lambda)$) that passes through distribution with 3D density $\rho(\mathbf{r})$ will be deflected by

$$\hat{\boldsymbol{\alpha}}(\boldsymbol{\xi}) = \frac{4G}{c^2} \int \mathrm{d}^2 \boldsymbol{\xi}' \underbrace{\int \mathrm{d}r_3' \, \rho(\boldsymbol{\xi}_1', \boldsymbol{\xi}_2', r_3')}_{\boldsymbol{\Sigma}(\boldsymbol{\xi'})} \frac{\boldsymbol{\xi} - \boldsymbol{\xi'}}{|\boldsymbol{\xi} - \boldsymbol{\xi'}|^2}$$

Scaled deflection angle

$$\text{recall } \boldsymbol{\alpha}(\boldsymbol{\theta}) = \frac{D_{\mathrm{ds}}}{D_{\mathrm{s}}} \boldsymbol{\hat{\alpha}}(D_{\mathrm{d}}\boldsymbol{\theta})$$

$$\alpha(\boldsymbol{\theta}) = \frac{1}{\pi} \int_{\Re^2} d^2 \theta' \kappa(\boldsymbol{\theta'}) \frac{\boldsymbol{\theta} - \boldsymbol{\theta'}}{|\boldsymbol{\theta} - \boldsymbol{\theta'}|^2}$$

where κ is the dimensionless surface mass density (a.k.a. convergence)

(a.k.a. convergence)
$$\kappa({\bm{\theta}}) = \frac{\Sigma(D_{\rm d}{\bm{\theta}})}{\Sigma_{\rm cr}}$$

and Σ_{cr} is the critical surface mass density

$$\Sigma_{
m cr} = rac{c^2}{4\pi G} rac{D_{
m s}}{D_{
m d} D_{
m ds}}$$

Lens potential

$$\boldsymbol{\alpha}(\boldsymbol{\theta}) = \frac{1}{\pi} \int_{\Re^2} d^2 \theta' \kappa(\boldsymbol{\theta'}) \frac{\boldsymbol{\theta} - \boldsymbol{\theta'}}{|\boldsymbol{\theta} - \boldsymbol{\theta'}|^2}$$

Using $\nabla \ln |m{ heta}| = m{ heta}/|m{ heta}^2|$

$$\alpha(\boldsymbol{\theta}) = \nabla \psi(\boldsymbol{\theta})$$

where the lens potential is

$$\psi(\boldsymbol{\theta}) = \frac{1}{\pi} \int_{\Re^2} d^2 \theta' \kappa(\boldsymbol{\theta'}) \ln |\boldsymbol{\theta} - \boldsymbol{\theta'}|$$

that satisfies the Poisson equation:

$$\nabla^2 \psi = 2\kappa$$

Fermat potential

Define scalar function known as the Fermat potential

$$\tau(\boldsymbol{\theta};\boldsymbol{\beta}) = \frac{1}{2}(\boldsymbol{\theta} - \boldsymbol{\beta})^2 - \psi(\boldsymbol{\theta})$$

It is a function of θ with β as a parameter Note:

$$\nabla \tau(\boldsymbol{\theta}; \boldsymbol{\beta}) = 0$$

yields the lens equation $oldsymbol{eta} = oldsymbol{ heta} - oldsymbol{lpha}(oldsymbol{ heta})$

Fermat's Principle

Fermat potential $\tau \propto \text{excess time delay } t$

[Blandford & Narayan 1986]

Fermat's Principle:

rays of light traverse the path of stationary optical length with respect to variations of the path

i.e.,

$$\nabla t = \nabla \tau = 0$$

Brief recap

 Z_s

 Z_d

Given a mass distribution $\rho(\mathbf{r})$, redshifts z_d , z_s

- $\rightarrow \kappa(\theta)$ [convergence]
- $\rightarrow \alpha(\theta)$ [scaled deflection angle]

$$\alpha(\boldsymbol{\theta}) = \frac{1}{\pi} \int_{\Re^2} d^2 \theta' \kappa(\boldsymbol{\theta'}) \frac{\boldsymbol{\theta} - \boldsymbol{\theta'}}{|\boldsymbol{\theta} - \boldsymbol{\theta'}|^2}$$

lens equation (governs light paths)

$$\boldsymbol{eta} = \boldsymbol{\theta} - \boldsymbol{lpha}(\boldsymbol{\theta})$$

Lenses are your dark matter goggles

 $\rightarrow \psi(\theta)$ [lens potential]

$$\nabla^2 \psi = 2\kappa$$

 \rightarrow $\tau(\theta; \beta)$ [Fermat potential]

$$au(oldsymbol{ heta};oldsymbol{eta}) = rac{1}{2}(oldsymbol{ heta}-oldsymbol{eta})^2 - \psi(oldsymbol{ heta})$$
 8

Time delay

Recall Fermat potential

$$au(oldsymbol{ heta};oldsymbol{eta}) = rac{1}{2}(oldsymbol{ heta} - oldsymbol{eta})^2 - \psi(oldsymbol{ heta})$$

Excess time delay relative to the case of no lensing is

$$D_{
m s} \ t(m{ heta};m{eta}) = rac{D_{
m d}D_{
m s}}{c\,D_{
m ds}}(1+z_{
m d}) au(m{ heta};m{eta})$$

Time delay

[Schneider et al. 2006]

Recall Fermat potential

$$au(oldsymbol{ heta};oldsymbol{eta}) = rac{1}{2}(oldsymbol{ heta} - oldsymbol{eta})^2 - \psi(oldsymbol{ heta})$$

Excess time delay relative to the case of no lensing is

$$D_{\mathrm{s}} \ t(oldsymbol{ heta};oldsymbol{eta}) = rac{D_{\mathrm{d}}D_{\mathrm{s}}}{cD_{\mathrm{ds}}}(1+z_{\mathrm{d}}) au(oldsymbol{ heta};oldsymbol{eta})$$

 $\equiv D_{\Delta t} \propto H_0^{-1}$ depends on cosmology

Cosmology Probe

depends on lens mass distrib.

10

Magnification

Lensing conserves surface brightness Flux F = surface brightness x solid angle Magnification = $F_{observed}$ / $F_{intrinsic}$ = $d\Omega_{observed}$ / $d\Omega_{intrinsic}$

Define Jacobian matrix:

$$\mathcal{A}(oldsymbol{ heta}) = rac{\partial oldsymbol{eta}}{\partial oldsymbol{ heta}}$$

acobian matrix: $\mathcal{A}(\boldsymbol{\theta}) = \frac{\partial \boldsymbol{\beta}}{\partial \boldsymbol{\theta}} \qquad \text{with} \quad \mathcal{A}_{ij} = \frac{\partial \beta_i}{\partial \theta_j}$ lens plane

Magnification factor is

$$\mu(\boldsymbol{\theta}) = \frac{1}{\det \mathcal{A}(\boldsymbol{\theta})}$$

- μ>0 : positive parity
- μ <0 : negative parity (mirror image of source)
- det A = 0 : critical points/curves

source plane

Image distortion I

Rewrite Jacobian matrix:

$$\mathcal{A}(oldsymbol{ heta}) = rac{\partial oldsymbol{eta}}{\partial oldsymbol{ heta}} = egin{pmatrix} \delta_{ij} - rac{\partial^2 \psi(oldsymbol{ heta})}{\partial heta_i \partial heta_j} \end{pmatrix} = egin{pmatrix} 1 - \kappa - \gamma_1 & -\gamma_2 \ -\gamma_2 & 1 - \kappa + \gamma_1 \end{pmatrix}$$

where γ_1 and γ_2 are the two components of shear

$$\gamma \equiv \gamma_1 + i\gamma_2 = |\gamma| e^{2i\varphi}$$

$$\gamma_1 = \frac{1}{2} (\psi_{,11} - \psi_{,22}) \qquad \gamma_2 = \psi_{,12}$$

Magnification in terms of κ and γ is:

$$\mu = \frac{1}{\det \mathcal{A}} = \frac{1}{(1 - \kappa)^2 - |\gamma|^2}$$

Image distortion II

Surface brightness conservation:

$$I(\boldsymbol{\theta}) = I^{(\mathrm{s})}[\boldsymbol{\beta}(\boldsymbol{\theta})]$$

To visualize distortion, consider locally linearized lens eq.:

$$\boldsymbol{\beta} - \boldsymbol{\beta}_0 = \mathcal{A}(\boldsymbol{\theta}_0) \cdot (\boldsymbol{\theta} - \boldsymbol{\theta}_0)$$

Question: for an infinitesimally small circular source, what would the shape of its lensed image be?

- (1) Circular
- (2) Elliptical
- (3) Boxy
- (4) Irregular
- (5) None of the above

Image distortion III

The lensed image of a small circular source with radius R is an ellipse

Major axis:

$$\frac{R}{1-\kappa-|\gamma|} = \frac{R}{(1-\kappa)(1-|g|)}$$

Minor axis:

$$\frac{R}{1-\kappa-|\gamma|} = \frac{R}{(1-\kappa)(1-|g|)} \quad ; \quad \frac{R}{1-\kappa+|\gamma|} = \frac{R}{(1-\kappa)(1+|g|)}$$
 reduced shear $g(\pmb{\theta}) = \frac{\gamma(\pmb{\theta})}{[1-\kappa(\pmb{\theta})]}$

Angle of major axis from θ_1 the same as the shear angle φ [Exercise: show these properties. Hint: try $\beta(\lambda) = \beta_0 + R(\cos \lambda, \sin \lambda)$]

Image distortion IV

Axis ratio of ellipse:

$$\frac{b}{a} = \frac{R}{(1-\kappa)(1+|g|)} / \frac{R}{(1-\kappa)(1-|g|)} = \frac{1-|g|}{1+|g|}$$

shapes of lensed images yield estimate of reduced shear

$$|g| = \frac{1 - b/a}{1 + b/a}$$

 $|g| = \frac{1 - b/a}{1 + b/a}$ BUT sources are not intrinsically round... average over many sources, and ass average over many sources, and assume intrinsic ellipticities are randomly oriented

Shear and convergence

Recall

$$egin{align} \gamma_1 &= rac{1}{2} (\psi_{,11} - \psi_{,22}) & \gamma_2 &= \psi_{,12} \ \psi(oldsymbol{ heta}) &= rac{1}{\pi} \int_{\Re^2} \mathrm{d}^2 heta' \kappa(oldsymbol{ heta'}) \ln |oldsymbol{ heta} - oldsymbol{ heta'}| \ \end{aligned}$$

Shear can therefore be written as

$$\gamma(\boldsymbol{\theta}) = \frac{1}{\pi} \int_{\Re^2} d^2 \theta' \, \mathcal{D}(\boldsymbol{\theta} - \boldsymbol{\theta'}) \, \kappa(\boldsymbol{\theta'})$$
$$\mathcal{D}(\boldsymbol{\theta}) \equiv -\frac{\theta_1^2 - \theta_2^2 + 2i\theta_1\theta_2}{|\boldsymbol{\theta}|^4} = \frac{-1}{(\theta_1 - i\theta_2)^2}$$

Inverting this:

$$\kappa(\boldsymbol{\theta}) - \kappa_0 = \frac{1}{\pi} \int_{\Re^2} \mathrm{d}^2 \theta' \, \mathcal{R}e \left[\mathcal{D}^*(\boldsymbol{\theta} - \boldsymbol{\theta'}) \, \gamma(\boldsymbol{\theta'}) \right]$$

mass reconstruction from weak lensing

Classification of ordinary images

Ordinary (det A \neq 0) images occur at $\nabla \tau(\boldsymbol{\theta}; \boldsymbol{\beta}) = 0$ i.e., images are local extrema or saddles of Fermat surface (Fermat's Principle) for fixed $\boldsymbol{\beta}$. Note $\tau_{ij} = A_{ij}$.

Image types:

Type I: minimum of τ det A > 0; tr A > 0

Type II: saddle point of τ det A < 0

Type III: maximum of τ det A > 0; tr A < 0

[Blandford & Narayan 1986]

For mass distributions of finite total mass and that are smooth, there will be at least one Type I image.

Multiple Images

Question:

Given a lens mass distribution that is smooth with det A > 0 everywhere, what is the highest number of lensed images of a background source?

- 1) 1
- 2) 2
- 3) 3
- 4) 4
- 5) Unlimited, depending on the precise form of the lens mass distribution

Critical curves and caustics I

det A = 0: critical curves on image plane θ corresponds to caustics on source plane β

Example: non-singular isothermal sphere lens $ho(r) = rac{
ho_0}{r_c^2 + r^2}$

Credit: A. Amara & T. Kitching

Critical curves and caustics II

Example: non-singular isothermal ellipsoid lens

	Einstein Cross	Cusp Caustic	Fold Caustic
Source Plane			
Image Plane			

Credit: A. Amara & T. Kitching ²⁰

Critical curves and caustics III

source plane caustics

image plane critical curves

image plane time-delay contours

Critical curves and caustics IV

Critical curves and caustics V

Critical curves and caustics VI

Critical curves and caustics VII

Caustics separate regions of different image multiplicity

Why do we typically find only 2 or 4 images in real lens systems? *Ans.: central image is demagnified*

[Fassnacht et al. 200]

Cusp and fold relations

For smooth mass distribution:

Fold relation

$$\frac{\mu_A + \mu_B = 0}{|\mu_A| = |\mu_B|}$$

Cusp relation

$$\frac{\mu_A + \mu_B + \mu_C = 0}{|\mu_A| = |\mu_B| + |\mu_C|}$$

Observed cusp and fold lenses

For smooth mass distribution:

Fold relation

Cusp relation

27

$$\mu_A + \mu_B = 0$$
$$|\mu_A| = |\mu_B|$$

$$\frac{\mu_A + \mu_B + \mu_C = 0}{|\mu_A| = |\mu_B| + |\mu_C|}$$

Violations of cusp and fold relations

2045+265

What causes the violations?

- time delays (variability)
- dust extinction
- microlensing
- substructure

By eliminating the first three causes, lensing provides a unique way to detect dark matter substructure