
Lensing Basics:
II. Basic Theory

Sherry Suyu
Academia Sinica Institute of Astronomy and Astrophysics

University of California Santa Barbara
KIPAC, Stanford University

November 5, 2012
@ XXIV Canary Islands Winter School of Astrophysics



2

Lens equation

In terms of angular coord.:

where

[Schneider et al. 2006]
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Deflection angle
Recall from General Relativity:

For weak gravitational field and small deflection angles
(geometrically-thin lens), a light ray with spatial
trajectory (ξ1(λ), ξ2(λ), r3(λ)) that passes through
distribution with 3D density ρ(r) will be deflected by
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Scaled deflection angle

where κ is the dimensionless surface mass density
(a.k.a. convergence)

and Σcr is the critical surface mass density

recall
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Lens potential

Using

where the lens potential is

that satisfies the Poisson equation:
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Fermat potential
Define scalar function known as the Fermat potential

It is a function of θ with β as a parameter
Note:

yields the lens equation
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Fermat potential τ  ∝  excess time delay t

Fermat’s Principle

Fermat’s Principle:

[Blandford & Narayan 1986]

rays of light traverse
the path of stationary
optical length with
respect to variations
of the path

i.e.,
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Given a mass distribution ρ(r), redshifts zd, zs

κ(θ)   [convergence]
α(θ)   [scaled deflection angle]

lens equation (governs light paths)

  Lenses are your dark matter goggles
ψ(θ)   [lens potential]

  [Fermat potential]

Brief recap

zd

zs
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Time delay

[Schneider et al. 2006]

AB

Excess time delay relative
to the case of no lensing is

Recall Fermat potential
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Time delay

[Schneider et al. 2006]

AB

Excess time delay relative
to the case of no lensing is

Recall Fermat potential

depends on 
cosmology

depends
on lens
mass
distrib.

Cosmology
Probe
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Magnification
Lensing conserves surface brightness 
Flux F =  surface brightness  x  solid angle
Magnification = Fobserved / Fintrinsic = dΩobserved  / dΩintrinsic

Define Jacobian matrix: 

with

Magnification factor is

source plane

lens plane

• µ>0  : positive parity
• µ<0  : negative parity (mirror image of source)
• det A = 0 : critical points/curves
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Image distortion I
Rewrite Jacobian matrix: 

are the two components of shear 

Magnification in terms of κ and γ is: 
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Image distortion II

To visualize distortion, consider locally linearized lens eq.:

Surface brightness conservation:

Question: for an infinitesimally small circular source,
what would the shape of its lensed image be?

(1) Circular
(2) Elliptical
(3) Boxy
(4) Irregular
(5) None of the above
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Image distortion III

The lensed image of a small circular source with radius R is an ellipse

C
re

di
t: 

M
. B

ra
da

c

Major axis: Minor axis: 

   Angle of major axis from θ1 the same as the shear angle ϕ
[Exercise: show these properties.  Hint: try                       ]

reduced shear
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Image distortion IV
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Axis ratio of ellipse:

shapes of lensed images yield estimate of reduced shear

BUT sources are not intrinsically round…
average over many sources, and assume
intrinsic ellipticities are randomly oriented
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Shear and convergence
Recall

Shear can therefore be written as

Inverting this:

mass reconstruction from weak lensing
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Classification of ordinary images
Ordinary (det A ≠ 0) images occur at
i.e., images are local extrema or saddles of Fermat surface
(Fermat’s Principle) for fixed β.  Note τij = Aij.

Image types:
Type I: minimum of τ

 det A > 0;   tr A > 0
Type II: saddle point of τ

 det A < 0
Type III: maximum of τ

 det A > 0;   tr A < 0

For mass distributions of finite total mass and that are
smooth, there will be at least one Type I image.

[Blandford & Narayan 1986]
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Multiple Images

Question:
Given a lens mass distribution that is smooth with
det A > 0 everywhere, what is the highest number of
lensed images of a background source?

1) 1
2) 2
3) 3
4) 4
5) Unlimited, depending on the precise form of the

lens mass distribution
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Critical curves and caustics I
det A = 0: critical curves on image plane θ
corresponds to caustics on source plane β

Example: non-singular isothermal sphere lens

Credit: A. Amara & T. Kitching
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Critical curves and caustics II
Example: non-singular isothermal ellipsoid lens

Credit: A. Amara & T. Kitching
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Critical curves and caustics III

source plane
caustics

image plane
critical curves

image plane
time-delay contours

[Courbin et al. 2002]
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Critical curves and caustics IV
source plane

caustics
image plane

critical curves
image plane

time-delay contours

[C
ou

rb
in

 e
t a

l. 
20

02
]



23

Critical curves and caustics V
source plane

caustics
image plane

critical curves
image plane

time-delay contours
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Critical curves and caustics VI
source plane

caustics
image plane

critical curves
image plane

time-delay contours
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Critical curves and caustics VII
Caustics separate regions of different image multiplicity

1
3

5

Why do we typically find only 2 or 4 images in real
lens systems?   Ans.: central image is demagnified

SBS0909+523 HE0435-1223 B1608+656
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[Image credit: 
 C. Kochanek]
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Cusp and fold relations

Fold relation Cusp relation

A

B

A

B

C

For smooth mass distribution:
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Observed cusp and fold lenses

Fold relation Cusp relation

A

B
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For smooth mass distribution:

0924+0219 2045+265
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Violations of cusp and fold relations

0924+0219

2045+265

What causes the violations?

• time delays (variability)
• dust extinction
• microlensing
• substructure

By eliminating the first three
causes, lensing provides a
unique way to detect dark
matter substructure


