Lensing Basics: I. Introduction

Sherry Suyu

Academia Sinica Institute of Astronomy and Astrophysics
University of California Santa Barbara
KIPAC, Stanford University

November 5, 2012

@ XXIV Canary Islands Winter School of Astrophysics

What is lensing?

Optical Lensing

Image Credit: P. J. Marshall

Gravitational Optical Lensing

Image Credit: P. J. Marshall

Gravitational Lens

HST image: SLACSJ0737+3216

Image Credit: P. J. Marshall

Marshall et al. (2007)

Giant Lenses in the Sky

Galaxy Cluster Abell 1689

[Image credit: NASA, Benitez et al.]

Giant Lenses in the Sky

Galaxy Cluster Abell 1689

Multiple images of background source form giant arcs

Three regimes

Strong lensing:

- multiple images of background source
- images are strongly distorted into rings/arcs

Weak lensing:

 weak distortions of singly imaged background sources

Microlensing:

- lensing by stars (micro-arcsecond scale)
- magnification of background sources

Recap

H is an example of

- i) strong lensing
- ii) weak lensing
- iii) strong or microlensing
- iv) None of the above

A is an example of

- i) strong lensing
- ii) weak lensing
- iii) strong or microlensing
- iv) None of the above

Brief history of lensing

Deflection Predictions

Newtonian theory of gravitation:

test particle with velocity *v* moving past an object of mass *M* is deflected by

$$\hat{\alpha} = 2GM/(v^2\xi)$$

if light treated as particles

$$\hat{\alpha_N} = 2GM/(c^2\xi)$$

[Mitchell 1784; Soldner 1804]

Einstein's general theory of relativity:

$$\hat{\alpha}_{\rm E} = 4GM/(c^2\xi) = 2\hat{\alpha}_{\rm N}$$

Deflection Detection

Measure the deflection of background stars by the sun during a total solar eclipse

In 1919, Arthur Eddington and collaborators measured the positions of stars near the sun, and confirmed Einstein's predictions

First detection of strong lensing:

The gravitational lens 0957+561

Walsh, Carswell & Weymann (1979) discovered a pair of quasars separated by ~6"

13

First detection of strong lensing:

The gravitational lens 0957+561

identical spectra!

Discovery of giant luminous arcs

Lynds & Petrosian (1986) and Soucail et al. (1987) independently discovered elongated, curved features around two clusters of galaxies

Discovery of giant luminous arcs

HST ACS image of Abell 370:

[Richard et al. 2010] 16

Quasar microlensing

QSO 2237+0305

[CASTLES]

- In 1989, the microlensing effect was detected in QSO 2237+0305 [Irwin et al. 1989]
- Stars in the lens galaxies changes the magnifications of the quasar images
- The magnification varies over time since the quasar, lens and observer are not stationary (stars orbit in galaxies)
- The flux variations due to microlensing should be uncorrelated between the different quasar images [Chang & Refsdal 1979, 1984; Paczynski 1986; Kayser et al. 1986; Schneider & Weiss 1987]
- In contrast, flux variations due to intrinsic quasar variability are correlated / delayed

Galactic microlensing

- stars of the Milky way act as lenses for other stars or extragalactic sources
- characteristic light curves of star
- First galactic microlensing events toward the LMC reported in 1993 by two groups Alcock et al. and Aubourg et al.

Weak lensing

[Mellier 1999]

- lensing distortion weaker than than intrinsic shape
- measure the shapes of galaxies over local ensembles
- mean distortion of ensemble yields a measure of lens strength
- this weak gravitational lensing effect was first detected in two galaxy clusters by Tyson, Valdes & Wenk (1990)
- even weaker lensing around individual galaxies was discovered by Brainerd et al. (1996)

Years/decades later

- Radio, optical imaging and spectroscopic surveys in recent years have led to an explosion in the discovery of lens systems
- Hundreds of strong lens systems now known

There are now a multitude of studies in the astrophysics literature based on strong, weak and/or microlensing

Why use lensing?

Composition of the Cosmos

Credit: LSST₂₂

Composition of the Cosmos

Credit: LSST₂₃

Composition of the Cosmos

[Clowe et al. 2006; Bradac et al. 2006]

Dark Matter

Lensing is excellent for

- measuring properties of dark matter halos of galaxies, groups of galaxies, and clusters of galaxies [e.g., Auger et al. 2010, Suyu & Halkola 2010, Natarajan et al. 2009; Mandelbaum et al. 2006; Newman et al. 2012]
 - Important for understanding galaxy formation & evolution
- Detecting dark matter substructure and measuring the substructure mass fraction [e.g., Dalal & Kochanek; Fadely et al. 2012; Vegetti et al. 2012]
 - Important for resolving the Missing Satellite Problem

Fate of the dark Universe

Dark energy and dark matter determine fate of Universe

Fate of the dark Universe

Dark energy and dark matter determine fate of Universe

Credit: LSST

Measuring distance with lensing

B1608+656

Measuring distance with lensing

B1608+656

Active galactic nucleus (AGN) in the source:

Light emitted from AGN changes in time ("flickers")

Gravitational Lens Time Delays

With a lens mass model, the delays can be converted to a distance measurement [e.g., Fadely et al. 2010; Suyu et al. 2010, 2012]

31

Quasar accretion disk size

[Wambsganss et al. 2000]

Microlensing variability depends on mass of the microlenses (stars) and source size

Microlensing of lensed quasar is a powerful way to measure the size of the quasar accretion disk [e.g., Wambsganss et al. 2000; Morgan et al. 2008; Morgan et al. 2010]

Cosmology with weak lensing

Weak lensing by large-scale structure

- sensitive to the matter density parameter and normalization of density fluctuations
- independently confirmed existence of dark energy [e.g., Schrabback et al. 2010]

Galaxy cluster abundances and masses provides a cosmological probe. [e.g., Benson et al. 2011]. Weak lensing provides absolute mass calibration [e.g., von der Linden et al. 2012; Applegate et al. 2012;]

Cosmic telescope

Lensing arcs are highly magnified (~10-100) background sources

Galaxy clusters are nature's cosmic telescope to observe baby galaxies [e.g., Kneib et al. 2004; Swinbank et al. 2009; Jones et al. 2010; Bradac et al. 2012; Hall et al. 2012]

Planet searches

Star and planet act as microlenses

