Universidad

de Granada

ST TN
ST\
)
A I >\
Bl = \\
- sl
I 5 _.e
R 2

Inverse Ray Shooting
Tutorial (I1)

Jorge Jiménez Vicente
Dpto. Fisica Teodrica y del Cosmos
Universidad de Granada
Spain

11/11/2012 IAC-WS-2012 Nov 2012

Session ||

* Playing around with lenses and sources
— Two point lens
— Chang Refsdal Lens
— SIS (+ Shear)
— NonSIS (+ Shear)
— SIE (+ Shear)

e Critical Curves and Caustics
* Magnification maps

11/11/2012 IAC-WS-2012 Nov 2012

Today’s goal #1

Flux=1.0 Flux=15.7456818649

11/11/2012 IAC-WS-2012 Nov 2012

g /" | Universidad
de Granada

Today’s goal #2

Image plane Source plane
Critical Curves Caustics
3 . . 3 .
2 2
1 1
0 0
-1 -1
-2 -2
=33 -2 -1 0 1 2 3 =33 -2 -1 0 1 2 3
11/11/2012 IAC-WS-2012 Nov 2012 ~/) %gV Universidad
S de Granada

Today’s goal

Erid
o
o

A
og el sd2Pececloatlone soeBz oot
AT DR oo

.
So ety g

e,

"'.--‘o-o-

-0.4 -0.3 -0.2

¥ | H gi/' Universidad

de Granada

14/11/2012 IAC-WS-2012 Nov 2012

Today’s goal #4

100
200

300

400O

Universidad

11/11/2012 IAC-WS-2012 Nov 2012
de Granada

ST N
[)
)
() /07
:

Play around with lenses/sources

* For the first part of the session we will play
around with different combinations of
lenses/sources.

e Pay attention to number of images, location,
magnification, ...

11/11/2012 IAC-WS-2012 Nov 2012

Lenses

e Let’s try:

— Binary point source lens
ax=m1*(x-x1)/d122+m2*(x-x2)/d2"2

— Point lens + shear (+ kappa)
ax=(k+Y)*x+m1*(x-x1)/d"2

— SIS (+ shear)
ax=k*(x-x1)/d(+ Y*x)

— NonSIS (+ shear)
Substitute d by sqrt((x-xI)*2+(y-yl)*2+rc"2)

— SIE(+shear)
cl=1-e, c2=1+e
d=sqrt(c1*(x-xI)"2+c2*(y-yl))
ax=k*(x-x1)/d

11/11/2012 IAC-WS-2012 Nov 2012

Sources

e We will try:
— 2D Circular Gaussian
— Face on disk galaxy €< From fits file & pyfits
— Edge on disk galaxy
— Field of galaxies
— Whatever takes you fancy

11/11/2012 IAC-WS-2012 Nov 2012

Schneider & T
Weiss (1986) .«

-1.0F a

Example: Binary

-1.5

-0.5

-1.0F ©
s b b
=15
Flg, fa-d Irreging of an cuiemded seame by the X=03 grviaiosal lene. The irers show Se postion of Lhe sosroe, wiidh |5
sormesponding images of the source i the ke plase are shown. The dashed lines show the eritical cores i@ the o plase

14/11/2012

hl

[}

]

ra u

|

]

1

L]

1Y

kY

N
M"\._‘

L

=110

=05

05

10

- d

19hEARN, , 104,

=15

A 1 2
10
1o ke crticdl D ik dhe sodinoe plase. The

2I7E

1

dad

ada

Tests

* Try to produce:
— 1 image
— 2 images
— 3 images
— 4 images
— 5images
— Many (micro-)images
— Arcs
— Reproduce your favorite lens system..

Universidad
de Granada

12/11/2012 IAC-WS-2012 Nov 2012

7 B O\
//(N
\ \ k- . 1
., = Bl = »1
=\ ST
\7\ S)
O S)
e’

11/11/2012 IAC-WS-2012 Nov 2012

Critical curves and caustics

A critical curve is the set of points at the image plane for which
det(A)=0.

Caustic curve is the set of points at the source plane with infinite
magnification. The source locations whose images are the critical
curves.

We calculate A from derivatives of the deflection angle and then its
determinant.

Therefore we will:
— Calculate A from derivatives of the deflection angle.
— Calculate det(A)
— Locate the places with det(A)=0 = Critical curves (auxfun.levloc)
— We trace back those rays to the source plane = Caustics

Its a bit tricky because of topological properties around the critical
curve/caustic

We may use lens.py for the lenses from now onwards.

Universidad
de Granada

S N
I~/)\
T\ e Z,
A% 7S 7/

Magnification maps |

e Kayser et al. 1986, Schneider & Weiss 1986, Schneider &
Weiss 1987.

* To calculate magnification maps we will use the fact that:
udei/dQs = dsl/dss =Nhits/Nrays
* To calculate this we will:

— Divide the image plane into cells from which we will throw
raypix rays per unlensed pixel.

— Throw the rays backwards from the image/lens plane towards
the source plane by deflecting them according to the lens
equation.

We can stop here for a while and have a look at the source plane

— Collect hits at every pixel of the source plane

— Compare (divide) to how many rays would have hit in the

absence of lensing.
12/11/2012 IAC-WS-2012 Nov 2012

//(\
\ \ k- . 1
., = Bl = »1
=\ ST
\7\ S)
O S)
e’

Universidad
de Granada

Magnification Maps Il

* Shooting rays one at a time needs a nested loop = Python
becomes slow.

* Shoot rays one row at a time to speed up calculations.

« Throwing the whole array at once is in principle possible, but will make it very memory
demanding with high risk of crash

 What happens if the throwing region is too small?

* Try magnification maps for a few lens configurations :
— Point mass
— Binary
— N point lenses
— Chang-Refsdal
— (Non)SIS (+ shear)

Universidad

11/11/2012 IAC-WS-2012 Nov 2012
de Granada

S ,'\.x\
/- %Y
\7 Z,

ST

