
Inverse Ray Shooting
Tutorial

Jorge Jiménez Vicente
Dpto. Física Teórica y del Cosmos

Universidad de Granada
Spain

15/11/2012 IAC- WS-2012

Final goal

15/11/2012 IAC- WS-2012

Session I

• Introduction to Python

• Solving the lens equation

– Ray shooting basics

• Image/s of a simple lens.

• (Playing around with lenses and sources)

15/11/2012 IAC- WS-2012

Today’s goal #1

15/11/2012 IAC- WS-2012

Today’s goal #2

15/11/2012 IAC- WS-2012

Today’s goal #3

15/11/2012 IAC- WS-2012

Python

• We will use python for this tutorial.

• Why?
– It is free !!

– It is easy to read/write code !! (dynamic types,
interpreted, …)

– It is versatile/powerful (with some libraries)

– It is becoming widely used!!

– It is funny (Got it’s name from Monty Python’s!!)

–I have chosen it !!!

15/11/2012 IAC- WS-2012

Python data types

a = 1  Int
a = 1.3  Float
a = “Hallo!”  String
a = [1,3,4,”Hallo”]  List
a[0] = 7  First element
a[-1] = “Bye”  Last element
a[1:-1]  [3,4] Slice

a = [[1,2],[3,4]]  List of lists (not array!!)
a = {“mass”:3.2,”vel”:3.2e5,3:4}
a[“mass”] = 6.7

a = (1,3,5,”siesta”)  Tuple (Non mutable !!!)
a[0]=5

 15/11/2012 IAC- WS-2012

Python flow control
• Code blocks are indicated in python via indentation level  No braces

or alike  Try: from __future__ import braces
• Four spaces per level is customary
• Loops:  Nested loops can be very inefficient in python !!!

for i in range(2,5):
 print i, "bottles of wine are too much"

• If …else:
if (a[i] == 7):
 print a[i], "is equal to seven"
 a[i] += 1
elif (a[i] == 5):
 print a[i], "is five"
 a[i] -= 1
else:
 print a[i], "is not 5 or 7“

• While:
i=0
while(i < 10):
 print i
 i += 1

15/11/2012 IAC- WS-2012

Read/Write files and command line
arguments

• Command line arguments are stored in variable
sys.argv from module sys.

• To use them:
– import sys
– Use sys.argv

• File I/O
– Open a file with open for writing, reading or both

• f=open(filename,’r+’)

– You can read file with f.read(), f.readline() or loop over
elements on f

– You can write to the file with f.write  Remember to
convert to string first with str

15/11/2012 IAC- WS-2012

Python functions/modules

• Python has many built-in funcions:
– abs(), help(), raw_input(), etc…

• Modules can be loaded for more fun…ctions:
– import random  funcs are called via

random.funcname  print random.random()

– import random as r  funcs are called via
r.funcname  print r.random()

– from random import *  random()  BEWARE !!

– from random import random

15/11/2012 IAC- WS-2012

Python function/modules (II)

• Of course, you can create your own
functions/modules

• A function is created like this:
def factorial(n):

 if n <1: # base case <- Inline comment

 return 1

 else:

 return n * factorial(n - 1)

• Several functions can be defined on the same file
“module.py” an imported as any other module.

15/11/2012 IAC- WS-2012

Arrays and Numpy
• The Numpy library is very convenient to use/manipulate arrays:

– It uses arrays in a very easy/intuitive way
– It uses arrays in a very efficient way  Speed !!

• Import the module with “import numpy as np”
• Arrays are ordered C-like (last index runs faster  Closer last index are

closer in memory)  IDL and fortran users beware !!!!
• We can convert lists and tuples into arrays: a=np.array(a)
• We can create them from scratch as zeros, ones, linspace,etc..
• Particularly useful (for working with 2D images) is mgrid:

– y,x=np.mgrid[0:3,0:3] 
 y array([[0, 0, 0],
 [1, 1, 1],
 [2, 2, 2]])
 x array([[0, 1, 2],
 [0, 1, 2],
 [0, 1, 2]])

15/11/2012 IAC- WS-2012

Numpy (II)

• We can operate with every element of the array
with a single instruction:
– c=a+b , c=a*b, c=a/b, c=np.exp(a), etc..

• Numpy tries to “broadcast” smaller arrays to
make them fit.

• Arrays multiply on a per element basis. If we
want matrix multiplication we need matrix
objects instead. BEWARE

• Matrices and arrays can be converted with the
array or matrix functions.

• We will not use matrices during this tutorial

15/11/2012 IAC- WS-2012

Plots/Images with matplotlib

• Matplotlib is now the standard plotting library in python.
• It is easy to use but powerful and versatile.
• The most useful sub-module is pyplot. It can be loaded

with:
 import matplotlib.pyplot as plt
• Then plotting is as simple as:
 plt.plot(x,y)  Lots of options, labels, etc..
• We can make subplots with
 plt.subplot(ncol,nrow,active)
• For an image, we display it with:
 plt.imshow(image)

15/11/2012 IAC- WS-2012

Pyfits

• In the near future we would like to read/write
fits files.

• For this tutorial we shall be happy with:

 import pyfits as pf

 a=pf.getdata(‘filein.fits’)  Read data

 pf.writeto(‘fileout.fits’,a)  Write data

15/11/2012 IAC- WS-2012

Zen of python
• Condenses the essence of the guiding principles of python:
Beautiful is better than ugly.
Explicit is better than implicit.
Simple is better than complex.
Complex is better than complicated.
Flat is better than nested.
Sparse is better than dense.
Readability counts.
Special cases aren't special enough to break the rules.
Although practicality beats purity.
Errors should never pass silently.
Unless explicitly silenced.
In the face of ambiguity, refuse the temptation to guess.
There should be one-- and preferably only one --obvious way to do it.
Although that way may not be obvious at first unless you're Dutch.
Now is better than never.
Although never is often better than *right* now.
If the implementation is hard to explain, it's a bad idea.
If the implementation is easy to explain, it may be a good idea.
Namespaces are one honking great idea -- let's do more of those!

15/11/2012 IAC- WS-2012

The lens equation

• Using the right units for the angles in the lens
and source planes, the lens equation can be
written as:

 y = x – α(x)
Where (y1,y2) and (x1,x2) are the coordinates
at the source and lens plane respectively. α is
the “scaled/reduced deflection angle”.

• This is a highly non-linear equation which can
only be solved analyticaly in a few cases.

15/11/2012 IAC- WS-2012

Inverse Ray Shooting

• A simple way to invert the lens equation
(know the position, distortion, magnification,
of the image(s) of the source) is by shooting
rays backwards from the observer to the lens.

• Light rays are reversible, so we can do it.

• Following the rays backwards we only care
about the rays we are really interested in.

• Indeed this “ray tracing” procedure is very
common in computer graphics.

15/11/2012 IAC- WS-2012

Inverse/Backwards Ray Shooting

15/11/2012 IAC- WS-2012

IRS program

• Divide the image plane into pixels.
• From the center of each pixel (xi1,xi2) shoot a ray

backwards.
• Calculate the deflection at the lens (α1, α2)

– The deflection angles α1, α2 in the horizontal and vertical axis
are different for every point at the image plane !!

• Calculate the position at the source plane where the ray
hits via the lens equation:

 yi1=xi1-α1(xi1,xi2)
 yi2=xi2-α2(xi1,xi2)
• Assign to the pixel corresponding to coordinates (xi1,xi2) in

the image plane the brightness of pixel with coordinates
(yi1,yi2) in the source plane.

15/11/2012 IAC- WS-2012

First contact:
No lens to Point lenses

• The “empty” lens.
– No deflection  y=x  Image plane identical to source plane.
– It may look stupid but will help to set up the general structure of

the program irrespective of complexity in source and/or lens.

• Parameters of the program:
– Size and number of pixels of the image (xl,nx)
– Size and number of pixels of the source (yl,ny)
– Position of the source (ys1,ys2)
– Position of the lens (x1l, x2l)

• Play around with these parameters to get familiar with
them and see their effect on the program.

• The “point source” lens at pos. (x1l,x2l).
– The deflection angle is (for mass M)

• α1=M (x1-x1l)/((x1-x1l)^2+(x2-x2l)^2)
• α2=M (x2-x2l)/((x1-x1l)^2+(x2-x2l)^2)

15/11/2012 IAC- WS-2012

Sources

• A circular homogeneous source:
def circ(ny,rad,x1=0.0,y1=0.0):
 x,y=np.mgrid[0:ny,0:ny]
 r2=(x-x1-ny/2)**2+(y-y1-ny/2)**2
 a=(r2<rad**2)
 return a/a.sum()

• A circular gaussian source:
def gcirc(ny,rad,x1=0.0,y1=0.0):
 x,y=np.mgrid[0:ny,0:ny]
 r2=(x-x1-ny/2)**2+(y-y1-ny/2)**2
 a=np.exp(-r2*0.5/rad**2)
 return a/a.sum()

15/11/2012 IAC- WS-2012

Make it faster

• The program irs_0.0.py is the basic IRS program.
 http://www.ugr.es/~jjimenez/IAC-WS2012/S1/irs_0.0.py

• Nested loops in python are not very efficient.

• To make the loop over rays more efficient we should
exploit numpy arrays:

– Use mgrid to generate x and y coordinates for the rays.

– Operate on entire numpy arrays to deflect rays.

– Then we loop over the indices that hit the source plane.

15/11/2012 IAC- WS-2012

